Article 106611 Ffb9fce454c5101
Total Page:16
File Type:pdf, Size:1020Kb
DOI: http://dx.doi.org/10.22092/jaep.2016.106611 Nezara viridula Brachynema germarii (Hemiptera: Pentatomidae) 0. / -! , ( ! )* + # '$% & # " ! * *+, 89 (: 0;"# * *+, 6731 45 * *+, -. /% 0123% $%& '()%$ !"# @A=7 (: 6B7# * *+, 6731 4@%% @%, &(: >, ?&1 * *+, @1&3 %(/ <= $ (GHK $%$1 : ?J# E, 4 GHI @ : D$ E, ) 1*23 @1: @B3% Q R% $ Nezara viridula Brachynema germarii D $ D1 $ &3 N1 &% OP/ >B) ; M=1 6 A"Z3 6Z=# &% Nezara viridula "Z3 X3 . X U, 6) UB71 VW=1 8=:%# O 7)B# (Maxent) #B) % T:%/ N1 &% $SB3% \ $\: &% $SB\3% 8=:%# N1 . D3% 6B7# 31 O1. [R OR) 6B7# D Brachynema germarii "Z3 X3 S P \=+=1 \& ab\3 _`\ &% $S B\3% \ " ) 8=:%# UR% N1 6 , $ Maxent $; . DR$ . 6 , R% ]B1 DS 6) ^/ X ')\ 1 6\=1%$ 6)d3 c3B1 %/ 6$ ]B1 6: _9(1 Jackknife @1& &% . 6Z3+1 ( Area Under the Curve ) @B71& h(` Q R% $%$ @() >B) . )$ N. viridula B. germarii 8=:%# = 8 # N1 $ ]B1 X,%J g ,f &% e ,, 6 6)%& 6\) 8=:%# N1 . )$ e3=1 B. germarii 6) ^/ % @1: @B3% ":1 i D 7R $ - 7 , - @B7 , h=` -\ \7 @B\7 , h\=` \, N\BU1 @B71& % h(` Q R% $ @1: @B3% = D 7R $ 6) X% $%$ @() " ) N. viridula @\() 6\: \1 D3 k/k % N. viridula % /k % B. germarii 6) % =+=1 & ab3 _` X ') 1 %*1 . $%$ 8=:%# . )%$` d DR$ &% 6) X% % 1 D3 N1 $ 1 . Maxent Pentatomidae Nezara Brachynema &3 N 1 8=:%# :* 14 Distribution scenario of two species of green bugs Brachynema germarii and Nezara viridula (Hemiptera; Pentatomidae) in Kerman province T. TAVANPOUR 1, A. M. SARAFRAZI 2, M. R. MEHRNEJAD 3 and S. IMANI 1 1- Department of Plant Protection, Islamic Azad University, Science and Research Branch, Tehran, Iran; 2- Iranian Research Institute of Plant Protection, AREEO, Tehran, Iran; 3- Pistachio Research Institute of Iran, Rafsanjan Abstract In order to determining of the distribution models and potential areas of two heteropteran green bugs, namely Brachynema germarii and Nezara viridula , the Maximum Entropy model (Maxent) was used to predict their potential distribution in 11 climates of Kerman province. Nezara viridula is known as the important pest of cotton as well as for vegetables and cucurbits. Brachynema germarii is a well- known pest of pistachio trees, which transmits fungi and causes stigmatomycosis. Distribution model was obtained using seven environmental predictors and presence records. The accuracy of distribution models was also evaluated by the area under receiver operating characteristic curve (AUC) value. According to the Jackknife test, the annual mean temperature and the mean diurnal range were the most contributing bioclimatic variables in B. germarii and N. viridula distribution modeling. The results showed that dry climate with cool winters and warm to very warm summer in the northern and central parts of the Kerman province were suitable for occurrence of B. germarii . Species distribution model of N. viridula showed its suitable distribution in dry climates with mild to cool winters and very warm summers, in the southern of Kerman province. The AUC values, based on training data, were 0.81 for B. germarii , 0.90 for N. viridula confirming the high accuracy of Maxent in predicting the distribution model of the two stink bugs. Keywords: Brachynema , Nezara , Pentatomidae, Maxent , Species distribution model. Corresponding author: [email protected] ... Nezara viridula Brachynema germarii (Hemiptera: Pentatomidae) : 6 \\ \\ 6\) o\\i:% X \ Z, $ Q\\1 \ 8\\9 &% \; *8 D\\3% X \\1& \\: \\ @ 8=:%\\# ')\\'t D`=\\ 6\) lkk &% 8 \ XB\%$ \ Pentatomidae $%)` %\\\(/ \\\=:%# &% \\\ . (Tognelli et al ., 2009) $%)\` d\ $ $%)\` X \, m" n= kk 6 h $") h \ oi N\B=: $ 6*b=1 h $ @ 6=1%$ (Elias, 2010) $%)` &% U 6) $%U, M) &% D3% Pentatomoidea %\ N\s+1 { \9B)% \ 6\) 8=:%# O 7)B# &% . (Rider, 2006) $%$ %\R -3 6Z, $ Reduviidae Miridae \ \ `% \ 6 $ $ . (Gressitt, 1958) D3% D % " / D(: =\ 1 ) (B)% %%$ $%)` X % 6 VUB1 6) | =1 }S/ O1;, oi:% 6= 1& $ 6) 8=:%# N1 \\)%$ $\\& p\\=, ;o\\i1 ; o\\i:% \\M) &% \ \ 6\) Q\, 8 = # 3= X $ B7 & D\\\ r,\\\ . X \\\=q (Schaefer and Panizzi, 2000) \ 6) % { % ], ,fg &% %%$ $%)\` X \ X% % \= . =B\7 &\(: ds+1 \ 6\B \: 6\ 6\) 8=:%# $ b +1 % ], ' $ $%)\\` \ & $ \ X\3 .D\\3% \$ & $\sBR% D \ % 6\ . (Tognelli et al., 2009; Barbet-Mussin et al., 2012) D\3% $ D\\ \\ 6\\) \\T:% O1\\ Pentatominae Edessinae 8 \= \= 8 \# 8=:%\# &\3 N1 h =;, N .% 6; W Aelia A "Z\3 6\Z=# D\ @%=. 6 Nezara n= VW\\=1 $ Lucanus cervus Linnaeus , 1758 D\\ | \\ &, &% Brachynema Acrosternum @ 1\\\= D\\\ Eurydema N\1 &% $SB\3% $\1 $ \ - \A)% h ~ DS/ &; 1, ' B\3% O1. OR) 6B7# @B`$ Q1 \ 6;Z X U, Q s, % 6) 8=:%# &3 Schuh and Slater, 1995; ) )\ \1 6B`= 6B7# 31 .( .( Thomaes et al ., 2008 ) \ \+ D7 & c +1 &% DS/ 6/1 $ $ `% n= $ (. Schaefer and Panizzi, 2000 8=:%\# O \7)B# ; o\i:% @%\` D7 & Meyer (2010) 6\/1 &% \ 1 \ $ -\ , $ \)$R \# O1: Bactrocera invadens Drew, Tsura and \ 1 n\'1 )\ Q\`& $\A % V \ W &% 6B\7# 6)%$ @ 3 , 6)%$ O ;(, &% \7 $ Q\1 6\) h \ @%\=. 6\ % White, 2005 )%9B3% D3# O ;(, &% OZR 1 i D3# 6\) . $%$ @\() GARP Maxent &% $SB\3% @ VW=1 &% n\# "\]1 6\;i $\A % \ @ @\ h(` 3 D \1 61) $ Orius Wolff , 1811 X3 zB91 \\ O\\1. [\\R N\\*B)% )%9B\\3% D\\3# O ;\\(, $SB\3% $\1 \7 h \ oi N\B=: \ 6\1) \7` 6B\7# \ 1 6\ (Stigmatomycosis) &; 1, ' B3% { 6*b=1 &% Orius 6) 8=:%# = 8 .# = 1 Mehrnejad, 2001, 2014a,b; Mehrnejad et al ., ) \\==: $% 6\: $%$ @() > .B) D3% 6B %R 3 $1 @% % % % % &= 1'i $%)` @ Nezara viridula X3 . ( 2013 \ 6 \ * @% \ % R\ VW\=1 &% \ 8\9 @ " 6 6\ \= 1& e \3 : &% X =q $ 1 a , 6 J], \)$ e\3=1 n=\ X \ % ^/ % 8 Q: @B3% @ \ vw t u \3 :\Z=, @%$' B -3 ') 8 \# Q\3 X B\( $ X \, {W1 $ ? X =q 6 \\\ J], \\\ 1%$:1 >)\\\ \\\Z:1 \\\')% x=S\\\3% PCA > \B) e \ :, . D3% 6B%$ n= X % 8=:%# % = @% \\ % $ . ( Coombs, 2004; Golden et al ., 2006 ) \\=: \\1 Q Q R% /%) $ e% Orius n= 6: $%$ @() AHC y\s9 Pentatomidae $%)` "Z3 X3 ,Uib1 . (Erfan et al ., 2012) )\\ \\1 D\\ SA-C-W SA-K-W Nezara viridula Brachynema germarii Kolenati, 1846 O*B\71 &\3 N1 ? 63 &% $SB3% Buse et al. (2013) 1% D3% 6B P zB91 6= 1& $ Linnaeus, 1758 % Coraebus florentinus Herbst , 1801 h\33 U 8=:%# .D3% 6B') %R 3 $1 6) X % 8=:%# N1 ",@A /!? # " 1 ? # => *< : . 9 :%; . 9 B $ 6\) \U | &, $ g1 )& B: 3 &% \.2W% |\ \M=1 6\ : 1 ; C < X \ % \1 X \=q )$ ) U1 % @ i { {= Q \R% $ N. viridula B. germarii X\3 6) $ 8=:%# h \ $ . \)$: &\3& k N\3 $ % @\ i 6 (/ $ .( O;\ ) D\ \P %$\ 6\) ) @\1: @B3% %\\g% \\#B)% T:%\\/ ? &% $SB\\3% \\ \\' $ V \\ *+, k \ N\3 \W $ @B3% $ 6*b=1 k p A1 \ X\3 ( kk k ) \= | &, % { % ], \' $ 6\*b=1 k $ DZg $: D ) $ . 3 Nabis pseudoferus Nabis palifer Seidenstucker, 1954 \ 6\) ) &% \.2W% O \ ;, %\ . \() D % 6) ) X \1& 8\# . D\3% \ 6Uib1 @% % $ Remane, 1949 \* *+, 8\9 ) n) %& 1 h %(/ &1 $ $1 $\ 6\) $ X % 6=1%$ ?B7 $ g1 O1. $ ) ( ( \(: ;\"# * *+, 6731 %(/ = $ \\S=1 \\g% N. pseudoferus %\\ { \\ ], \B:$ \s9 @ \7;: $ \ %$ 6\') 6) ) " ) % > \\\B) X \\\ .% D\\\3% 6B\\\%$ D\\\ZT1 g\\\, N. palifer D\Zg \ $%$ 6) 3= &% n# . $SB3% $%~)1 $\\ \\: 6\\ D \\1 h ~,%B\\3% \\ 6\\1) $ @%\\, \\1 ArcGIS %"\% -\) $ nw\3 O7:% %"% -) $ %B % \Uib1 $ X \=q . (Solhjouy-Fard and Sarafrazi, 2014) X\\3 6\\) $ \\U 8=:%\\# 6\\(*) $% version 10.1 %\\ e\\3=1 \\ \\ D\\7 & Erfanfar et al . (2014) @\1: @B3% zB91 Q R% $ N. viridula B. germarii Orius n=\\ \\ X\\3 &% 6\) \\= \\U 8=:%\# . 6 , $\\1 Maxent ? &% $SB\\3% \\ @% \\ % $ Wolff , 1811 8=:%\# \= 8 \# %\ : . FG + D -E \= | \ &, %\ e3=1 VW=1 D3% 6B %R &% D \\\3 &% \\\b +1 \\\ ]B1 %\\\B % 6\\\) $ X \\\ % N\1 $ e\3=1 QB 'i% {9B)% . $%$ @() 6) X % 6B (1km 2) 6 )g k DR$ http://www.worldclim.org/ O R S, zB91 N1 % & D3% Q1 7 &3 N\1 $ % fg \, X B( 6: ]B1 DS nw3 ( N ) Phillips et al ., 2006; ) \)%$ $\` \ = 8 # $ , \ 8=:%\# N\1 \U " i) {9B)% =B%$ 8=:%# \ ? \3 \ 67 *1 $ Maxent N1 .( Pearson, 2007 \ {\9B)% \) ]B1 . -A)% ]B1 X % 3% Elith et al ., 2006; ) D\3% $%$ @\() % B %% X "' e\iR $ 6\: 6\) $ \^/ \ $: \ % R% \=t N\1 X\% . ( Philips et al ., 2006; Pearson et al ., 2007 X \ U, %\ \^/ \ $: . $ 6 , O7:% N D3% _R) .2W% &% i B/% | &, z P, % M=1 6(*) $% Maxent %"% -) $ 8=:%# 8 = # N1 . (Pearson et al ., 2007) . 1 D3 6) % h ;S, 6 N1 ?B\7 &% \: D`= O i$ 6 6) 8=:%# X U, $ \ 6\) 8=:%\# N\1 : F $ H* 'B\7 & X \ U, \ %] 8=:%\# \ R% & \ ) R% . $ 1 8 = # #B)% T:%/ 3% Maxent QB 'i% 6\ B D 1 $ ) %] ei $ e3=1 %\ 6\) \^/ ?%" $%$ &% Maxent %"% -) $ . (Pearson et al ., 2007; Tognelli et al ., 2009) =: 1 h : 1 $SB\3% \M) $\1 \ 6) 8=:%# 8 = # &3 N1 @$ # % Maxent N1 &% $SB3% / 6Uib1 X % = \) N\1 D`\3 %\ 6) $%$ &% P$ l . X \=q \ 6\) | &, $ O1%. X ,g1 Q R% g, 6 )\ {\9B)% N\1 D\7, @%=. 6 P$ ; oi:% B. germarii \\ 6\\) e\\3=1 \\ \\ D\\7 & X \\ U, D`\3 %\ 6) $%$ $%U, . (Pearson et al ., 2007) . -A)% N. viridula ... Nezara viridula Brachynema germarii (Hemiptera: Pentatomidae) : 6 . \ $SB\3% = 8 # N1 z P, % logistic ? &% 3 .% _9(1 ( ) N VZW N1 D7, N1 \M) $ k " \ ) convergence threshold @%" 1 6Uib1 X % $ %\ {9B)% background $%$ kkkk 6) 8=:%# . (Phillips and Dudik, 2008) D3% 6B D -A)% maximum iteration kkkk %;, 6) @1: @B3% $ Nezara viridula Brachynema germarii 8=:%# N1 D`3 $ $SB3% +1 b ]B1 -0 H*< Table 1. Selection environmental variables in distribution model for Brachynema germarii and Nezara viridula in Kerman province. Codes Layer's Name / I * / I J bio1 Annual Mean Temperature * bio2 Mean Diurnal Range (Mean of monthly