Crustacea 255

Total Page:16

File Type:pdf, Size:1020Kb

Crustacea 255 CRUSTACEA 255 CRUSTACEA species that can be classified as stygobites. Subterranean םThe taxonomic status of crustaceans has long been debated by 20 carcinologists (the scientists who study these arthropods). The cladocerans (particularly hyporheic species) are known from all group has been assigned to one of the phylum, subphylum, continents and most demonstrate only minor troglomorphic ad- or superclass levels, with five, six, and even ten classes being aptations. recognized. The purpose of this essay is not to enter into a taxonomic debate, but to recognize that crustaceans are one of Class Remipedia the oldest arthropod groups and certainly represent one of the Remipedia (Figure 1a) are among the most primitive of all extant largest, most diverse, and most successful groups of invertebrates crustaceans. Twelve species, placed in two families containing six on Earth, with some 40 000 species recognized (Hobbs, 2000). genera (Cryptocorynetes, Godzilliognomus, Godzillius, Lasionectes, Although crustaceans occupy a truly impressive number of Pleomothra, and Speleonectes), are restricted to anchialine caves aquatic environments (freshwater, brackish, marine), some spe- in the Bahamas, the Caicos Islands, Cuba, the Yucata´n Peninsula cies have become successful on land as well (e.g. isopods). Crusta- (Mexico), the Canary Islands, and the Cape Range Peninsula ceans have a chitinous exoskeleton impregnated with calcium (Western Australia). These small (up to 45 mm total length), carbonate, with three major body divisions: the cephalon, colourless, blind, elongate, centipede-like predators are found in 1מ Ͻ thorax, and abdomen, and they possess paired antennules, anten- their highest densities in oxygen-deficient waters ( 1mgl ), nae, mandibles, and maxillae. and are often found associated with other stygobitic crustaceans Not only have crustaceans been successful in epigean (above- such as caridean shrimps, cirolanid isopods, haziid amphipods, ground) habitats, but they have also moved into the hypogean mysids, ostracods, and thermosbaenaceans. (below-ground) realm, with six classes of crustaceans being rec- Class Copepoda ognized as inhabiting cave and other hypogean environments. (See also Crustacea: Copepoda.) Copepods are a large and di- Additionally, anchialine and interstitial habitats (although many verse group of crustaceans, and are the dominant forms of marine of the latter are not actually associated with karst landforms) plankton. Presently, more than 14 000 species are placed in harbour troglomorphic crustaceans. approximately 2300 genera in 210 families, yet the majority Like many other cavernicoles, many crustaceans are stygobites of subterranean species are placed in the following six orders: (aquatic obligate cavernicoles), while a few are troglobites (terres- Platycopioida and Misophrioida (occur in anchialine habitats), trial obligate cavernicoles). Both groups exhibit various morpho- Gelyelloida (found in caves in France and Switzerland), Cala- logical, physiological, and behavioural adaptations to living in noida, Cyclopoida, and Harpacticoida. Stygobitic species origi- a dark spelean environment where food is in short supply. Their nated from surface, marine, and freshwater ancestors and reached adaptations include reduction or loss of pigments and eyes, at- different groundwater habitats mostly through interstitial and tenuated appendages, and lowered metabolic rates. crevicular or karst routes. It is widely accepted that most obligate cavenicoles (including Calanoid copepods are mainly planktonic filter-feeders, rep- those other than crustaceans) evolved from epigean ancestors resented by some 2300 species, yet fewer than 20 are known with some degree of pre-adaptation to living in hypogean envi- from subterranean waters in a wide distribution ranging from ronments and are thought to have evolved by either natural the Americas to Madagascar and southeastern China. The cyclo- selection or by neutral mutation and genetic drift. poids (Figure 1b) are a poorly studied group, with approximately The six classes of crustaceans with subterranean representa- 150 species recognized from various caves, wells, anchialine habi- tives are Mystacocarida, Branchiopoda, Remipedia, Copepoda, tats, and groundwater interstices. These characteristically blind Ostracoda, and Malacostraca. The primitive Class Mystacocar- crustaceans lack pigments and are known from North and South ida is a meiobenthic group restricted to interstitial waters of America, Asia, Africa, Europe, and Madagascar. The harpacti- intertidal sand beaches and subtidal sand substrates. It is most coids (Figure 1c) are represented by nearly 3000 species assigned closely related to the Copepoda, and less than 20 species and to 40 families, at least 10 of which have stygobiont species. They subspecies are known from Africa, Europe, North and South are widely distributed in caves and various interstitial habitats, America, and Australia. Because mystacocarids are not known as well as in anchialine habitats. These vermiform crustaceans from karstic settings, there will be no further discussion here of can be observed scraping food from various substrates rather this group. Discussion of the remaining five classes of crustaceans than filtering water. follows. (The classes Copepoda and Ostracoda have their own entries in this Encyclopedia, as do three orders—Amphipoda, Class Ostracoda Isopoda, and Syncarida—of the Class Malacostraca.) (See also Crustacea: Ostracoda.) These bivalve crustaceans are fairly successful, being known from virtually all aquatic habitats, Class Branchiopoda but mostly from the marine environment. Some 5700 benthic Only the subclass Diplostraca includes species inhabiting subter- and planktonic species are recognized and more than 300 are ranean habitats (the hyporheos—or transition zone between endemic to subterranean waters, many assigned to the Order streams and groundwater, phreatic zone, caves). Although the Podocopida. Although some species are known only from caves Conchostraca (clam shrimps) and Cladocera (water fleas) are (e.g. Candona jeanneli in Marengo Cave, Indiana), most subter- included in this subclass, only the latter order has hypogean ranean forms have been observed in springs, interstitial waters, representatives, with fewer than 100 of the approximately 450 and anchialine habitats (Figure 1d). Stygobites are reported from recognized species occupying subterranean waters. These are Afghanistan, Africa, Bahamas, Bermuda, Canary Islands, Cen- small (0.2–2 mm), are laterally compressed, and there are only tral and Southern Europe, India, Jamaica, Japan, Java and West- 5603$$0C36 04-01-03 06:51:51 256 CRUSTACEA Crustacea: Figure 1. Line drawings of dorsal (d) and lateral (l) views of representative stygobiont crustaceans: a. Remipedia (d) Speleonectes lucayensis from the Bahamas (after Hobbs, 2000; total length 19.8 mm); b. cyclopoid copepod (d) Kieferiella delamarei from France (after Hobbs, 2000; length 740 ␮m); c. harpacticoid copepod (d) Novocrinia trifida from Belize (after Huys and Iliffe, 1998; length 505 ␮m); d. thaumatocyprid ostracod (l) Danielopolina wilkensi from the Canary Islands (after Kornicker and Iliffe, 1995; length 0.41 mm). ern Malaysia, Mexico, North, Central, and South America, and (or with greatly reduced eyes), stygobites that evolved from shal- South Korea. low-marine ancestors and moved into anchialine habitats, caves, springs, thermal springs, wells, and occupy freshwater and saline Class Malacostraca environments. The group is widespread (found in Australia, the Clearly this is the largest class of crustaceans, with approximately Bahamas, Cambodia, Costa Rica, Croatia, Cuba, France, 23 000 species placed in six superorders, four of which contain Greece, Haiti, Italy, Lanzarote, Mallorca, Mexico, Morocco, hypogean species. The Superorder Syncarida (see Crustacea: Puerto Rico, Sicily, Spain, United States, and the Virgin Islands) Syncarida) is a poorly studied, freshwater group which is divided and consists of at least 34 species assigned to six genera in two into three orders, all of which share the absence of a carapace families. or cephalic shield. The Order Anaspidacea (Figure 2a) is known The Superorder Peracarida consists of eight orders, six of only from Australia, including the island of Tasmania, and occu- which have known subterranean species. Common characters pies a variety of aquatic habitats, including springs and caves, of this group include a carapace that is never fused to all the with one family (Psammaspididae) that is exclusively stygobitic. thoracomeres, although the carapace in isopods and amphipods The Order Stygocaridacea (Figure 2b) occupies interstitial waters secondarily has been lost, the first pair of thoracopods (thoracic in epigean and hypogean environments in New Zealand and somites with a pair of appendages) is modified as a pair of maxil- South America. Fewer than 10 species are assigned to four gen- lipeds, the females have a brood pouch, and the pleopods lack era. The Order Bathynellacea (Figure 2c) has the greatest species an appendix interna (a slender appendage of the endopod). The richness of the three orders, with approximately 150 species rec- Order Mysidacea is a diverse group of crustaceans with more ognized from interstitial epigean, well, and cave habitats. This than 1000 species widely distributed in marine, freshwater, and ancient, relict group is known from Africa, Asia, Australia, Eu- groundwater habitats. Stygobitic mysids (Figure 3a) occur
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Changes in Species Composition of Haploniscidae (Crustacea Isopoda)
    Progress in Oceanography 180 (2020) 102233 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Changes in species composition of Haploniscidae (Crustacea: Isopoda) across T potential barriers to dispersal in the Northwest Pacific ⁎ Nele Johannsena,b, Lidia Linsa,b,c, Torben Riehla,b, Angelika Brandta,b, a Goethe University, Biosciences, Institute for Ecology, Evolution und Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany b Senckenberg Research Institute and Natural History Museum, Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany c Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium ARTICLE INFO ABSTRACT Keywords: Speciation processes as drivers of biodiversity in the deep sea are still not fully understood. One potential driver Hadal for species diversification might be allopatry caused by geographical barriers, such as ridges or trenches, or Ecology physiological barriers associated with depth. We analyzed biodiversity and biogeography of 21 morphospecies of Sea of Okhotsk the deep-sea isopod family Haploniscidae to investigate barrier effects to species dispersal in the Kuril- Deep sea Kamchatka Trench (KKT) area in the Northwest (NW) Pacific. Our study is based on 2652 specimens from three Abyssal genera, which were collected during the German-Russian KuramBio I (2012) and II (2016) expeditions as well as Isopoda Kuril Kamchatka Trench the Russian-German SokhoBio (2015) campaign. The sampling area covered two potential geographical barriers Distribution (the Kuril Island archipelago and the Kuril-Kamchatka Trench), as well as three depth zones (bathyal, abyssal, Northwest Pacific hadal). We found significant differences in relative species abundance between abyssal and hadal depths.
    [Show full text]
  • Evolutionary History of Inversions in the Direction of Architecture-Driven
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Evolutionary history of inversions in the direction of architecture- driven mutational pressures in crustacean mitochondrial genomes Dong Zhang1,2, Hong Zou1, Jin Zhang3, Gui-Tang Wang1,2*, Ivan Jakovlić3* 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Bio-Transduction Lab, Wuhan 430075, China * Corresponding authors Short title: Evolutionary history of ORI events in crustaceans Abbreviations: CR: control region, RO: replication of origin, ROI: inversion of the replication of origin, D-I skew: double-inverted skew, LBA: long-branch attraction bioRxiv preprint doi: https://doi.org/10.1101/2020.05.09.085712; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Inversions of the origin of replication (ORI) of mitochondrial genomes produce asymmetrical mutational pressures that can cause artefactual clustering in phylogenetic analyses. It is therefore an absolute prerequisite for all molecular evolution studies that use mitochondrial data to account for ORI events in the evolutionary history of their dataset.
    [Show full text]
  • Zootaxa, Crustacea, Decapoda, Brachyura, Xanthidae, Cymo
    Zootaxa 1029: 31–38 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1029 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) On a new species of coral-symbiont crab of the genus Cymo de Haan, 1833 (Crustacea: Decapoda: Brachyura: Xanthidae), from the South China Sea P.-H. HO1 & PETER K. L. NG2 1 National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, Taiwan 944, Republic of China ([email protected]) 2 Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore ([email protected]) Abstract A new species of obligate coral symbiont crab of the genus Cymo de Haan, 1833 (Brachyura: Xanthidae) is described from the Indonesian Anambas Islands in the South China Sea. The species is allied to C. deplanatus A. Milne-Edwards, 1873, but is easily distinguished by a suite of carapace, cheliped, male abdominal and gonopod characters. A revised key to the genus Cymo is presented. Key words: Crustacea, Decapoda, Brachyura, Xanthidae, Cymo, new species, South China Sea, key Introduction The obligate Pocillopora coral-dwelling xanthid crabs of the Indo-West Pacific genus Cymo De Haan, 1833 (type species Pilumnus andreossyi Audouin, 1826, by monotypy), currently includes seven species, viz. C. andreossyi (Audouin, 1826) (= C. andreossyi maculata Klunzinger, 1913), C. cerasma Morgan, 1990, C. deplanatus A. Milne-Edwards, 1873, C. lanatopodus Galil & Vannini, 1990, C. melanodactylus Dana, 1852 (= Cymo melanodactylus saviiensis Ward, 1939), C. quadrilobatus Miers, 1884, and C. tuberculatus Ortmann, 1893 (cf. Serène 1984, Galil & Vannini 1990, Morgan 1990). Of these, C.
    [Show full text]
  • Hadzioidea of the NEP (Equator to Aleutians, Intertidal to Abyss): a Review Donald B
    Hadzioidea of the NEP (Equator to Aleutians, intertidal to abyss): a review Donald B. Cadien 31 August 2005 (revised 11Oct 2007) Introduction to the Hadzioidea The superfamily was originally constituted as the Melitoidea (Bousfield 1977). This concept was critiqued by J. L. Barnard and Karaman (1980), and in response Bousfield renamed the group Hadzioidea without changing its composition (Bousfield 1983). Only three families are included in this superfamily, although one of them (Hadziidae) is further divided into three unofficial groups – weckeliids, hadziids, and nuuanids. These were originally included in the broad concept of the gammaroids, but have been separated for several decades. The taxonomic position suggested by Bousfield (2001)is used here, but Barnard and Karaman and others retained them as several groups within the gammaroids s. l.. The discussion of the hadzioids in J. L. Barnard & C. M. Barnard (1983, pp. 137-140, and as “Melita Group” pp. 147-151) may help show how members of this superfamily differ from other gammaroids, and from each other. The first family in the superfamily, the Allocrangonyctidae is confined to freshwater and is not covered here. The remaining two, Hadziidae and Melitidae, are primarily marine, and are both represented in the NEP. Maera sp an undescribed species from Guana Island (Photo Yale Peabody Museum) Diagnosis of the Hadzioidea – “body not carinate nor rostrate, toothed on abdomen only (rarely on peraeon): urosome dorsal spine groups weak or lacking; sexual dimorphism strongly expressed in body size and in gnathopods, and in antenna 2 and peraeopods; antennae 2 lacking calceoli; antennae strongly developed, 1 usually much the longer, peduncular segment 2 elongate; accessory flagellum prominent (occasionally very reduced or lacking); inferior antennal sinus small or sharply incised; eye (when present) basically small, rounded, occasionally reniform.
    [Show full text]
  • The Crustacea Decapoda (Brachyura and Anomura) of Eniwetok Atoll, Marshall Islands, with Special Reference to the Obligate Commensals of Branching Corals 1
    The Crustacea Decapoda (Brachyura and Anomura) of Eniwetok Atoll, Marshall Islands, with special reference to the obligate commensals of branching corals 1 John S. GARTH Allan Hancock Foundation Univer5ity of Southern California 2 and Eniwetok Ma rine Biological Laboratory Introduction The brachyuran decapod crustaceans of the Marsh all Islands have been reviewed by Balss (1938) and by Miyake (1938, 1939). These reports stem from the German and Jap anese occupations, respect ively, the former being the result of the Pacific Exp edition of Dr. Sixten Bock, 1917-1918, the latter th e result of the Micronesia Expedition of Prof. Te iso Esaki, 1937-1938. According to Fosberg (1956, p. 1), J aluit Atoll was the headquarters of both the German and the Japan ese administrations, a fact that accounts for the preponderanc e of record s from the southern Marshall Isl ands. Additional coverage of the southern Marsh alls was provided by the 1950 Arno Atoll Expedition of the Coral Atoll Program of the Pa cific Science Board, the decapod crustaceans collected by Dr. R. W. Hiatt having been reported by Holthuis (1953). Carcinologically speak­ ing, the northern Marshalls ar e less well known, collections having been made only at Likieb Atoll by both Dr. Bock and Prof. Esaki and at Kwajalein Atoll by Prof . Esaki alone. Except for the shrimps, reported by Chace (1955), the extensive collections made in connection with Operation Crossroads in 1946- 1947, which includ ed Bikini, Rongelap, Rongerik, and Eniwetok atolls (Fosberg, 1956, p. 4), are at the U.S. Nationa l Museum awaiting stud y.
    [Show full text]
  • From the Persian Gulf, Iran
    Zootaxa 3881 (5): 440–452 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3881.5.2 http://zoobank.org/urn:lsid:zoobank.org:pub:FEA77B85-165E-46D0-9A6B-5A2156F9302B New species and new record of hadzioids (Amphipoda: Senticaudata, Hadzioidea) from the Persian Gulf, Iran FARZANEH MOMTAZI1, 3, ALIREZA SARI2 & ABDOLVAHAB MAGHSOUDLOU1 1Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran 2School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran 3Corresponding author. E-mail: [email protected] Abstract New record and new species of the families Melitidae Bousfield, 1973 and Maeridae Krapp-Schickel, 2008 are described from the Iranian shorelines of the Persian Gulf. Melita persia sp. nov. is differentiated from other members of M. zeylanica Stebbing, 1904 group by: the presence of two setae on inner ramus of third uropod, the setal arrangement on the telson, and a recurved proximal lobe of sixth coxa in females. Also, Elasmopus menurte Barnard, 1974 previously described from Western Australia and Mauritius is recorded, for the first time, from Persian Gulf in the north-western Indian Ocean. Key words: Melita persia sp. nov., Elasmopus menurte, Qeshm Island, Iran Introduction The family Maeridae in the superfamily Hadzioidea was established by Krapp-Schickel (2008). Based on a new comprehensive review of amphipod taxonomy and phylogeny by Lowry & Myers (2013) the superfamily Hadzioidea is composed of eight families. The Hadzioidea is characterized by the first antenna longer than second antenna and the peduncle of first uropod with a basofacial robust seta.
    [Show full text]
  • Brachyuran Crabs Symbiotic with Scleractinian Corals: a R Eview of Their Biology1
    Brachyuran Crabs Symbiotic with Scleractinian Corals: A R eview of their Biology1 PETER CASTRO Biological Sciences Department, California State Polytech11ic U11ii1ersity Pomona, CA 91768 INTRODUCTION The brachyuran crabs constitute one of tb.e most diverse components of coral reef communities. Serene (1972) has estimated that more than 500 of approxi­ mately 2,000 species of Indo-West Pacific brachyurans are inhabitants of coral reefs. Many of these species are associated in one way or another with scleractinian corals. Some of these are found living on dead coral or coral rubble while others arc facul­ tative or obligate associates of living coral. This review will be limited to tb.ose brachyurans which are obligate associates of living scleractinian corals. Various terms have been used in designating these as well as other associates: "commcnsals," "parasites," "cpizoics," "cpibiotes," or simply "associates." Often these organisms are placed in a category after making assumptions on the presence or absence of "harm" or "benefit" in the partners. Here they will be referred to as "symbionts" following the original definition of symbiosis as different species living together (de Bary, 1879; see also Hertig et al., 1937). Brachyurans which are normally restricted to live corals are therefore considered obligate symbionts. Facultative symbionts utilize live corals only as an alternate and often temporary habitat. Symbiosis may be best visualized as a broad category of heterospecific as­ sociations involving a wide range of adaptive interactions. Differences between some symbiotic and predatory interactions have been outlined by Noble and Noble (1971). The criteria of harmfulness and of metabolic dependency (sec Smyth, 1962; Cheng, 1967) have often been used in classifying symbioses.
    [Show full text]
  • A New “Extreme” Type of Mantis Shrimp Larva
    Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE A new “extreme” type of mantis shrimp BRAZILIAN CRUSTACEAN SOCIETY larva e-ISSN 2358-2936 Carolin Haug1,2 orcid.org/0000-0001-9208-4229 www.scielo.br/nau Philipp Wagner1 orcid.org/0000-0002-6184-1095 www.crustacea.org.br Juliana M. Bjarsch1 Florian Braig1 orcid.org/0000-0003-0640-6012 1,2 Joachim T. Haug orcid.org/0000-0001-8254-8472 1 Department of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany 2 GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 München, Germany ZOOBANK: http://zoobank.org/urn:lsid:zoobank.org:pub:135EA552-435E-45A9- 961B-E71F382216D9 ABSTRACT Mantis shrimps are prominent predatory crustaceans. Their larvae, although morphologically very differently-appearing from their adult counterparts, are already predators; yet, unlike the adults they are not benthic. Instead they are part of the plankton preying on other planktic organisms. Similar to some types of lobsters and crab-like crustaceans the planktic larvae of mantis shrimps can grow quite large, reaching into the centimeter range. Nonetheless, our knowledge on mantis shrimp larvae is still rather limited. Recently new types of giant mantis shrimp larvae with “extreme morphologies” have been reported. Here we describe another type that qualifies to be called “extreme”. Comparative measurements of certain morphological structures on selected known larvae support the exceptionality of the new specimen. It differs in several aspects from the original four types of extreme mantis shrimp larvae described by C. Haug et al. (2016). With this fifth type we expand the known morphological diversity of mantis shrimp larvae and also contribute to our still very incomplete, although growing, knowledge of this life phase.
    [Show full text]
  • Crustacean Phylogeny…? Nauplius • First Larva Stage of Most “It Can Be Concluded That Crustacean Crustaceans
    Bio 370 Crustacea Main arthropod clades (Regier et al 2010) Phylum Arthropoda http://blogs.discoverm • Trilobita agazine.com/loom/201 0/02/10/blind-cousins- Subphylum (or Class) Crustacea to-the-arthropod- • Chelicerata superstars/ Mostly aquatic, with calcified exoskeleton. • Mandibulata – Myriapoda (Chilopoda, Diplopoda) Head derived from acron plus next five segments- so primitively has 5 pairs of appendages: – Pancrustacea • Oligostraca (Ostracoda, Branchiura) -2 pair antennae • Altocrustacea - 1 pair of jaws – Vericrustacea - 2 pair of maxillae » (Branchiopoda, Decapoda) - usually a median (cyclopean) eye and – Miracrustacea one pair of compound eyes » Xenocarida (Remipedia, Cephalocarida) » Hexapoda Tagmosis of trunk varies in different taxa Crustacean phylogeny…? Nauplius • first larva stage of most “It can be concluded that crustacean crustaceans. phylogeny remains essentially unresolved. • three pairs of appendages • single median (naupliar) eye Conflict is rife, irrespective of whether one compares different morphological studies, molecular studies, or both.” Appendages: Jenner, 2010: Arthropod Structure & Development 39:143– -1st antennae 153 -2nd antennae - mandibles 1 Bio 370 Crustacea Crustacean taxa you should know Remipede habitat: a sea cave “blue hole” on Andros Island. Seven species are found in the Bahamas. Class Remipedia Class Malacostraca Class Branchiopoda “Peracarida”-marsupial crustacea Notostraca –tadpole shrimp Isopoda- isopods Anostraca-fairy shrimp Amphipoda- amphipods Cladocera- water fleas Mysidacea- mysids Conchostraca- clam shrimp “Eucarida” Class Maxillopoda Euphausiacea- krill Ostracoda- ostracods Decapoda- decapods- ten leggers Copepoda- copepods Branchiura- fish lice Penaeoidea- penaeid shrimp Cirripedia- barnacles Caridea- carid shrimp Astacidea- crayfish & lobsters Brachyura- true crabs Anomura- false crabs “Stomatopoda”– mantis shrimps Class Remipedia Remipides found only in sea caves in the Caribbean, the Canary Islands, and Western Australia (see pink below).
    [Show full text]
  • Guide to the Marine Isopod Crustaceans of the Caribbean
    Guide to the MARINE ISOPOD CRUSTACEANS of the Caribbean H H h Guide to the MARINE ISOPOD CRUSTACEANS of the Caribbean Brian Kensley and Marilyn Schotte SMITHSONIAN INSTITUTION PRESS WASHINGTON, D.C., AND LONDON — — © 1989 by the Smithsonian Institution All rights reserved Designer: Linda McKnight Editor: Nancy Dutro Library of Congress Cataloging-in-PubHcation Data Kensley, Brian Frederick. Guide to the marine isopod crustaceans of the Caribbean / Brian Kensley and Marilyn Schotte. p. cm. Bibliography: p. Includes index. ISBN 0-87474-724-4 (alk. paper) 1. Isopoda— Caribbean Sea Classification. 2. Crustacea—Caribbean Sea Classification. I. Schotte, Marilyn. II. Title. QL444.M34K434 1989 595.3'7209153'35—dcl9 88-38647 CIP British Library Cataloging-in-Publication Data available Manufactured in the United States of America 10 98765432 1 98 97 96 95 94 93 92 91 90 89 00 The paper used in this publication meets the minimum requirements of the American National Standard for Performance of Paper for Printed Library Materials Z39.48-1984 Contents 1 Introduction 1 HISTORIC BACKGROUND 3 GEOGRAPHIC AREA COVERED IN THIS GUIDE 4 ARRANGEMENT OF THE GUIDE AND HOW TO USE IT 5 ACKNOWLEDGMENTS 7 Glossary of Technical Terms 13 Marine Isopods of the Caribbean 13 ORDER ISOPODA 15 SUBORDER ANTHURIDEA 73 SUBORDER ASELLOTA 107 SUBORDER EPICARIDEA 114 SUBORDER FLABELLIFERA 236 SUBORDER GNATHIIDEA 243 SUBORDER MICROCERBERIDEA 246 SUBORDER ONISCIDEA 251 SUBORDER VALVIFERA 261 Zoogeography 261 FAUNAE PROVINCES 262 ANALYSIS OF THE ISOPOD FAUNA 266 THE BAHAMAS 269 BERMUDA 269 CAVE ISOPODS 275 Appendix 277 Literature Cited 293 Index Introduction The title of this work will no doubt raise several questions in many readers' minds: why the Caribbean? why not the Caribbean and the Gulf of Mexico? why only the marine isopods? just what is the "Caribbean area"? We hope that the answers to some of these (and other) questions will become apparent.
    [Show full text]