Regional Geology

Total Page:16

File Type:pdf, Size:1020Kb

Regional Geology BP and Oasis Impact Structures, Libya: Remote Sensing and Field Studies Christian Koeberl1, Wolf Uwe Reimold2, and Jeff Plescia3 1Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria ([email protected]) 2Impact Cratering Research Group, School of Geosciences, University of the Witwatersrand, Johannesburg 2050, South Africa ([email protected]) 3MP3-E163, Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, USA ([email protected]) Abstract. Remote sensing images and recent field studies provide important morphological and structural constraints for the BP and Oasis impact structures in Libya. The BP structure (25°19' N, 24°20' E) is highly eroded and appears on satellite images in the form of a set of concentric rings. The rocks are composed of sandstones of the Jurassic to Cretaceous Nubia Formation. The Landsat image allows division of the structure into inner, middle, and outer rings. The ERS1 and Radarsat radar images do not show much detail, but the rings are more pronounced than in the visible wavelengths, probably because the radar penetrates the sand cover. In the field it became obvious that the cited diameter of 2.8 or 3.2 km for the outer ring does not represent the actual crater diameter, as the “middle ring” represents the actual crater rim with a diameter of about 2 km. The middle ring is characterized by a distinct series of hills of up to about 30 m elevation above the surrounding desert, with rocks dipping at 30 to 50° outwards. Some parts of the rim are characterized by intense folding and faulting. The “outer ring” is a discontinuous ring of low hills with 1-2 m average elevation, dipping at 10° inwards. The “inner ring” is interpreted as a small central uplift structure (ca. 500 m in diameter) with steeply upturned strata that are intensely folded, faulted, and – in places – brecciated. 162 Koeberl et al. For Oasis (24° 35' N, 24° 24' E) diameters of 11.5 km or even 18 km (from radar images) have been suggested in the past. However, the topographically most prominent feature of this structure is a ring of discontinuous (up to 100 m high) hills 5.1 km in diameter. The rocks in this prominent ring dip outward and locally are intensely folded. It can be debated whether or not this feature represents the actual crater rim. 1 Introduction The BP and Oasis impact structures in southeast Libya are highly eroded. They appear as concentric ridges of deformed rocks that rise above the surrounding desert plain by only a few tens of meters. Both structures were first mentioned by Kohman et al. (1967), who described their location based on space and aerial photography. Martin (1969) provided additional detail of the BP structure, which is the smaller of the two. BP and Oasis are centered at 25°19' N and 24°20' E, and 24°35’N and 24°24’E, respectively (Figs. 1, 2); both are located close to the Libyan-Egyptian border. The names resulted from the fact that, in the 1960s, the first research visit to the Oasis structure was made by a field party of the Oasis Oil Company of Libya; BP was visited around that time by a team from the B.P. Exploration Company. The impact origin of the structures was supported in the early 1970s by French et al. (1972, 1974) on the basis of observations of planar deformation features (PDFs) in some of the crater rocks. However, the number of observations of these features was very limited. Underwood and Fisk (1980) suggested that both craters formed simultaneously by a double impact, but apart from the relative proximity (ca. 80 km distance) and a similar degree of erosion, no real evidence to support such a suggestion is available. At this time the absolute ages for these structures are not known due to lack of datable material, although an attempt was made to isolate apatite from sandstone samples for fission track dating (R. Giegengack, pers. comm.); so far not enough material has been available. The ages can only be constrained to post-Nubian; i.e., postdating the Jurassic to Lower Cretaceous target rocks; less than ca. 120 Ma. BP and Oasis Impact Structures, Libya: Remote Sensing and Field Studies 163 1.1 Libyan Desert Glass Based on the proximity of the BP and Oasis structures to the area of the Libyan Desert Glass (LDG), which is found in a limited strewn field about 150 km to the east (Fig. 1), and the lack of disturbed Jurassic to Lower Cretaceous sandstone strata in the area of the occurrence of the glass, several workers (e.g., Martin 1969; Underwood and Fisk 1980; Murali et al. 1988; cf. Koeberl 1997) have considered the possibility that the LDG might be related to one or both of the eastern Libyan impact structures. However, Diemer (1997) speculated that the BP and Oasis structures could Fig. 1. Location map, showing parts of Egypt and Libya, after Abate et al. (1999). The position of the LDG field (in western Egypt) is shown in relation to the BP and Oasis impact structures in neighboring Libya. No LDG has been found in Libya. 164 Koeberl et al. Fig. 2. Regional Landsat image, showing the BP structure at the upper edge of the image, the Oasis structure at the center. Inset shows the structures at slightly higher resolution. North is at the top for all satellite images. be older than the LDG. Giegengack and Underwood (1997) also discussed that the target rocks currently exposed at the BP and Oasis structures could have been covered at the time of crater formation under about 400 meters of younger sediment. Libyan Desert Glass is an enigmatic natural glass that is found in an area of about 3000 to 6000 km2 (the exact numbers vary between different BP and Oasis Impact Structures, Libya: Remote Sensing and Field Studies 165 publications), similar to lag deposits, on the floor of corridors between sand dunes of the southwestern corner of the Great Sand Sea in western Egypt, near the Libyan border (Fig. 1). The glass occurs as centimetre- to decimeter-sized, irregularly shaped, and strongly wind-eroded pieces. The total preserved quantity of the glass has been estimated at 1.4·109 grams, but it is quite likely that the original mass was much larger (Barnes and Underwood 1976; Diemer 1997). Attempts to determine the age of the LDG were made using the K-Ar and fission-track methods. Due to the low K content of the glass, the errors on these K-Ar ages are too high to be meaningful (Matsubara et al. 1991; Horn et al. 1997). The only precise ages of the LDG come from fission track age determinations, which gave 28.5 ± 2.3 Ma (Storzer and Wagner 1971) to 29.4 ± 0.5 Ma (plateau age; Storzer and Wagner 1977), and 28.5 ± 0.8 Ma (Bigazzi and de Michele 1996; see also Bigazzi and de Michele 1997, and Horn et al. 1997) ages. The origin of the LDG has been the subject of much debate since its discovery (cf. Clayton and Spencer 1934; Weeks et al. 1984; Diemer 1997), and a variety of exotic processes were suggested, e.g., a hydrothermal sol-gel process (Jux 1983 and Feller 1997); or a lunar volcanic source (Futrell and O'Keefe 1997). However, there is abundant evidence of an impact origin of these glasses, including the presence of schlieren (texture with discontinuous almost parallel bands) and partly or completely digested minerals, such as lechatelierite (a high temperature SiO2 melt phase); baddeleyite (a high temperature break-down product of zircon; Kleinmann 1969; Storzer and Koeberl 1991; Horn et al. 1997); and the likely existence of a meteoritic component (Murali et al. 1987, 1988, 1989, 1997; Rocchia et al. 1996, 1997; Barrat et al. 1997). This is also in agreement with Os isotopic data of dark bands in the LDG (Koeberl 2000). The source material of the glass remains a mystery. Storzer and Koeberl (1991) suggested from Zr/U and REE data that none of the sands or sandstones from various sources in the region are good candidates to be the sole precursors of the LDG. Compositional data for surface sands (Koeberl 1997) show significant differences from the average LDG composition. There is some chemical and isotopic similarity to rocks from the BP and Oasis impact structures in Libya (Abate et al. 1999). However, a recent Rb-Sr and Sm-Nd isotopic study of the LDG (Schaaf and Müller- Sohnius 2002) suggests that “Nubian” rocks are not likely precursors of the LDG. To complicate things even further, Barakat (2001) and Kleinmann et al. (2001) found some shocked quartz-bearing breccias in the LDG strewn field, but – so far – no evidence for an actual crater has been found in this area. The possible connection to the origin of the Libyan Desert Glass led us to start an investigation of BP and Oasis. We quickly realized the lack of 166 Koeberl et al. detailed geological and structural information, and of representative samples from these structures. The only geological studies were those of some oil exploration geologists and of Underwood and co-workers in the 1960s and 1970s, and all previous workers spent only up to a few hours at each site. Thus, in the late 1990s plans for an expedition were made by two of us (CK, WUR) to study both structures and obtain fresh samples. Unfortunately a number of logistical and bureaucratic problems delayed the actual fieldwork until January 2002.
Recommended publications
  • Fault Formation at Impact Craters in Porous Sedimentary Rock Targets W.R
    40th Lunar and Planetary Science Conference (2009) 1073.pdf FAULT FORMATION AT IMPACT CRATERS IN POROUS SEDIMENTARY ROCK TARGETS W.R. Orr Key1 and R.A. Schultz, Geomechanics-Rock Fracture Group, Department of Geological Sciences and Engineer- ing/172, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, NV 89557-0138, [email protected]. Summary: We present results of a study in which provides a unique opportunity to compare the mechan- the mechanics of faulting at high strain rates in porous ics of faulting at high and low strain rates. sedimentary rocks were evaluated at the Upheaval Results and Implications: It was decided that Dome impact crater in southeast Utah. We find that at faults would be evaluated within the Navajo Sandstone high strain rates, deformation band damage zones are and the rim syncline of the crater because mechanical absent and instead a cracking-dominated behavior gen- observations relating to fault formation are best ob- erating pulverized rock occurs. Using the measured served where offsets on the faults are minimal. Two of grain sizes of the pulverized rock, strain rates under these faults were identified for field investigation which this material formed are ~ 103 s-1. within the rim syncline of Upheaval Dome and are Introduction: Faulting in porous sedimentary shown in Figure 1. By contrast, offsets within the cen- rocks subjected to typical tectonic strain rates has been tral uplift at Upheaval Dome [10] are too great to allow extensively studied [1-3]. These studies have shown for the mechanical observations required for this study. that the strain is first accommodated by a localized reduction of porosity resulting in the formation of in- dividual deformation bands and as the strain continues to accumulate, deformation band damage zones (DBDZs) develop [2].
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • Deformation Styles at Upheaval Dome, Utah Imply Both Meteorite Impact and Subsequent Salt Diapirism
    41st Lunar and Planetary Science Conference (2010) 1969.pdf DEFORMATION STYLES AT UPHEAVAL DOME, UTAH IMPLY BOTH METEORITE IMPACT AND SUBSEQUENT SALT DIAPIRISM. R. G. Daly and S. A. Kattenhorn, University of Idaho Department of Geo- logical Sciences ([email protected]; [email protected]). Introduction: Upheaval Dome is a ~5.5 km wide that diapirism may have had an influence on the de- circular topographic depression in Canyonlands Na- formation present at the dome. tional Park, Utah (Fig. 1). Upturned beds around the Observations: Field work has focused on observ- feature indicate a structural dome located above salt ing brittle deformation in and around the ring syncline. layers in the Pennsylvanian aged Paradox Formation. This area is pervasively deformed and as such affords Its ambiguous origin, either as a salt diapir or a mete- many varied examples of brittle failure. This work orite impact, has been debated for the last 75 years. complements the extensive research done in the central Recently, planar deformation features (PDFs) were uplift of the dome [6]. Many different morphologies discovered at the dome. Based on current field work are present, such as joints, deformation bands, and we propose two methods of deformation present at the shear fractures. There is also variation within each dome: meteorite impact and subsequent salt diapirism. morphology. Many shear fractures are planar and regu- Based on field and aerial photograph analysis, we larly spaced; however, there are also many sets with a have identified and characterized both dynamic and distinct curvilinear shape, the orientation of which slowly-formed deformation features around the dome.
    [Show full text]
  • (Silurian) Anoxic Palaeo-Depressions at the Western Margin of the Murzuq Basin (Southwest Libya), Based on Gamma-Ray Spectrometry in Surface Exposures
    GeoArabia, Vol. 11, No. 3, 2006 Gulf PetroLink, Bahrain Identification of early Llandovery (Silurian) anoxic palaeo-depressions at the western margin of the Murzuq Basin (southwest Libya), based on gamma-ray spectrometry in surface exposures Nuri Fello, Sebastian Lüning, Petr Štorch and Jonathan Redfern ABSTRACT Following the melting of the Gondwanan icecap and the resulting postglacial sea- level rise, organic-rich shales were deposited in shelfal palaeo-depressions across North Africa and Arabia during the latest Ordovician to earliest Silurian. The unit is absent on palaeohighs that were flooded only later when the anoxic event had already ended. The regional distribution of the Silurian black shale is now well-known for the subsurface of the central parts of the Murzuq Basin, in Libya, where many exploration wells have been drilled and where the shale represents the main hydrocarbon source rock. On well logs, the Silurian black shale is easily recognisable due to increased uranium concentrations and, therefore, elevated gamma-ray values. The uranium in the shales “precipitated” under oxygen- reduced conditions and generally a linear relationship between uranium and organic content is developed. The distribution of the Silurian organic-rich shales in the outcrop belts surrounding the Murzuq Basin has been long unknown because Saharan surface weathering has commonly destroyed the organic matter and black colour of the shales, making it complicated to identify the previously organic-rich unit in the field. In an attempt to distinguish (previously) organic-rich from organically lean shales at outcrop, seven sections that straddle the Ordovician-Silurian boundary were measured by portable gamma-ray spectrometer along the outcrops of the western margin of the Murzuq Basin.
    [Show full text]
  • A Novel Geomatics Method for Assessing the Haughton Impact Structure
    Meteoritics & Planetary Science 1–13 (2020) doi: 10.1111/maps.13573-3267 Electronic-Only Article A novel geomatics method for assessing the Haughton impact structure Calder W. PATTERSON * and Richard E. ERNST Department of Earth Sciences, Ottawa Carleton Geoscience Center, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada *Corresponding author. E-mail: [email protected] (Received 22 July 2019; revision accepted 22 August 2020) Abstract–Terrestrial impact structures are typically modified by erosion, burial, and tectonic deformation. Their systematic morphologies are typically reconstructed through a combination of geological and topographic mapping, satellite imagery, and geophysical surveys. This study applies a novel geomatics approach to assessment of the morphology of the extensively studied Haughton impact structure (HIS), Devon Island, Nunavut, in order to test its potential to improve the accuracy and quality of future impact structure reconstruction. This new methodology integrates HIS lithological data, in the form of digitized geologic mapping, with a digital elevation model, within diametrically opposed, wedge-shaped couplets, and plots these data as pseudo cross sections that capitalize on the radial symmetry of the impact structure. The pseudo cross sections provide an accurate reconstruction of the near- surface stratigraphic sequences and terraces in the faulted annulus of the modified crater rim. The resultant pseudo cross sections support current interpretations regarding the 10–12 km diameter of the transient cavity, and successfully reproduce the visible outer ring and intermediate uplifted zone within the central basin. Observed positions of vertical offsets suggest that the extent of impact deformation extends beyond the current estimates of the apparent crater rim to radial distances of between 14 and 15 km.
    [Show full text]
  • Petroleum Generation and Migration in The
    Petroleum generation and AUTHORS Ruth Underdown North Africa Research migration in the Ghadames Group, School of Earth, Atmospheric and En- vironmental Sciences, University of Manchester, Basin, north Africa: Oxford Road, Manchester M13 9PL, United Kingdom; [email protected] A two-dimensional Ruth Underdown obtained her first degree in geology from the University of St. Andrews, basin-modeling study Scotland, an M.Sc. degree in petroleum geo- science from Imperial College, London, and a Ph.D. from the University of Manchester, Ruth Underdown and Jonathan Redfern United Kingdom, in 2006, funded by the North Africa Research Group. She is currently teach- ing in the United Kingdom. ABSTRACT Jonathan Redfern North Africa Research The Ghadames Basin contains important oil- and gas-producing res- Group, School of Earth, Atmospheric and En- vironmental Sciences, University of Manchester, ervoirs distributed across Algeria, Tunisia, and Libya. Regional two- Oxford Road, Manchester, M13 9PL, United dimensional (2-D) modeling, using data from more than 30 wells, Kingdom; [email protected] has been undertaken to assess the timing and distribution of hydro- carbon generation in the basin. Four potential petroleum systems Jonathan Redfern obtained his B.Sc. degree in geology from the University of London, Chelsea have been identified: (1) a Middle–Upper Devonian (Frasnian) and College, in 1983, and a Ph.D. from Bristol Uni- Triassic (Triassic Argilo Gre´seux Infe´rieur [TAG-I]) system in the versity, United Kingdom, in 1989. He worked central-western basin; (2) a Lower Silurian (Tannezuft) and Triassic in the oil industry for 12 years, initially with (TAG-I) system to the far west; (3) a Lower Silurian (Tannezuft) and Petrofina in the United Kingdom, southeast Asia, Upper Silurian (Acacus) system in the eastern and northeastern and Libya, and subsequently with Hess.
    [Show full text]
  • Geology and Petroleum Resources of North-Central and Northeastern Africa
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Geology and petroleum resources of north-central and northeastern Africa By James A. Peterson^ Open-File Report 85-709 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Reston, Virginia 1985 CONTENTS Page Abstract 1 Int roduct ion 3 Information sources 3 Geography 3 Acknowledgment s 3 Regional geology 7 Structure 7 Stratigraphy and sedimentation 9 Bas ement 2 2 Cambrian - Ordovician 22 Silurian 22 Devonian 22 Carbonif erous 2 3 Permian 23 Tr ias s i c 2 3 Jurassic 23 Cretaceous 24 Te r t iary 25 Quaternary 27 Petroleum geology 27 Sirte Basin 27 Western Sahara region 31 Suez-Sinai 34 Western Desert Basin - Cyrenaica Platform 36 East Tunisia - Pelagian Platform 37 Nile Delta - Nile Basin 39 Resource assessment 43 Procedures 43 Assessment 43 Comments 47 Selected references 49 ILLUSTRATIONS Page Figure 1. North-central and northeastern African assessment regions 4 2. Generalized regional structure map of north-central and northeastern Africa 6 3. Generalized composite subsurface correlation chart, north-central and northeastern Africa 10 4. North-south structural-stratigraphic cross-section A-A', northern Algeria to southeastern Algeria 11 5. East-west structural-stratigraphic cross-section B-B f , west-central Libya to northwestern Egypt 12 6. Northeast-southwest structural-stratigraphic cross-section C-C f , northeastern Tunisia to east-central Algeria 13 7. North-south structural-stratigraphic cross-section D-D f , northeastern Libya to southeastern Libya 14 8. West-east structural-stratigraphic cross-section B'-B f , northern Egypt 15 9.
    [Show full text]
  • Terrestrial Impact Structures and Their Confirmation: Example from Dhala Structure, Central India
    e-Journal Earth Science India, Vol.2 (IV), October, 2009, pp. 289 - 298 http://www.earthscienceindia.info/; ISSN: 0974 - 8350 Terrestrial Impact Structures and their Confirmation: Example from Dhala Structure, central India J. K. Pati1, K. Prakash2 and R. Kundu1 1Department of Earth & Planetary Sciences, Nehru Science Centre, University of Allahabad, Allahabad, India 2Department of Geology, Banaras Hindu University, Varanasi, India Email: [email protected]; [email protected] Abstract Although seventy percent of the Moon surface area is covered by meteoritic impact structures only 176 confirmed impact structures known on Earth hitherto. In India, the recently discovered Dhala impact structure, M.P. and the Lonar crater, Maharastra are the only two confirmed impact structures. The simple, complex and multi-ring impact structures are confirmed on the basis of mesoscopic and microscopic shock metamorphic features besides the physical and/or chemical signature(s) of the impactor (meteorite). The role of bolide impacts in the formation of mineral deposits and playing a crucial role in some of the major mass extinction events is also well known. The impact cratering process is considered responsible for the planetary evolution, landscape modification, and the presence of water and life on Earth. Introduction Bolide impact structures broadly cover the surfaces of planetary bodies in the solar system (Taylor, 1992) but predominantly occur in the planets of the inner solar system, their moons and asteroids. Nearly 70% of the Lunar surface is covered by impact structures. However, these are rare features on the surface of the planet Earth and only 176 structures are currently known (http://www.unb.ca/passc/ImpactDatabase/Age; October 10, 2009) as confirmed impact structures.
    [Show full text]
  • The Sirte Basin Province of Libya—Sirte-Zelten Total Petroleum System
    The Sirte Basin Province of Libya—Sirte-Zelten Total Petroleum System By Thomas S. Ahlbrandt U.S. Geological Survey Bulletin 2202–F U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director Version 1.0, 2001 This publication is only available online at: http://geology.cr.usgs.gov/pub/bulletins/b2202-f/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Manuscript approved for publication May 8, 2001 Published in the Central Region, Denver, Colorado Graphics by Susan M. Walden, Margarita V. Zyrianova Photocomposition by William Sowers Edited by L.M. Carter Contents Foreword ............................................................................................................................................... 1 Abstract................................................................................................................................................. 1 Introduction .......................................................................................................................................... 2 Acknowledgments............................................................................................................................... 2 Province Geology................................................................................................................................. 2 Province Boundary....................................................................................................................
    [Show full text]
  • The Ries-Steinheim Crater Pair and Two Major Earthquakes – New Discoveries Challenging the Double-Impact Theory
    The Ries-Steinheim crater pair and two major earthquakes – New discoveries challenging the double-impact theory Elmar Buchner ( [email protected] ) University of Applied Sciences Neu-Ulm Volker Sach Meteorkratermuseum Steinheim Martin Schmieder USRA, Houston, Texas Article Keywords: impact-earthquakes, Nördlinger Ries, Steinheim Basin Posted Date: July 27th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-43745/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract The Nördlinger Ries and the Steinheim Basin are widely perceived as a Middle Miocene impact crater doublet. We discovered two independent earthquake-produced seismite horizons in North Alpine Foreland Basin deposits. The older seismite horizon,associated with the Ries impact is overlain by in situ-preserved distal impact ejecta, forming a unique continental seismite-ejecta couplet within a distance up to 180 km from the crater. The younger seismite unit, also triggered by a major palaeo-earthquake, comprises clastic dikes that cut through the Ries seismite-ejecta couplet. The clastic dikes were likely formed in response to the Steinheim impact, some kyr after the Ries impact, in line with paleontologic results. With the Ries and Steinheim impacts as two separate events, Southern Germany witnessed a double disaster in the Middle Miocene. The magnitude–distance relationship of seismite formation during large earthquakes suggests the seismic and destructive potential of impact-earthquakes may be signicantly underestimated. Introduction The ~24 km-diameter Nördlinger Ries1,2,3,4 and the ~4 km-diameter Steinheim Basin1,5,6,7,8 impact structures in southern Germany (Fig.
    [Show full text]
  • GEOLOGY of the MOAB REGION Introduction
    GEOLOGY OF THE MOAB REGION (Arches, Dead Horse Point and Canyonlands) Annabelle Foos Geology Department, University of Akron Introduction The geology of Arches National Park, porphyry laccolith that was intruded during the Dead Horse Point State Park and the “Island in Oligocene, 30 million years ago and the Sky” section of Canyonlands National Park experienced glaciation during the Pleistocene. is very similar. They occur in the Canyonlands Melting snow which accumulates in the section of the Colorado Plateau, in the vicinity mountains during winter months, replenishes of the confluence between the Green and streams and recharges bedrock aquifers Colorado Rivers. The same stratigraphic units providing a valuable source of fresh water to outcrop in all three parks (figure 1) plus salt this region. (Doelling and others, 1987) tectonic features can be found in both Arches and Canyonlands. While in the Moab region you will become familiar with some of the stratigraphic units we will see throughout the Colorado Plateau, observe salt tectonic features, arch formation and in the distance you can view the La Sal Mountains. Cryptogamic Soils While in these three parks (and throughout this trip) you will be required to STAY ON THE DESIGNATED TRAILS. This rule is especially important at these parks in order to preserve the fragile cryptogamic soils (figure 2). Cryptogamic soils are a complex of lichens, algae, moss and fungus that occurs as a black coating on the ground surface and as small mounds where it is well developed. It plays an extremely important role in the desert ecology. It binds the soil together and inhibits wind erosion and erosion by sheet wash.
    [Show full text]
  • The Uweinat Area Contains Three Different
    Chapter 8 CRATER FORMS IN THE UWEINAT REGION FAROUK EL-BAZ National Air and Space Museum Smithsonian Institution Washington, D.C. 29560 BAHAY ISSAWI Geological Survey of Egypt Abbasia, Cairo Egypt ABSTRACT The Uweinat area contains three different varieties of avater forms^ rtamely: 1} two, mutti-ringed impact structures in southeast Libya, including the Oasis astrobleme and the BP structure, and two other aimters of possible impact origin; 2} simple, breached, and complex volcanic craters northeast .of Gebel Uweinat^ some of which nay he maars and other aryptoexptosion structures; and 3) a complex of large ciraular, shallow depressions east of Gebel Kissu in north- west Sudan, Because the number and variety of crater forms in the Uweinat area is unique, additional photogeot ogic interpretations are required based on computer-enhanced Landeat images or high resolution photographs from the Shuttle. These interpretations will allow detailed correla- tions of crater forms in this region with similar features on planetary bodies such as the Moon, Mars and Mercury. INTRODUCTION The eastern part of the Sahara where the borders of Egypt, Libya and Sudan meet is underlain by a Précambrien complex of metamorphlc and intrusive rocks (Sandford, 1935c; Said, 1962 ; and Pesce, 1968). This complex is one of many that cropout in the middle of the Sahara, separating it into northern and southern parts. This "Oweinat series" (Hume, 1934, p. 55) of metamorphics is intruded by granites with subordinate rhyolites, which are believed to be of post- Carboniferous age (Pesce, 1968, p, 62). Four major intrusions average approximately 20 km in diameter including the mountains known as Gebel Babein, El-Bahri, Arkenu, and Uweinat (Fig, 8.1), The Precambrian rocks are surrounded by hard quartzitic sand- stones with highly consolidated conglomerate and syenite porphyry sheets, which are Interbedded with sandstones, phonolites and trachyte sills, all of Paleozoic age (Issawi, 1980).
    [Show full text]