Probing the Intergalactic Medium with High-Redshift

Total Page:16

File Type:pdf, Size:1020Kb

Probing the Intergalactic Medium with High-Redshift UNIVERSITY OF CAMBRIDGE INSTITUTE OF ASTRONOMY ATHESISSUBMITTEDFORTHEDEGREE OF DOCTOR OF PHILOSOPHY [X\ PROBING THE INTERGALACTIC MEDIUM WITH HIGH-REDSHIFT QUASARS [X\ ALEXANDER PETER CALVERLEY DARWIN COLLEGE Submitted to the Board of Graduate Studies 19th October 2011 UNDER THE SUPERVISION OF DR. GEORGE D. BECKER “Science is what we understand well enough to explain to a computer. Everything else we do is art.” - DONALD KNUTH DECLARATION I hereby declare that my thesis entitled Probing the Intergalactic Medium With High-Redshift Quasars is not substantially the same as any that I have submitted for a degree or diploma or other qualifi- cation at any other University. I further state that no part of my thesis has already been or is being concurrently submitted for any such degree, diploma or other qualification. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. I note that Chapters 1 and 2 are intended as reviews, and as such contain little, if any, original work. They contain a number of images and plots extracted from other published works, all of which are clearly cited in the appropriate caption. Those parts of this thesis which have been published or accepted for publication are as follows: • Much of the work contained in Chapters 4 and 5 formed the basis of the work published as Calverley, A. C., Becker, G. D., Haehnelt, M. G., and Bolton, J. S. (2011) ‘Measurements of the ultraviolet background at 4.6 < z < 6.4 using the quasar proximity effect’, Monthly Notices of the Royal Astronomical Society 412, 2543-2562 and was completed in collaboration with the named authors. This thesis contains fewer than 60,000 words. Alex Calverley Cambridge, October 19, 2011 v ACKNOWLEDGEMENTS This thesis would not exist without the continuing help and support of those around me, and there are many people who deserve a mention. The greatest thanks are reserved for my supervisor, George Becker, who chose to take me on as his student, and who has been a great source of ideas and in- spiration during these past three years. I am also relatively rare amongst grad students in the IoA, in that I have had regular contact with my secondary supervisor, Martin Haehnelt. He first became in- volved during the writing of my paper in my second year, and has kept a careful eye on my work ever since. In many ways, the fact my thesis has been completed on time is largely down to his constant encouragement (and relentless deadlines!). Before I could choose a supervisor though, I needed a place in the IoA first. I will forever be grateful to Bob Carswell for sending me that email offering me a place, and to the examiners who looked at my work during each year of my PhD (Max Pettini, Ian McCarthy, Richard McMahon, Anthony Challinor and Andrew Fox) and decided to let me stay! Similarly, I must thank Paul Hewett for showing himself to be the quasar expert, and for always being willing to answer my questions on both basic astrophysics, and topics tangential to my research. Of course, the IoA is more than just a building full of researchers. Working behind the scenes are a dedicated team of support staff whose excellent work keeps the department working with incredible efficiency. Particular mentions must go to Siân Owen, who is quite simply the source of all knowledge, and Margaret Harding, whom I have to thank for all her sage advice when planning my observing and conference trips. I must also mention the Helpdesk staff (Hardip, Andy B, Andy D and Sue) who have always come to my rescue when my inability to use the command-line has caused my computer to throw a tantrum. I also give thanks to STFC, who have funded my PhD studentship and given me the opportunity to spend three years studying astronomy. They, together with Darwin College, have also covered the costs of my adventures abroad, for conferences and observing. Via them I have visited both India and Hawai’i during my PhD, and these were experiences I will never forget. My time at the IoA has been greatly enhanced by my friendships with other grad students. The most notable of these are my year group (Adrian, Amy, Becky, Dom, James M, James O, Jon, Ryan, Stephanie, Warrick and Yin-Zhe) with whom I have some great shared memories, ranging from games of ‘foilball’ to hiding under a particular professor’s desk. A special mention must go to the subset known as the ‘West’s Crew’ (Becky, James M and Jon), who ensured that I could spend my lunchtimes discussing current affairs away from the IoA, instead of eating alone at my desk. On a day to day basis though, it has been my officemates in H27, past and present (Caitlin, Simeon, Julie, Maciek, Adriano, Kim, Stephen and Warrick), who have kept me smiling, even when my code refuses to work. A special thank you goes out to Caitlin for teaching me some of her IDL skills (plus giving me her entire IDL library), and to Warrick for putting up with my endless requests for command-line help, questions on grammar, and showing me how to use Mathematica. During my final year, I became much more involved in the outreach activities that take place at the IoA. These are all organised by Carolin Crawford, so I am very grateful to her for letting me take part. vii viii Acknowledgements Indeed, if it wasn’t for Carolin, chances are I would never have heard about the job that I ultimately took, so I will always be thankful to her for forwarding on that email. My world has not just revolved around the IoA during my time in Cambridge. I have met some great people in my college, particularly in my first year, who have been instrumental in helping me adjust to life in Cambridge. Similarly, student societies have helped me to balance my work with play. One of my greatest regrets in undergrad was never picking up rowing, so I’m very glad that Darwin College Boat Club let me make amends for that! Also, I am particularly grateful to the excellent characters I have met on the Cambridge music scene, and I will always feel honoured to have made music with such a talented band of musicians. There have been several great science teachers during my life who have inspired me to pursue my dream of studying astronomy, although none more so than my MSci thesis supervisor, Alastair Edge. My project with him helped me realise that I enjoyed doing research, and with his encouragement I sent in my application to the IoA. I hope that through this thesis, I have lived up to the potential that he saw in me. No acknowledgements would be complete without mentioning the tireless love and support of my parents. They have always been there for me, and I cannot thank them enough for everything they have done. They also formed one half of my diligent team of thesis proof-readers. The other half is someone very special to me, who has been at my side through it all. Sarah, thank you so much for all that you have brought to my life. This thesis has been typeset in LATEX using TEXnic Center and JabRef. Thanks to all the former IoA members who have contributed to the thesis template on which this is based, and particularly to Mark Booth from whom I received this version. Alex Calverley Cambridge, October 19, 2011 SUMMARY Probing the Intergalactic Medium with High-Redshift Quasars Alex Calverley Clues about the timing of reionization and the nature of the ionizing sources responsible are im- printed in the ionization and thermal state of the IGM. In this thesis, I use high-resolution quasar spectra in conjunction with state-of-the-art hydrodynamical simulations to probe the IGM at high redshift, focusing on the ionization and thermal state of the gas. After reionization, the ionization state of the IGM is set by the intensity of the ultraviolet back- ground (UVB), quantified by the hydrogen photoionization rate, Γbkg. At high redshifts this has been estimated by measuring the mean flux in the Lyα forest, and scaling Γbkg in simulations such that the simulated mean flux matches the observed value. In Chapter 3 I investigate whether the precision of these estimates can be improved by using the entire flux probability distribution function (PDF) instead of only the mean flux. Although I find it cannot improve the precision directly, the flux PDF can potentially be used to constrain other sources of error in observational estimates of Γbkg, and so may increase the precision indirectly. The ionizing output of a quasar will locally dominate over the UVB, and this leads to enhanced transmission bluewards of the quasar Lyα line, known as the proximity effect. In Chapter 4 I present the first measurements of Γbkg at z > 5 from the proximity effect. The UVB intensity declines smoothly with redshift over 4.6 < z < 6.4, implying a smooth evolution in the mean free path of ionizing pho- tons. This suggests that reionization ends at z > 6.4. There is a drop in Γbkg by roughly a factor of five, which corresponds to a drop in the ionizing emissivity by about a factor of two. Such a redshift evolution in the emissivity cannot continue to much higher redshift without reionization failing to complete, which suggests that reionization cannot have ended much higher than z = 6.4.
Recommended publications
  • Aspects of Spatially Homogeneous and Isotropic Cosmology
    Faculty of Technology and Science Department of Physics and Electrical Engineering Mikael Isaksson Aspects of Spatially Homogeneous and Isotropic Cosmology Degree Project of 15 credit points Physics Program Date/Term: 02-04-11 Supervisor: Prof. Claes Uggla Examiner: Prof. Jürgen Fuchs Karlstads universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60 [email protected] www.kau.se Abstract In this thesis, after a general introduction, we first review some differential geom- etry to provide the mathematical background needed to derive the key equations in cosmology. Then we consider the Robertson-Walker geometry and its relation- ship to cosmography, i.e., how one makes measurements in cosmology. We finally connect the Robertson-Walker geometry to Einstein's field equation to obtain so- called cosmological Friedmann-Lema^ıtre models. These models are subsequently studied by means of potential diagrams. 1 CONTENTS CONTENTS Contents 1 Introduction 3 2 Differential geometry prerequisites 8 3 Cosmography 13 3.1 Robertson-Walker geometry . 13 3.2 Concepts and measurements in cosmography . 18 4 Friedmann-Lema^ıtre dynamics 30 5 Bibliography 42 2 1 INTRODUCTION 1 Introduction Cosmology comes from the Greek word kosmos, `universe' and logia, `study', and is the study of the large-scale structure, origin, and evolution of the universe, that is, of the universe taken as a whole [1]. Even though the word cosmology is relatively recent (first used in 1730 in Christian Wolff's Cosmologia Generalis), the study of the universe has a long history involving science, philosophy, eso- tericism, and religion. Cosmologies in their earliest form were concerned with, what is now known as celestial mechanics (the study of the heavens).
    [Show full text]
  • Joint Astrophysics Nascent Universe Satellite:. Utilizing Grbs As High Redshift Probes
    University of New Hampshire University of New Hampshire Scholars' Repository Physics Scholarship Physics 2012 Joint Astrophysics Nascent Universe Satellite:. utilizing GRBs as high redshift probes P. W. A. Roming Southwest Research Institute S. G. Bilen Pennsylvania State University - Main Campus D. N. Burrows Pennsylvania State University - Main Campus A Falcone University of New Hampshire - Main Campus D. B. Fox Pennsylvania State University - Main Campus See next page for additional authors Follow this and additional works at: https://scholars.unh.edu/physics_facpub Part of the Astrophysics and Astronomy Commons Recommended Citation Roming, P. W. A., S. G. Bilen, D. N. Burrows, A. D. Falcone, D. B. Fox, T. L. Herter, J. A. Kennea, M. L. McConnell, J. A. Nousek. JOINT ASTROPHYSICS NASCENT UNIVERSE SATELLITE:. UTILIZING GRBS AS HIGH REDSHIFT PROBES. 2012, Memorie della Societa Astronomica Italiana Supplement, 21, pp.155-161. This Article is brought to you for free and open access by the Physics at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Physics Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors P. W. A. Roming, S. G. Bilen, D. N. Burrows, A Falcone, D. B. Fox, T. L. Herter, J. A. Kennea, Mark L. McConnell, and J. A. Nousek This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/ physics_facpub/348 Mem. S.A.It. Suppl. Vol. 21, 155 Memorie della c SAIt 2012 Supplementi Joint Astrophysics Nascent Universe Satellite: utilizing GRBs as high redshift probes P.
    [Show full text]
  • Methods of Measuring Astronomical Distances
    LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - =============================== LIGO SCIENTIFIC COLLABORATION Technical Note LIGO-T1200427{v1 2012/09/02 Methods of Measuring Astronomical Distances Sarah Gossan and Christian Ott California Institute of Technology Massachusetts Institute of Technology LIGO Project, MS 18-34 LIGO Project, Room NW22-295 Pasadena, CA 91125 Cambridge, MA 02139 Phone (626) 395-2129 Phone (617) 253-4824 Fax (626) 304-9834 Fax (617) 253-7014 E-mail: [email protected] E-mail: [email protected] LIGO Hanford Observatory LIGO Livingston Observatory Route 10, Mile Marker 2 19100 LIGO Lane Richland, WA 99352 Livingston, LA 70754 Phone (509) 372-8106 Phone (225) 686-3100 Fax (509) 372-8137 Fax (225) 686-7189 E-mail: [email protected] E-mail: [email protected] http://www.ligo.org/ LIGO-T1200427{v1 1 Introduction The determination of source distances, from solar system to cosmological scales, holds great importance for the purposes of all areas of astrophysics. Over all distance scales, there is not one method of measuring distances that works consistently, and as a result, distance scales must be built up step-by-step, using different methods that each work over limited ranges of the full distance required. Broadly, astronomical distance `calibrators' can be categorised as primary, secondary or tertiary, with secondary calibrated themselves by primary, and tertiary by secondary, thus compounding any uncertainties in the distances measured with each rung ascended on the cosmological `distance ladder'. Typically, primary calibrators can only be used for nearby stars and stellar clusters, whereas secondary and tertiary calibrators are employed for sources within and beyond the Virgo cluster respectively.
    [Show full text]
  • Exploring Dust Extinction at the Edge of Reionization
    Draft version October 15, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 EXPLORING DUST EXTINCTION AT THE EDGE OF REIONIZATION Tayyaba Zafar,1 Darach J. Watson,1 Nial R. Tanvir,2 Johan P. U. Fynbo,1 Rhaana L.C.Starling,2 and Andrew J. Levan3 Draft version October 15, 2018 ABSTRACT The brightness of gamma-ray burst (GRB) afterglows and their occurrence in young, blue galaxies make them excellent probes to study star forming regions in the distant Universe. We here elucidate dust extinction properties in the early Universe through the analysis of the afterglows of all known z > 6 GRBs: GRB090423, 080913 and 050904, at z = 8.2, 6.69, and 6.295, respectively. We gather all available optical and near-infrared photometry, spectroscopy and X-ray data to construct spectral energy distributions (SEDs) at multiple epochs. We then fit the SEDs at all epochs with a dust-attenuated power-law or broken power-law. We find no evidence for dust extinction in GRB050904 and GRB090423, with possible evidence for a low level of extinction in GRB080913. We compare the high redshift GRBs to a sample of lower redshift GRB extinctions and find a lack of even moderately extinguished events (AV ∼ 0.3) above z & 4. In spite of the biased selection and small number statistics, this result hints at a decrease in dust content in star-forming environments at high redshifts. Subject headings: dark ages, reionization, first stars – dust, extinction – galaxies: high-redshift – gamma-ray burst: individual (GRB090423, 080913, and 050904) 1. INTRODUCTION ing made in the rest frame UV, they are in principle relatively Dust formationin the early universeis a hotly debated topic.
    [Show full text]
  • Signals from the Beginnings of the World
    Fundamental forces in space: For a few seconds, a gamma-ray burst radiates as brightly as the whole universe together, the radiation emanating to the outside via two jets. Events such as these still hide their secret: is it the explosion of an extremely massive star, a neutron star falling into the gravitational maelstrom of a black hole, or the fusion of two neutron stars or black holes? xxx 46 MaxPlanckResearch 3 | 09 PHYSICS & ASTRONOMY_Gamma-Ray Bursts Signals from the Beginning of the World A star exploded just 625 million years after the Big Bang, but the radiation of this event didn’t reach Earth until last spring. This gamma-ray burst was named GRB 090423. It is the most distant astronomical object yet discovered. Jochen Greiner and his colleagues at the Max Planck Institute for Extraterrestrial Physics in Garching investigate such cosmic ‘ignition sparks’ at the edge of space and time. TEXT HELMUT HORNUNG t must have been a violent catastro- In the years that followed, scientists into radiation with incredibly high ef- phe. Somewhere in the early uni- investigated the gamma-ray burst phe- ficiency. Over the years, astrophysicists verse, a star blew up – a heavyweight nomenon with instruments designed have put forward at least 150 different with several times the mass of our specifically for this purpose. theories – most of which have since Sun. In the course of this detona- From 1991 until its controlled crash been dismissed. Ition, within less than ten seconds, nine years later, the Compton space The issue is further complicated by as much energy was released as the observatory registered about 2,000 two sub-classes that were discovered Sun has produced during its entire gamma-ray flashes (MAXPLANCKRESEARCH through Compton measurements: gam- 10-billion-year lifetime.
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • ALMA Observations of the Host Galaxy of GRB 090423 at Z= 8.23
    DRAFT VERSION AUGUST 13, 2014 Preprint typeset using LATEX style emulateapj v. 03/07/07 ALMA OBSERVATIONS OF THE HOST GALAXY OF GRB 090423 AT z =8.23: DEEP LIMITS ON OBSCURED STAR FORMATION 630 MILLION YEARS AFTER THE BIG BANG E. BERGER1,B.A.ZAUDERER1, R.-R. CHARY1,2 , T. LASKAR1,R.CHORNOCK1,N.R.TANVIR3,E.R.STANWAY4,A.J.LEVAN4, E.M. LEVESQUE5,&J.E.DAVIES1 Draft version August 13, 2014 ABSTRACT We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of Fν(222GHz) . 33 µJy and Fν (3.6µm) . 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp220, and comparable to the local starburst M82. Comparing to model spectral energy distributions we place a limit on the IR luminosity of LIR(8 − 1000µm) . 10 −1 3×10 L⊙, correspondingto a limit on the obscuredstar formationrate of SFRIR . 5M⊙ yr ; for comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame UV observations is −1 7 SFRUV . 1M⊙ yr . We also place a limit on the host galaxy stellar mass of M∗ . 5 × 10 M⊙ (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z & 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies), and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB090423 by virtue of their selection techniques.
    [Show full text]
  • Cosmological Constraints from Low-Redshift Data
    Noname manuscript No. (will be inserted by the editor) Cosmological constraints from low-redshift data Vladimir V. Lukovic´ · Balakrishna S. Haridasu · Nicola Vittorio the date of receipt and acceptance should be inserted later Contents as well as on inhomogeneous but isotropic models. We pro- vide a broad overlook into these cosmological scenarios and 1 Introduction . .1 several aspects of data analysis. In particular, we review a 2 Theoretical scenarios . .2 number of systematic issues of SN Ia analysis that include 2.1 Concordance model of cosmology and its extensions .3 2.2 Power-law cosmologies . .5 magnitude correction techniques, selection bias and their in- 2.3 Challenging the cosmological principle: LTB models .5 fluence on the inferred cosmological constraints. Further- 3 Type Ia supernovae . .6 more, we examine the isotropic and anisotropic components 3.1 From dozens to a thousand SN Ia . .6 of the BAO data and their individual relevance for cosmo- 3.2 Standardisation techniques . .7 logical model-fitting. We extend the discussion presented 3.3 Hubble residual . .8 3.4 Selection bias . .9 in earlier works regarding the inferred dynamics of cosmic 4 Baryon acoustic oscillations . 10 expansion and its present rate from the low-redshift data. 5 Cosmic expansion rate . 10 Specifically, we discuss the cosmological constraints on the 5.1 Direct measurements . 10 accelerated expansion and related model-selections. In addi- 5.2 H as a cosmological parameter . 12 0 tion, we extensively talk about the Hubble constant problem, 6 Constraints on cosmological models . 13 6.1 Results focusing on SN Ia data . 13 then focus on the low-redshift data constraint on H0 that is 6.2 Results focusing on BAO data .
    [Show full text]
  • Observed Cosmological Redshifts Support Contracting Accelerating Universe
    Observed Cosmological Redshifts Support Contracting Accelerating Universe Branislav Vlahovic∗ Department of Physics, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707 USA. The main argument that Universe is currently expanding is observed redshift increase by distance. However, this conclusion may not be correct, because cosmological redshift depends only on the scaling factors, the change in the size of the universe during the time of light propagation and is not related to the speed of observer or speed of the object emitting the light. An observer in expanding universe will measure the same redshift as observer in contracting universe with the same scaling. This was not taken into account in analysing the SN Ia data related to the universe acceleration. Possibility that universe may contract, but that the observed light is cosmologically redshifted allows for completely different set of cosmological parameters ΩM ; ΩΛ, including the solution ΩM = 1; ΩΛ = 0. The contracting and in the same time accelerating universe explains observed deceleration and acceleration in SN Ia data, but also gives significantly larger value for the age of the universe, t0 = 24 Gyr. This allows to reconsider classical cosmological models with Λ = 0. The contracting stage also may explain the observed association of high redshifted quasars to low redshifted galaxies. COSMOLOGICAL REDSHIFT period t0 − te. Cosmological redshift is not related to the speed of the In co-moving Robertson-Walker coordinate system, re- object that emits the light nor the speed of observer. It is lation between the redshift z, in the frequencies of spec- also not related to the relative velocity between objects.
    [Show full text]
  • Dependencies of the Apparent Luminosity of Quasars on Their Redshift
    Specific features of the average magnitudes and luminosities of quasars and galaxies as a function of redshift and their interpretation in the modified cosmological model Iurii Kudriavtcev In this article we examine the dependency of the magnitude of quasars from SDSS DR-5 as a function of redshift in different frequency ranges in the system (u,g,r,i,z). We show that on the smoothed curves mag(Z) in frequency ranges u,g,r there are characteristic features both similar for all the curves and different for different curves. At Z<2 all the curves have practically the same form with two characteristic sections of the negative slope, at Z>2 the forms of the curves significantly differ. The nature of these differences can be interpreted as an influence of light absorption by the neutral hydrogen on Lyman-alpha line, manifesting on the curves in the ranges u,g and missing on the curve in the range r. Then we have studied the dependencies on redshift of the averaged over the sky magnitude values in the range r, free from the Lyman-alpha absorption effect, of the galaxies from catalogs 2DFGRS, Millenium, Gyulzadian and quasars from SDSS DR-7. We have shown that for all the objects, both quasars and galaxies, the dependencies of the magnitudes average values on Z are close by values and form and have a nature of converging oscillations with areas of negative slope near Z ≈ 1 and Z ≈ 2, corresponding to the increase of the apparent luminosity with the increasing of the distance. We have calculated the corresponding values of the average absolute luminosities for the flat space and different variants of the ΛCDM model.
    [Show full text]
  • Scrambling to Read the Meaning of the Sky's Most Ancient Flare
    NEWSFOCUS ASTRONOMY Tanvir, starting the observation some 21 minutes after the burst. “We observed the target for 20 minutes, and then the wind got Scrambling to Read the Meaning too much for us,” he says. Thousands of kilometers away, sitting in an Of the Sky’s Most Ancient Flare auditorium listening to talks about the future of U.K. astronomy, Tanvir kept glancing at his This spring, a seemingly routine gamma ray burst triggered a worldwide race to catch laptop in anticipation of the first images. He a glimpse of the early universe was also in touch with scientists operating Gemini Observatory’s 8-meter North tele- On 23 April, astrophysicist Nial Tanvir had networks make possible worldwide, round- scope, also on Mauna Kea, which had begun just dropped his daughter off at school when the-clock collaborations, and pressures for taking observations in the optical band within an automated text message appeared on his cooperation and competition often come into minutes of the burst. cell phone. NASA’s Swift satellite had just simultaneous play. “This is extreme astron- The burst appeared as a fuzzy spot in near- detected a gamma ray burst (GRB)—a brief omy,” says Don Lamb, a theoretical astrophysi- infrared images taken by UKIRT but didn’t flash of high-energy radiation emitted by a cist at the University of Chicago in Illinois. show up in optical images taken by Gemini. To star collapsing to form a black hole. “Oh boy, Tanvir and others, this was a clue that it had here we go again,” Tanvir, a researcher at the All-night dash occurred at a high redshift: Visible light from University of Leicester in the United King- Shortly after Tanvir received the alert, he was the burst had shifted to the near-infrared, and dom, recalls thinking.
    [Show full text]
  • CMB Tensions with Low-Redshift H0 and S8 Measurements: Impact of a Redshift-Dependent Type-Ia Supernovae Intrinsic Luminosity
    S S symmetry Article CMB Tensions with Low-Redshift H0 and S8 Measurements: Impact of a Redshift-Dependent Type-Ia Supernovae Intrinsic Luminosity Matteo Martinelli 1,* and Isaac Tutusaus 2,3,4,* 1 Institute Lorentz, Leiden University, PO Box 9506, 2300 RA Leiden, The Netherlands 2 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain 3 Institut d’Estudis Espacials de Catalunya (IEEC), Carrer Gran Capità 2-4, 08193 Barcelona, Spain 4 CNRS, IRAP, UPS-OMP, Université de Toulouse, 14 Avenue Edouard Belin, F-31400 Toulouse, France * Correspondence: [email protected] (M.M.); [email protected] (I.T.) Received: 28 June 2019; Accepted: 24 July 2019; Published: 2 August 2019 Abstract: With the recent increase in precision of our cosmological datasets, measurements of LCDM model parameter provided by high- and low-redshift observations started to be in tension, i.e., the obtained values of such parameters were shown to be significantly different in a statistical sense. In this work we tackle the tension on the value of the Hubble parameter, H0, and the weighted amplitude of matter fluctuations, S8, obtained from local or low-redshift measurements and from cosmic microwave background (CMB) observations. We combine the main approaches previously used in the literature by extending the cosmological model and accounting for extra systematic uncertainties. With such analysis we aim at exploring non standard cosmological models, implying deviation from a cosmological constant driven acceleration of the Universe expansion, in the presence of additional uncertainties in measurements. In more detail, we reconstruct the Dark Energy equation of state as a function of redshift, while we study the impact of type-Ia supernovae (SNIa) redshift-dependent astrophysical systematic effects on these tensions.
    [Show full text]