Research Paper
Total Page:16
File Type:pdf, Size:1020Kb
Volume 56 BGSG Research Paper THERMAL REMOTE SENSING FOR WATER OUTFLOWS Correspondence to: DETECTION AND DETERMINATION OF THE ROLE OF Laoura Athanasiadou [email protected] LINEAMENTS IN UNDERGROUND HYDRODYNAMICS OF EVIA ISLAND, CENTRAL GREECE DOI number: http://dx.doi.org/10.12681/ bgsg.20948 Laoura Athanasiadou1, Emmanouil Psomiadis1, Georgios Stamatis1. Keywords: karst, fresh water outflows, 1Laboratory of Mineralogy & Geology, Department of Natural Resources Management thermal image Landsat 8, Evia & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, Athens, Greece, [email protected] , [email protected] , [email protected] . Citation: Athanasiadou L., Psomiadis E. and Stamatis G. (2020), Thermal Remote Sensing for Water Outflows Detection Abstract and Determination of the Role of Lineaments in Underground Hydrodynamics The coastal karst system of Evia Island is developed due to the extended presence of of Evia Island, Central Greece. Bulletin Geological carbonate formations, discharges into the sea either at the coastal zone or via Society of Greece, 56, 100- submarine springs, having a direct relation to the tectonic system of the area. Thermal 132. infrared remote sensing has been proved its capability in monitoring thermal Publication History: differentiations of coastal water plumes. This work aims to locate the freshwater Received: 31/07/2019 Accepted: 07/04/2020 outflows through remote sensing and specific with the use of Landsat’s 8 thermal Accepted article online: images and to reveal how the lineaments of the area control this karstification process. 16/04/2020 L8 contains two thermal bands (Band 10, high gain and Band 11, low gain) with The Editor wishes to thank resolution 30m which record the scattering of infrared radiation from the sea surface. two anonymous reviewers for their work with the Spectral Band 10 was selected due to the high gain characteristics which provide more scientific reviewing of the suitable radiometric resolution (sensitivity). Finally, combing thermal images with manuscript and Ms Emmanouela geological maps, sea surface temperature (SST) maps have been created. Konstantakopoulou for editorial assistance. Keywords: karst, fresh water outflows, thermal image Landsat 8, Evia ©2020. The Authors This is an open access article under the terms of Περίληψη the Creative Commons Attribution License, which Ένα τμήμα των ακτών της νήσου Ευβοίας καλύπτεται από ανθρακικά πετρώματα. Στους permits use, distribution and reproduction in any σχηματισμούς αυτούς, αναπτύσσονται υδροφόρα καρστικά συστήματα. Η medium, provided the καρστικοποίηση τους είναι συνέπεια του συνδυασμού των τελευταίων τεκτονικών original work is properly cited κινήσεων της Αλπικής ορογένεσης και των κατακόρυφων ευστατικών κινήσεων του Τεταρτογενούς, με αποτέλεσμα την εμφάνιση παράκτιων και υφάλμυρων καρστικών Geological Society of Greece 100 Volume 56 πηγών σε πολλές περιοχές της Εύβοιας. Το επιφανειακό νερό εισέρχεται στους βαθύτερους ορίζοντες και εμφανίζεται στη θάλασσα με τη μορφή παράκτιων ή υποθαλάσσιων πηγών. Η Θερμική Τηλεπισκόπηση έχει αποδείξει την ικανότητα της να παρακολουθεί τις θερμικές διαφοροποιήσεις των υδατοκηλίδων (water plumes). Σκοπός της εργασίας, είναι ο εντοπισμός των παράκτιων και υποθαλάσσιων πηγών, χρησιμοποιώντας θερμικές εικόνες από τον δορυφόρο Landsat 8, και η διερεύνηση της σύνδεσης της καρστικοποίηση με τις διακλάσεις που εμφανίζονται στην περιοχή και κατ’ επέκταση με το πως αυτές επηρεάζουν την διακίνηση του υπόγειου νερού. Ο δορυφόρος περιλαμβάνει δύο θερμικά (φασματικά κανάλια 10 και 11 με χωρική ανάλυση 30 m) τα οποία καταγράφουν την σκεδαζόμενη ακτινοβολία από την υδάτινη επιφάνεια. Στην παρούσα εργασία χρησιμοποιήθηκε το φασματικό κανάλι 10 (10.60 μm – 11.19 μm) το οποίο λόγω της υψηλής απολαβής λήψης παρέχει καλύτερα αποτελέσματα στην θερμική αποτύπωση των διαφυγών. Ο συνδυασμός των θερμικών εικόνων και των γεωλογικών χαρτών είχε σαν αποτέλεσμα τη δημιουργία θεματικών χαρτών που απεικονίζουν τα σημεία ενδιαφέροντος. Λέξεις κλειδιά: καρστ, εκφορτίσεις γλυκού νερού, θερμικές εικόνες Landsat 8, Εύβοια 1. INTRODUCTION The growing human (urban and rural) demands on freshwater in semi-arid regions, implies that the exploration of new locations of possible groundwater discharge and accumulation are critical for augmenting the limited water resources (Migiros et al., 2008). The geographical location of Greece, with its general geomorphological composition, and its climate and hydrological conditions, characterises it as an almost anhydrous country, which is often substantiated by the dry-warm climatic environment of most of the country (UNESCO, 1978). Ιn Greece, 30% of the land surface is covered by carbonate formations (Kallioras et al., 2016), having a numerous of water-rich karst resources that probably could solve the water supply and irrigation problem in coastal and island regions, even though most of them cannot be utilised due to their salinity. Brackish waters should be considered as available water resources, since desalination is regarded as one of humanity's earliest forms of water treatment, providing excessive solution throughout the world today. Nearly 70% of the world’s population lives in coastal areas, and most of these people depend on coastal aquifers for freshwater (Stefouli and Tsombos, 2004). Submarine groundwater discharge (SGD) along coasts is a worldwide phenomenon that occurs where hydraulic gradients and permeability (hydraulic characteristics) are sufficiently large to cause lateral and upward flow of Geological Society of Greece 101 Volume 56 groundwater, primarily because of differences in density of groundwater with low salinity and seawater (Fleury et al., 2007; Meijerink et al., 2007). To detect and map this substantial groundwater outflows several advanced space-borne sensors with different spatial, spectral, temporal and thermal resolutions have been utilised aimed at monitoring the thermal aspect of coastal waters (Parcharidis et al., 1998; Migiros et al., 2008). The usage of modern technologies, such as remote sensing and geographic information systems (GIS), has expanded the potential of temperature maps and fresh water outflows monitoring (Theilen-Willige et al., 2014). Thermal remote sensing based on recording the electromagnetic radiation in the thermal infrared region (TIR) emitted by surface objects as a function of their temperature in two spectral windows: 3 μm -4 μm and 10.5 μm - 12.5 μm (Meijerink et al., 2007). The thermal data of Landsat satellites provide information on surface temperature differentiation and can be used to detect and delineate freshwater discharges, and such contribute to hydrologic and geothermal studies (Ganas et al., 2003; Ganas & Lagios, 2003). The outflow of colder groundwater into warmer seawater results in plumes at sea surface in the zones of groundwater discharge (Tcherepanov et al., 2005). Thus, the colder the object, the lower the amount of electromagnetic radiation. Thermal Infrared images are used to evaluate large areas in a short time and acquire useful information and measurements of the Earth's land and sea surface temperatures (Stefouli et al. 2013). The Earth observation satellite that used in this study is LANDSAT 8 (L8). Data collected by the satellite system, are available to download free of charge from the United States Geological Survey website (USGS - https://earthexplorer.usgs.gov/). The thermal Infrared Sensor (TIRS) of L8 is ideal, having high spatial (30 m) and thermal (< 0.4° C) resolution for monitoring thermal plumes. TIRS has two thermal bands (10 and 11) in the range of 10.0–13.0 μm and according to the recommendations of USGS, only Band 10 was utilized, due to band 11 more significant calibration uncertainties. The goal of this work is to evaluate the capability of the remote sensing data and methods to detect the groundwater outflows in Evia island and to correlate these discharges with the geologic conditions and the role of the tectonics in the alimentation of the aquifer system of the study area (Ganas et al., 2005; Lancia et al., 2018; Kuz’mina and Novopashina, 2018). 1.1 Sea Surface Temperature (SST) The sea surface temperature (SST) is one of the important oceanic environmental factors in determining the change of marine environments and ecological activities Geological Society of Greece 102 Volume 56 (Kang et al, 2014). More specifically is a significant parameter for biological, chemical and physical processes occurring within water. The SST represents gradient in the first several centimeters of the water, which is usually sustained by the atmospheric heat flux (Donlon et al., 2002). There are various methods of estimating SST such as shipboard measurements, thermometers in drifting buoys and from thermal bands. First two, are time-consuming and expensive but the results are accurate. Thermal images from satellite or aircraft platforms provide a regular sampling of SST, improving measurement capability (Tang et al., 2003) but the radiation emanates from the top “skin” of the ocean approximately the top 0.01 mm or less, which may not represent the bulk temperature of the upper metre of sea due primarily to effects of solar surface heating during the daytime, reflected radiation, as well as sensible heat loss and surface evaporation. Also, it cannot be used if there are clouds in the area. SST measurements from thermal bands have been used to detect α) ground water discharge areas, based on the thermal anomalies that appear on sea surface (Parcharidis et