Age-Associated Microbiome Shows the Giant Panda Lives on Hemicelluloses, Not on Cellulose

Total Page:16

File Type:pdf, Size:1020Kb

Age-Associated Microbiome Shows the Giant Panda Lives on Hemicelluloses, Not on Cellulose The ISME Journal (2018) 12:1319–1328 https://doi.org/10.1038/s41396-018-0051-y ARTICLE Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose 1 2 1 1 3 2 1 Wenping Zhang ● Wenbin Liu ● Rong Hou ● Liang Zhang ● Stephan Schmitz-Esser ● Huaibo Sun ● Junjin Xie ● 4 1 2 5 1 1 1 Yunfei Zhang ● Chengdong Wang ● Lifeng Li ● Bisong Yue ● He Huang ● Hairui Wang ● Fujun Shen ● Zhihe Zhang1 Received: 12 June 2017 / Revised: 30 August 2017 / Accepted: 10 January 2018 / Published online: 1 February 2018 © The Author(s) 2018. This article is published with open access Abstract The giant panda feeds almost exclusively on bamboo, a diet highly enriched in lignin and cellulose, but is characterized by a digestive tract similar to carnivores. It is still large unknown if and how the giant panda gut microbiota contributes to lignin and cellulose degradation. Here we show the giant pandas’ gut microbiota does not significantly contribute to cellulose and lignin degradation. We found that no operational taxonomic unit had a nearest neighbor identified as a cellulolytic species or strain with a significant higher abundance in juvenile than cubs, a very low abundance of putative lignin and cellulose genes fi 1234567890();,: existed in part of analyzing samples but a signi cant higher abundance of genes involved in starch and hemicellulose degradation in juveniles than cubs. Moreover, a significant lower abundance of putative cellulolytic genes and a significant higher abundance of putative α-amylase and hemicellulase gene families were present in giant pandas than in omnivores or herbivores. Introduction [1]. Unlike other species in Arctoidea, >99% of the food consumed by the giant panda consists of highly fibrous The giant panda (Ailuropoda melanoleuca) is an endemic plant—bamboo. In order to process and utilize highly lig- flagship species in China. It is well known that the giant nified bamboo, the giant panda exhibits several specialized panda belong to the Arctoidea (a superfamily of Carnivora) morphological adaptations, such as panda’s thumb, large skull, wide flaring zygomatic arches, a prominent sagittal crest, and flat cheek teeth with elaborate crown patterns ’ Electronic supplementary material The online version of this article [2, 3]. However, the giant panda s gastrointestinal (GI) tract (https://doi.org/10.1038/s41396-018-0051-y) contains supplementary is largely characteristic of carnivores [2]. The giant panda’s material, which is available to authorized users. cecum is absent and its large intestine may not have any function for digesta fermentation [4] and its genome lacks * Wenping Zhang [email protected] homologs of the enzymes needed for cellulose degradation * Zhihe Zhang [5]. It has thus been hypothesized that the degradation of [email protected] cellulose, a key component of its bamboo diet, should be dependent on its gut microbiota. 1 Chengdu Research Base of Giant Panda Breeding, Some researchers have found some cellulose-degrading Chengdu 611081 Sichuan, China bacteria in the feces from giant pandas (such as, [6]). Based 2 Novogene Bioinformatics Institute, Beijing 100083, PR China on metagenomic technology to detect bacteria diversity in gut microbiome of the giant panda, Zhu et al. [7] detected 3 Department of Animal Science, Iowa State University, Ames 50011 IA, USA 13 operational taxonomic units closely related to Clos- tridium groups I and XIVa, both of which contain taxa 4 Biogas Institute of Ministry of Agriculture, Chengdu 610064 Sichuan, China known to digest cellulose, and putative genes coding for two cellulose-digesting enzymes. In contrast, other studies 5 Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, suggested that the giant panda gut microbiome does not Chengdu 610064 Sichuan, China have significant cellulose degradation potential [4, 8, 9], and 1320 W. Zhang et al. their overall microbiome composition converged with those resuspended in 1.2 ml of lysis buffer of the kit and trans- of carnivorous and omnivorous bears and not with herbi- ferred to a 2-ml screw-cap tube containing 0.3 g silica bead vores [9]. The giant panda has a very low daily energy mixtures (0.2 g, 0.1 mm, and 0.1 g 1.0 mm silica beads) expenditure, which can partially explain why the giant with a bead beater (BioSpec, Bartlesville, OK) set on high panda can survive and adapt to the low-quality bamboo for 2 min. After agitation by the bead beater, DNA was with low-energy digestive efficiency [10]. The functional extracted by following the manufacturer’s instructions. For role of the giant panda gut microbiota, particularly in cel- samples with bamboo, a pretreatment protocol prior to DNA lulose degradation, is still largely unknown. extraction according to the procedure described previously Diet is one key factor influencing the composition of GI by Xue et al. [9] was added. Then, the cell suspension tract microbial communities [11–13]. Thus, if the giant obtained from the pretreatment was used to extract DNA panda has the capacity to break-down cellulose, its gut same as the samples without bamboos. The DNA con- microbiota should adapt to the dietary change from breast centrations of each sample were adjusted to 50 ng/μl for milk to bamboo during growth. Thus, the abundance of subsequent 16 S rRNA genes, first internal transcribed putative cellulolytic genes and/or bacteria should increase spacer (ITS-1), and metagenomic DNA libraries. Details on from birth to juveniles. Here, we perform the first large the 16 S, ITS-1, and metagenome data processing are scale metagenome sequencing study of giant panda gut available in the Supplementary Information data. microbiota following animals from nursing to juvenile stages switching from milk to a bamboo diet. Comparison of carbohydrate-active genes between giant pandas and other mammalian metagenomes Materials and methods To maximize the breadth of possible comparisons of carbohydrate-active genes, our data of S3 and S4 were Samples combined with previously published mammalian metagen- ome data [11, 14] available on the MG-RAST database To investigate the microbiota development of the giant [15]. To minimize the potential effect of differences in panda from birth to juvenile, 14 captive-born giant pandas sequence size among the different data sets, short reads in housed in the Chengdu Research Base of Giant Panda our study were mapped to the contig sequences of the pan- Breeding and born in 2008 or 2011 were enrolled in this metagenome, then the mapping contigs were cut into 300 bp study (Supplementary Table S1) following the method bins starting from the first mapping base for each single pipeline (Supplementary Figure S1–S2). Following their short read as a mimic data set. Then these data sets of S3 diet and birth days, giant pandas’ feces were divided into and S4 samples with other mammalian microbiome data four groups: S1 (panda breast milk as diet and <2 months were used to annotate against the CAZy database following old), S2 (between 3 and 12 months old and no bamboo previously published methods [11]. The Pearson’s correla- found in their feces, commercial milk as dietary supple- tion coefficient index between the mimic data set and cor- ment), S3 (>6 months old and bamboo stems or leaves as responding paired-end data set was 0.75–0.802, which diet), and S4 (>6 months old and bamboo shoots as diet) showed that our mimic data could represent the total data (Supplementary Table S1). The ingestion and health status set. of each giant panda were monitored daily by veterinarians and giant panda keepers and no samples were included in Amylase copy number analysis in giant pandas host our study if giant pandas were fed antibiotics in the genomes 2 months prior to sampling. Fresh fecal samples were col- lected immediately after defecation and were snap frozen on Primers for qPCR were designed to be specific to pancreatic dry ice and shipped to the laboratory on dry ice, and were amylase based on the giant panda, polar bear, cat, cheetah, stored at −80 °C for no > 6 months before DNA and tiger reference genome sequences to compare copy extractions. numbers of amylase genes in Felidae (strict carnivore), Ursidae (omnivore), and the giant panda. In addition, pri- DNA extraction and data processing mers for qPCR targeting the housekeeping gene TP53 were designed based on the five reference genome sequences and DNA was isolated by bead-beating procedure described by were used to adjust for DNA dilution quantity variation of Xue et al. [9] with the Qiagen QIAamp DNA Stool Mini Kit different samples. DNA from blood samples of 41 giant (Qiagen, Germany) according to the protocol for isolation pandas, 2 black bears, 2 brown bears, 22 tigers, 3 lions, 2 of DNA for pathogen detection with slight improvements. leopards was used as templates for qPCR. Experiments For fecal samples without bamboo, ~1 g of each sample was were performed and analyzed as described by Perry et al. Age-associated microbiome shows the giant panda lives on hemicelluloses 1321 Fig. 1 16S rRNA gene-based comparison of gut microbiota structure metagenomic survey samples. d Heatmap of the 51 OTU-level phy- of giant pandas from birth to juvenile. a Relationship between alpha lotypes identified as key variables for differentiation between S1 and diversity and increasing age. Principal coordinate analysis (PCoA) S3/S4 gut microbiota structure of the giant pandas. The OTUs are using unweighted b and weighted c UniFrac distances of 16 S rRNA arranged according to their Spearman correlation coefficient (SCC) data. Each point corresponds to a community colored by collection index between the relative abundance of OTUs and age of giant date and diet (Table S1) and the black outer ring indicates pandas.
Recommended publications
  • Structure and Dynamics of the Microbial Communities Underlying the Carboxylate Platform for Biofuel Production
    Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production E.B. Hollister 1, A.K. Forrest 2, H.H. Wilkinson 3, D.J. Ebbole 3, S.A. Malfatti 4, S.G. Tringe 4, M.T. Holtzapple 2, T.J. Gentry 1 1 Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA 77843-2474 2 Department of Chemical Engineering, Texas A&M University, College Station, TX, USA 77843-3122 3 Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX USA 77843-2132 4 DOE Joint Genome Institute, Walnut Creek, CA, USA 94598 July 31, 2010 ACKNOWLEDGMENT The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California.
    [Show full text]
  • Supplementary Materials
    SUPPLEMENTARY MATERIALS Table S1. Chemical characteristics of the two digestate forms (SD and WD). Values quoted are expressed as % of air-dry digestate (means followed by standard error in brackets). References for the employed methods used for determination of each chemical characteristic is also reported. SD WD Reference Org C % 44.4 (0.33) 1.1 (0.01) [81] Tot N % 1.4 (0.01) 0.4 (0.01) [82] C/N 31.4 (0.17) 3.1 (0.04) NH4-N % n.d 0.2 (0.00) [83] K % 1.7 (0.00) n.d. [84] P % 0.9 (0.01) n.d. [84] S % 0.23 (0.02) n.d. [85] SD = solid digestate; WD = whole digestate. Table S2. Soil physical and chemical characteristics at the beginning of trial (t0) (means from 9 observations followed by standard errors in brackets). Clay (%) 41.9 (1.22) Silt (%) 47.8 (2.13) Moisture (%) 24.46 (1.24) Bulk density (g cm-3) 1.39 (0.04) pH 8.3 (0) CaCO3 (%) 11.4 (0.7) TOC (g kg-1) 12.8 (0.3) TN (g kg-1) 1.4 (0) C/N 9.4 (0.3) CEC (cmol(+) kg-1) 21.0 (0.7) Exchangeable Bases (mg kg-1) K 278.7 (8.0) Na 22.0 (3.0) Mg 201.7 (25.6) Ca 3718.6 (176.3) Available Microelements (mg kg-1) Cu 28.0 (5.0) Zn 1.7 (0.2) Fe 15.4 (0.5) Mn 16.3 (0.5) TOC = total organic C; TN = total N; CEC = cation exchange capacity Table S3.
    [Show full text]
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • New Insights Into Clostridia Through Comparative Analyses of Their 40 Genomes
    Bioenerg. Res. DOI 10.1007/s12155-014-9486-9 New Insights into Clostridia Through Comparative Analyses of Their 40 Genomes Chuan Zhou & Qin Ma & Xizeng Mao & Bingqiang Liu & Yanbin Yin & Ying Xu # Springer Science+Business Media New York 2014 Abstract The Clostridium genus of bacteria contains the gene groups are shared by all the strains, and the strain- most widely studied biofuel-producing organisms such as specific gene pool consists of 22,668 genes, which is consis- Clostridium thermocellum and also some human pathogens, tent with the fact that these bacteria live in very diverse plus a few less characterized strains. Here, we present a environments and have evolved a very large number of comparative genomic analysis of 40 fully sequenced clostrid- strain-specific genes to adapt to different environments. ial genomes, paying a particular attention to the biomass Across the 40 genomes, 1.4–5.8 % of genes fall into the degradation ones. Our analysis indicates that some of the carbohydrate active enzyme (CAZyme) families, and 20 out Clostridium botulinum strains may have been incorrectly clas- of the 40 genomes may encode cellulosomes with each ge- sified in the current taxonomy and hence should be renamed nome having 1 to 76 genes bearing the cellulosome-related according to the 16S ribosomal RNA (rRNA) phylogeny. A modules such as dockerins and cohesins. A phylogenetic core-genome analysis suggests that only 169 orthologous footprinting analysis identified cis-regulatory motifs that are enriched in the promoters of the CAZyme genes, giving rise to 32 statistically significant motif candidates. Keywords Clostridium . Comparative genomics .
    [Show full text]
  • Comparison of Sampling Techniques and Different Media for The
    Systematic and Applied Microbiology 42 (2019) 481–487 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm Comparison of sampling techniques and different media for the enrichment and isolation of cellulolytic organisms from biogas fermentersଝ a a b a,∗ Regina Rettenmaier , Carina Duerr , Klaus Neuhaus , Wolfgang Liebl , a,c,∗ Vladimir V. Zverlov a Department of Microbiology, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany b Core Facility Microbiome/NGS, ZIEL — Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany c Institute of Molecular Genetics, RAS, Kurchatov Sq. 2, 123128 Moscow, Russia a r t i c l e i n f o a b s t r a c t Article history: Biogas plants achieve its highest yield on plant biomass only with the most efficient hydrolysis of cellulose. Received 27 March 2019 This is driven by highly specialized hydrolytic microorganisms, which we have analyzed by investigating Received in revised form 15 May 2019 enrichment strategies for the isolation of cellulolytic bacteria out of a lab-scale biogas fermenter. We Accepted 17 May 2019 compared three different cultivation media as well as two different inoculation materials: Enrichment on filter paper in nylon bags (in sacco) or raw digestate. Next generation sequencing of the V3/V4 region Keywords: of the bacterial 16S rRNA of metagenomic DNA from six different enrichment cultures, each in biolog- Biogas fermenter ical triplicates, revealed an average richness of 48 different OTU’s with an average evenness of 0.3 in Cellulose degradation each sample.
    [Show full text]
  • André Luis Alves Neves 6
    Elucidating the role of the rumen microbiome in cattle feed efficiency and its 1 potential as a reservoir for novel enzyme discovery 2 3 by 4 5 André Luis Alves Neves 6 7 8 9 10 11 12 A thesis submitted in partial fulfillment of the requirements for the degree of 13 14 15 Doctor of Philosophy 16 17 in 18 19 Animal Science 20 21 22 23 24 25 Department of Agricultural, Food and Nutritional Science 26 University of Alberta 27 28 29 30 31 32 33 34 35 36 37 © André Luis Alves Neves, 2019 38 39 40 Abstract 1 2 The rapid advances in omics technologies have led to a tremendous progress in our 3 understanding of the rumen microbiome and its influence on cattle feed efficiency. 4 However, significant gaps remain in the literature concerning the driving forces that 5 influence the relationship between the rumen microbiota and host individual variation, and 6 how their interactive effects on animal productivity contribute to the identification of cattle 7 with improved feed efficiency. Furthermore, little is known about the impact of mRNA- 8 based metatranscriptomics on the analysis of rumen taxonomic profiles, and a strategy 9 for the discovery of lignocellulolytic enzymes through the targeted functional profiling of 10 carbohydrate-active enzymes (CAZymes) remains to be developed. Study 1 investigated 11 the dynamics of rumen microorganisms in cattle raised under different feeding regimens 12 (forage vs. grain) and studied the relationship among the abundance of these 13 microorganisms, host individuality and the diet. To examine host individual variation in 14 the rumen microbial abundance following dietary switches, hosts were grouped based on 15 the magnitude of microbial population shift using log2-fold change (log2-fc) in the copy 16 numbers of bacteria, archaea, protozoa and fungi.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • The Multifunctional Sactipeptide Ruminococcin C1 Displays Potent Antibacterial Activity in Vivo As Well As Other Beneficial Properties for Human Health
    International Journal of Molecular Sciences Article The Multifunctional Sactipeptide Ruminococcin C1 Displays Potent Antibacterial Activity In Vivo as Well as Other Beneficial Properties for Human Health Clarisse Roblin 1,2 , Steve Chiumento 3,Cédric Jacqueline 4 , Eric Pinloche 2, Cendrine Nicoletti 1 , Hamza Olleik 1 , Elise Courvoisier-Dezord 1, Agnès Amouric 1, Christian Basset 3, Louis Dru 1,3, Marie Ollivier 5, Aurélie Bogey-Lambert 5, Nicolas Vidal 6, Mohamed Atta 3, Marc Maresca 1 , Estelle Devillard 2 , Victor Duarte 3, Josette Perrier 1 and Mickael Lafond 1,* 1 CNRS, Aix-Marseille University, Centrale Marseille, iSm2, 13013 Marseille, France; [email protected] (C.R.); [email protected] (C.N.); [email protected] (H.O.); [email protected] (E.C.-D.); [email protected] (A.A.); [email protected] (L.D.); [email protected] (M.M.); [email protected] (J.P.) 2 Centre d’Expertise et de Recherche en Nutrition, ADISSEO France SAS, 03600 Commentry, France; [email protected] (E.P.); [email protected] (E.D.) 3 University Grenoble Alpes, CEA, IRIG, CBM, CNRS UMR5249, 38054 Grenoble, France; [email protected] (S.C.); [email protected] (C.B.); [email protected] (M.A.); [email protected] (V.D.) 4 EA3826, IRS2 Nantes-Biotech, Université de Nantes, 44200 Nantes, France; [email protected] 5 BioAzur Biogroup-Vet’Analys Laboratory, 83400 Hyères, France; [email protected] (M.O.); Citation: Roblin, C.; Chiumento, S.; [email protected] (A.B.-L.) 6 Jacqueline, C.; Pinloche, E.; Nicoletti, Yelen Analytics, Aix-Marseille University ICR, 13013 Marseille, France; [email protected] * Correspondence: [email protected] C.; Olleik, H.; Courvoisier-Dezord, E.; Amouric, A.; Basset, C.; Dru, L.; et al.
    [Show full text]
  • An E Cient System for Intestinal On-Site Butyrate Production Using
    An Ecient System for Intestinal On-site Butyrate Production Using Novel Microbiome-Derived Esterases Dah Hyun Jung Yonsei University College of Medicine Ji Hyun Yong Yonsei University College of Medicine Wontae Hwang Yonsei University College of Medicine Sang Sun Yoon ( [email protected] ) Yonsei University College of Medicine Research Keywords: tributyrin, butyrate, esterase, prodrug, microbiome, metagenomic library, colitis, inammatory bowel disease (IBD), Bacteroidales, Clostridiales Posted Date: November 25th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-112971/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 6th, 2021. See the published version at https://doi.org/10.1186/s13036-021-00259-4. Page 1/23 Abstract Short-chain fatty acids, especially butyrate, play benecial roles in sustaining gastrointestinal health. However, due to limitations associated with direct consumption of butyrate, there has been interest in using prodrugs of butyrate. Tributyrin (TB), a triglyceride composed of three butyrate molecules and a glycerol, is a well-studied precursor of butyrate. We screened a metagenome library consisting of 5,760 bacterial articial chromosome clones, with DNA inserts originating from mouse microbiomes, and identied two clones that eciently hydrolyse TB into butyrate. Nucleotide sequence analysis indicated that inserts in these two clones are derived from unknown microbes. BLASTp analysis, however, revealed that each insert contains a gene homologous to acetylesterase or esterase genes, from Clostridium spp. and Bacteroides spp., respectively. Predicted structures of these two proteins both contain serine- histidine-aspartate catalytic triad, highly conserved in the family of esterases.
    [Show full text]
  • Establishment and Assessment of an Amplicon Sequencing Method Targeting the 16S-ITS-23S Rrna Operon for Analysis of the Equine Gut Microbiome
    Establishment and Assessment of An Amplicon Sequencing Method Targeting The 16S-ITS-23S rRNA Operon For Analysis of The Equine Gut Microbiome Yuta Kinoshita ( [email protected] ) Japan Racing Association Hidekazu NIWA Japan Racing Association Eri UCHIDA-FUJII Japan Racing Association Toshio NUKADA Japan Racing Association Research Article Keywords: Microbial communities, rRNA, CCMetagen pipeline, archaeal microbiota Posted Date: February 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-156589/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Microbial communities are commonly studied by using amplicon sequencing of part of the 16S rRNA gene. Sequencing of the full-length 16S rRNA gene can provide higher taxonomic resolution and accuracy. To obtain even higher taxonomic resolution, with as few false-positives as possible, we assessed a method using long amplicon sequencing targeting the rRNA operon combined with a CCMetagen pipeline. Taxonomic assignment had >90% accuracy at the species level in a mock sample and at the family level in equine fecal samples, generating similar taxonomic composition as shotgun sequencing. The rRNA operon amplicon sequencing of equine fecal samples underestimated compositional percentages of bacterial strains containing unlinked rRNA genes by a third to almost a half, but unlinked rRNA genes had a limited effect on the overall results. The rRNA operon amplicon sequencing with the A519F + U2428R primer set was able to reect archaeal genomes, whereas full- length 16S rRNA with 27F + 1492R could not. Therefore, we conclude that amplicon sequencing targeting the rRNA operon captures more detailed variations of bacterial and archaeal microbiota.
    [Show full text]
  • Protective Role of the Vulture Facial and Gut Microbiomes Aid Adaptation to Scavenging
    bioRxiv preprint doi: https://doi.org/10.1101/211490; this version posted October 30, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Protective role of the vulture facial and gut microbiomes aid adaptation to 2 scavenging 3 M. Lisandra Zepeda Mendoza1*, Gary R. Graves2, Michael Roggenbuck3, Karla Manzano Vargas1,4, 4 Lars Hestbjerg Hansen5, Søren Brunak6, M. Thomas P. Gilbert1, 7*, Thomas Sicheritz-Pontén6* 5 6 1 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen. Øster 7 Voldgade 5-7, 1350 Copenhagen K, Denmark. 8 2 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 9 Division of Birds, 20013 Washington, DC, USA. 10 3 Department for Bioinformatics and Microbe Technology, Novozymes A/S, 2880 Bagsværd, 11 Denmark. 12 4 Undergraduate Program on Genomic Sciences, Center for Genomic Sciences, National 13 Autonomous University of Mexico, Av. Universidad s/n Col. Chamilpa, 62210 Cuernavaca, Morelos, 14 Mexico. 15 5 Section for Microbiology and Biotechnology, Department of Environmental Science, Aarhus 16 University, Frederiksborgvej 399, 4000 Roskilde, Denmark. 17 6 Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical 18 University of Denmark, Anker Engelunds Vej 1 Bygning 101A, 2800 Kgs. Lyngby, Denmark. 19 7 Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway. 20 *Correspondence to: Thomas Sicheritz-Pontén, e-mail: [email protected], M. Thomas P. Gilbert, 21 e-mail: [email protected], and M. Lisandra Zepeda Mendoza, e-mail: [email protected] 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/211490; this version posted October 30, 2017.
    [Show full text]
  • General Intoduction
    UNIVERSITÁ DEGLI STUDI DI CATANIA Dipartimento di Agricoltura, Alimentazione e Ambiente PhD Research in Food Production and Technology- XXVIII cycle Alessandra Pino Lactobacillus rhamnosus: a versatile probiotic species for foods and human applications Doctoral thesis Promoter Prof. C.L. Randazzo Co-promoter Prof. C. Caggia TRIENNIUM 2013-2015 Science knows no country, because knowledge is the light that illuminated the word 2 TABLE OF CONTENTS CHAPTER 1 General introduction and thesis outline 1 CHAPTER 2 Lactobacillus rhamnosus in Pecorino Siciliano 36 production and ripening CHAPTER 3 Lactobacillus rhamnosus in table olives 80 production CHAPTER 4 Lactobacillus rhamnosus GG for Bacterial 115 Vaginosis treatment CHAPTER 5 Lactobacillus rhamnosus GG supplementation 159 in Systemic Nickel allergy Syndrome patients APPENDICES List of figures 212 List of tables 216 List of pubblications 218 Poster presentations 220 Acknowledgements 221 Chapter 1 General introduction and thesis outline 4 Chapter 1 INTRODUCTION The term probiotic is a relatively new word meaning “for life”, used to designate microorganisms that are associated with the beneficial effects for humans and animals. These microorganisms contribute to intestinal microbial balance and play an important role in maintaining health. Several definitions of “probiotic” have been used over the years but the one derived by the Food and Agriculture Organization of the United Nations/World Health Organization (2001) (29), endorsed by the International Scientific Association for Probiotics
    [Show full text]