Complete SIP Message Obfuscation: Privasip Over Tor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uila Supported Apps
Uila Supported Applications and Protocols updated Oct 2020 Application/Protocol Name Full Description 01net.com 01net website, a French high-tech news site. 050 plus is a Japanese embedded smartphone application dedicated to 050 plus audio-conferencing. 0zz0.com 0zz0 is an online solution to store, send and share files 10050.net China Railcom group web portal. This protocol plug-in classifies the http traffic to the host 10086.cn. It also 10086.cn classifies the ssl traffic to the Common Name 10086.cn. 104.com Web site dedicated to job research. 1111.com.tw Website dedicated to job research in Taiwan. 114la.com Chinese web portal operated by YLMF Computer Technology Co. Chinese cloud storing system of the 115 website. It is operated by YLMF 115.com Computer Technology Co. 118114.cn Chinese booking and reservation portal. 11st.co.kr Korean shopping website 11st. It is operated by SK Planet Co. 1337x.org Bittorrent tracker search engine 139mail 139mail is a chinese webmail powered by China Mobile. 15min.lt Lithuanian news portal Chinese web portal 163. It is operated by NetEase, a company which 163.com pioneered the development of Internet in China. 17173.com Website distributing Chinese games. 17u.com Chinese online travel booking website. 20 minutes is a free, daily newspaper available in France, Spain and 20minutes Switzerland. This plugin classifies websites. 24h.com.vn Vietnamese news portal 24ora.com Aruban news portal 24sata.hr Croatian news portal 24SevenOffice 24SevenOffice is a web-based Enterprise resource planning (ERP) systems. 24ur.com Slovenian news portal 2ch.net Japanese adult videos web site 2Shared 2shared is an online space for sharing and storage. -
The Handshake - Establishing Secure Connections Over Insecure Channels
Lecture 13: The handshake - establishing secure connections over insecure channels Boaz Barak We’ve now compiled all the tools that are needed for the basic goal of cryptography (which is still being subverted quite often) allowing Alice and Bob to exchange messages assuring their integrity and confidentiality over a channel that is observed or controlled by an adversary. Our tools for achieving this goal are: • Public key (aka assymetric) encryption schemes. • Public key (aka assymetric) digital signatures schemes. • Private key (aka symmetric) encryption schemes - block ciphers and stream ciphers. • Private key (aka symmetric) message authentication codes and psedoran- dom functions. • Hash functions that are used both as ways to compress messages for authentication as well as key derivation and other tasks. The notions of security we require from these building blocks can vary as well. For encryption schemes we talk about CPA (chosen plaintext attack) and CCA (chosen ciphertext attacks), for hash functions we talk about collision-resistance, being used (combined with keys) as pseudorandom functions, and then sometimes we simply model those as random oracles. Also, all of those tools require access to a source of randomness, and here we use hash functions as well for entropy extraction. Cryptography’s obsession with adjectives. As we learn more and more cryptography we see more and more adjectives, every notion seems to have modifiers such as “non malleable”, “leakage-resilient”, “identity based”, “concurrently secure”, “adaptive”, “non-interactive”, etc.. etc. Indeed, this motivated a parody web page of an automatic crypto paper title generator. Unlike algorithms, where typically there are straightforward quantitative tradeoffs (e.g., faster is better), in cryptography there are many qualitative ways protocols can vary based on the assumptions they operate under and the notions of security they provide. -
Wiretapping End-To-End Encrypted Voip Calls Real-World Attacks on ZRTP
Institute of Operating Systems and Computer Networks Wiretapping End-to-End Encrypted VoIP Calls Real-World Attacks on ZRTP Dominik Schürmann, Fabian Kabus, Gregor Hildermeier, Lars Wolf, 2017-07-18 wiretapping difficulty End-to-End Encryption SIP + DTLS-SRTP (SIP + Datagram Transport Layer Security-SRTP) End-to-End Encryption & Authentication SIP + SRTP + ZRTP Introduction Man-in-the-Middle ZRTP Attacks Conclusion End-to-End Security for Voice Calls Institute of Operating Systems and Computer Networks No End-to-End Security PSTN (Public Switched Telephone Network) SIP + (S)RTP (Session Initiation Protocol + Secure Real-Time Transport Protocol) 2017-07-18 Dominik Schürmann Wiretapping End-to-End Encrypted VoIP Calls Page 2 of 13 wiretapping difficulty End-to-End Encryption & Authentication SIP + SRTP + ZRTP Introduction Man-in-the-Middle ZRTP Attacks Conclusion End-to-End Security for Voice Calls Institute of Operating Systems and Computer Networks No End-to-End Security PSTN (Public Switched Telephone Network) SIP + (S)RTP (Session Initiation Protocol + Secure Real-Time Transport Protocol) End-to-End Encryption SIP + DTLS-SRTP (SIP + Datagram Transport Layer Security-SRTP) 2017-07-18 Dominik Schürmann Wiretapping End-to-End Encrypted VoIP Calls Page 2 of 13 wiretapping difficulty Introduction Man-in-the-Middle ZRTP Attacks Conclusion End-to-End Security for Voice Calls Institute of Operating Systems and Computer Networks No End-to-End Security PSTN (Public Switched Telephone Network) SIP + (S)RTP (Session Initiation Protocol + Secure Real-Time -
AUTHENTICATION TECHNIQUES for HETEROGENEOUS TELEPHONE NETWORKS by BRADLEY GALLOWAY REAVES a DISSERTATION PRESENTED to the GRADUA
AUTHENTICATION TECHNIQUES FOR HETEROGENEOUS TELEPHONE NETWORKS By BRADLEY GALLOWAY REAVES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Bradley Galloway Reaves For Sarah ACKNOWLEDGMENTS Iamonlywritingthistodaybecauseofthemultitudeoffamily,friends,teachers,and colleagues who helped get me here. This journey began in high school, when Mrs. Reid, my English teacher, suggested that I would make a good college professor. I wasn’t sure about the idea until my second programming class in college. I loved programming, so I would do the lab assignments at home, then show up in the lab to demonstrate the project to the TA. My work for the week was done, but I didn’t leave the lab. Instead, I stayed for the next few hours helping other students when they needed help with the programming assignments. It became the best part of my week, and I realized that there was no career I wanted more than to be a professor of computing. Having a goal and knowing what it takes to achieve it are two very di↵erent things. At the time I knew I needed a PhD, but nothing of what it took to get one. Luckily, I had wonderfully supportive professors and advisors who told me what it took, and one in particular helped me take the first steps toward a research career. Tommy Morris was a new professor at Mississippi State, and after teaching my digital design class o↵ered me a (paid!) position in his research lab. -
Analysis of Effect of Zfone Security on Video Call Service in Wireless Local Area Network
International Journal of Computer Techniques -– Volume 6 Issue 6,November 2019 ANALYSIS OF EFFECT OF ZFONE SECURITY ON VIDEO CALL SERVICE IN WIRELESS LOCAL AREA NETWORK Arip Solehudin 1 Bayu Priyatna 2 Nono Heryana 3 Teknik Informatika Fakultas Ilmu Komputer School of Engineering and Computer Science Sistem Informasi Fakultas Ilmu Komputer Universitas Singaperbangsa Karawang Universitas Buana Perjuangan Karawang Universitas Singaperbangsa Karawang Karawang, Indonesia Karawang, Indonesia Karawang, Indonesia [email protected] [email protected] [email protected] Abstract—Along with the development of WLAN (Wireless VoIP LAN that uses cable began to move using wireless Local Area Network) network technology, many services that network technology, namely wireless. The use of wireless used cable networks began to migrate to wireless networks. networks as a medium for the flow of data makes VoIP VoIP (Voice over Internet Protocol) is one service implemented services can be used in several communication technology in wireless local area networks. However, VoIP that uses tools such as personal computers, laptops, and smartphones. wireless technology as a data stream media Video Call service has a high risk of tapping pictures. To avoid tapping pictures, The use of VoIP technology that is implemented on you can add a security system to the service, one of which is to WLAN networks with video call services found in VoIP use Zfone security. With him adding a security system that will facilities is an excellent solution for conducting influence the work of Video Call services on the quality of conversations at affordable costs compared to the VoIP service. -
Zfone: a New Approach for Securing Voip Communication
Zfone: A New Approach for Securing VoIP Communication Samuel Sotillo [email protected] ICTN 4040 Spring 2006 Abstract This paper reviews some security challenges currently faced by VoIP systems as well as their potential solutions. Particularly, it focuses on Zfone, a vendor-neutral security solution developed by PGP’s creator, Phil Zimmermann. Zfone is based on the Z Real-time Transport Protocol (ZRTP), which is an extension of the Real-time Transport Protocol (RTP). ZRTP offers a very simple and robust approach to providing protection against the most common type of VoIP threats. Basically, the protocol offers a mechanism to guarantee high entropy in a Diffie- Hellman key exchange by using a session key that is computed through the hashing several secrets, including a short authentication string that is read aloud by callers. The common shared secret is calculated and used only for one session at a time. However, the protocol allows for a part of the shared secret to be cached for future sessions. The mechanism provides for protection for man-in-the-middle, call hijack, spoofing, and other common types of attacks. Also, this paper explores the fact that VoIP security is a very complicated issue and that the technology is far from being inherently insecure as many people usually claim. Introduction Voice over IP (VoIP) is transforming the telecommunication industry. It offers multiple opportunities such as lower call fees, convergence of voice and data networks, simplification of deployment, and greater integration with multiple applications that offer enhanced multimedia functionality [1]. However, notwithstanding all these technological and economic opportunities, VoIP also brings up new challenges. -
Opus, a Free, High-Quality Speech and Audio Codec
Opus, a free, high-quality speech and audio codec Jean-Marc Valin, Koen Vos, Timothy B. Terriberry, Gregory Maxwell 29 January 2014 Xiph.Org & Mozilla What is Opus? ● New highly-flexible speech and audio codec – Works for most audio applications ● Completely free – Royalty-free licensing – Open-source implementation ● IETF RFC 6716 (Sep. 2012) Xiph.Org & Mozilla Why a New Audio Codec? http://xkcd.com/927/ http://imgs.xkcd.com/comics/standards.png Xiph.Org & Mozilla Why Should You Care? ● Best-in-class performance within a wide range of bitrates and applications ● Adaptability to varying network conditions ● Will be deployed as part of WebRTC ● No licensing costs ● No incompatible flavours Xiph.Org & Mozilla History ● Jan. 2007: SILK project started at Skype ● Nov. 2007: CELT project started ● Mar. 2009: Skype asks IETF to create a WG ● Feb. 2010: WG created ● Jul. 2010: First prototype of SILK+CELT codec ● Dec 2011: Opus surpasses Vorbis and AAC ● Sep. 2012: Opus becomes RFC 6716 ● Dec. 2013: Version 1.1 of libopus released Xiph.Org & Mozilla Applications and Standards (2010) Application Codec VoIP with PSTN AMR-NB Wideband VoIP/videoconference AMR-WB High-quality videoconference G.719 Low-bitrate music streaming HE-AAC High-quality music streaming AAC-LC Low-delay broadcast AAC-ELD Network music performance Xiph.Org & Mozilla Applications and Standards (2013) Application Codec VoIP with PSTN Opus Wideband VoIP/videoconference Opus High-quality videoconference Opus Low-bitrate music streaming Opus High-quality music streaming Opus Low-delay -
How to Use Encryption and Privacy Tools to Evade Corporate Espionage
How to use Encryption and Privacy Tools to Evade Corporate Espionage An ICIT White Paper Institute for Critical Infrastructure Technology August 2015 NOTICE: The recommendations contained in this white paper are not intended as standards for federal agencies or the legislative community, nor as replacements for enterprise-wide security strategies, frameworks and technologies. This white paper is written primarily for individuals (i.e. lawyers, CEOs, investment bankers, etc.) who are high risk targets of corporate espionage attacks. The information contained within this briefing is to be used for legal purposes only. ICIT does not condone the application of these strategies for illegal activity. Before using any of these strategies the reader is advised to consult an encryption professional. ICIT shall not be liable for the outcomes of any of the applications used by the reader that are mentioned in this brief. This document is for information purposes only. It is imperative that the reader hires skilled professionals for their cybersecurity needs. The Institute is available to provide encryption and privacy training to protect your organization’s sensitive data. To learn more about this offering, contact information can be found on page 41 of this brief. Not long ago it was speculated that the leading world economic and political powers were engaged in a cyber arms race; that the world is witnessing a cyber resource buildup of Cold War proportions. The implied threat in that assessment is close, but it misses the mark by at least half. The threat is much greater than you can imagine. We have passed the escalation phase and have engaged directly into full confrontation in the cyberwar. -
Pgpfone Pretty Good Privacy Phone Owner’S Manual Version 1.0 Beta 7 -- 8 July 1996
Phil’s Pretty Good Software Presents... PGPfone Pretty Good Privacy Phone Owner’s Manual Version 1.0 beta 7 -- 8 July 1996 Philip R. Zimmermann PGPfone Owner’s Manual PGPfone Owner’s Manual is written by Philip R. Zimmermann, and is (c) Copyright 1995-1996 Pretty Good Privacy Inc. All rights reserved. Pretty Good Privacy™, PGP®, Pretty Good Privacy Phone™, and PGPfone™ are all trademarks of Pretty Good Privacy Inc. Export of this software may be restricted by the U.S. government. PGPfone software is (c) Copyright 1995-1996 Pretty Good Privacy Inc. All rights reserved. Phil’s Pretty Good engineering team: PGPfone for the Apple Macintosh and Windows written mainly by Will Price. Phil Zimmermann: Overall application design, cryptographic and key management protocols, call setup negotiation, and, of course, the manual. Will Price: Overall application design. He persuaded the rest of the team to abandon the original DOS command-line approach and designed a multithreaded event-driven GUI architecture. Also greatly improved call setup protocols. Chris Hall: Did early work on call setup protocols and cryptographic and key management protocols, and did the first port to Windows. Colin Plumb: Cryptographic and key management protocols, call setup negotiation, and the fast multiprecision integer math package. Jeff Sorensen: Speech compression. Will Kinney: Optimization of GSM speech compression code. Kelly MacInnis: Early debugging of the Win95 version. Patrick Juola: Computational linguistic research for biometric word list. -2- PGPfone Owner’s -
Implementing an Ipv6 Moving Target Defense on a Live Network
Implementing an IPv6 Moving Target Defense on a Live Network Matthew Dunlop∗†, Stephen Groat∗†, Randy Marchanyy, Joseph Tront∗ ∗Bradley Department of Electrical and Computer Engineering yVirginia Tech Information Technology Security Laboratory Virginia Tech, Blacksburg, VA 24061, USA Email: fdunlop,sgroat,marchany,[email protected] Abstract The goal of our research is to protect sensitive communications, which are commonly used by government agencies, from eavesdroppers or social engineers. In prior work, we investigated the privacy implications of stateless and stateful address autoconfiguration in the Internet Protocol version 6 (IPv6). Autoconfigured addresses, the default addressing system in IPv6, provide a third party a means to track and monitor targeted users globally using simple tools such as ping and traceroute. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) addresses contain a static DHCP Unique Identifier (DUID) that can be used to track and tie a stateless address to a host identity. Our research focuses on preventing the issue of IPv6 address tracking as well as creating a \moving target defense." The Moving Target IPv6 Defense (MT6D) dynamically hides network and transport layer addresses of packets in IPv6 to achieve anonymity and protect against certain classes of network attacks. Packets are encrypted to prevent traffic correlation, which provides significantly improved anonymity. MT6D has numerous applications ranging from hosts desiring to keep their locations private to hosts conducting sensitive communications. This paper explores the results of implementing a proof of concept MT6D prototype on a live IPv6 network. 1 Introduction More networks are deploying the Internet Protocol version 6 (IPv6) due to the lack of available addresses in the Internet Protocol version 4 (IPv4). -
PGP® Desktop for Windows User's Guide
October 2003 PGP® Desktop for Windows User’s Guide Version Information PGP Desktop for Windows User’s Guide, version 8.0.3. Released October, 2003. Copyright Information Copyright © 1991–2003 by PGP Corporation. All Rights Reserved. No part of this document can be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, with- out the express written permission of PGP Corporation. Trademark Information PGP and Pretty Good Privacy are registered trademarks, and the PGP logo is a trademark, of PGP Corpo- ration in the U.S. and other countries. IDEA is a trademark of Ascom Tech AG. All other registered and unregistered trademarks in this document are the sole property of their respective owners. Licensing and Patent Information The IDEA cryptographic cipher described in U.S. patent number 5,214,703 is licensed from Ascom Tech AG. The CAST encryption algorithm is licensed from Northern Telecom, Ltd. PGP Corporation may have patents and/or pending patent applications covering subject matter in this software or its documenta- tion; the furnishing of this software or documentation does not give you any license to these patents. Acknowledgments The compression code in PGP Desktop is by Mark Adler and Jean-Loup Gailly, used with permission from the free Info-ZIP implementation. Export Information Export of this software and documentation may be subject to compliance with the rules and regulations promulgated from time to time by the Bureau of Export Administration, United States Department of Commerce, which restrict the export and re-export of certain products and technical data. -
Online Security for Independent Media and Civil Society Activists
Online Security for Independent Media and Civil Society Activists A white paper for SIDA’s October 2010 “Exile Media” conference Eric S Johnson (updated 13 Oct 2013) For activists who make it a priority to deliver news to citizens of countries which try to control the information to which their citizens have access, the internet has provided massive new opportunities. But those countries’ governments also realise ICTs’ potential and implement countermeasures to impede the delivery of independent news via the internet. This paper covers what exile media can or should do to protect itself, addressing three categories of issues: common computer security precautions, defense against targeted attacks, and circumventing cybercensorship, with a final note about overkill (aka FUD: fear, uncertainty, doubt). For each of the issues mentioned below, specific ex- amples from within the human rights or freedom of expression world can be provided where non-observance was cata- strophic, but most of those who suffered problems would rather not be named. [NB Snowden- gate changed little or nothing about these recommendations.] Common computer security: The best defense is a good … (aka “lock your doors”) The main threats to exile media’s successful use of ICTs—and solutions—are the same as for any other computer user: 1) Ensure all software automatically patches itself regularly against newly-discovered secu- rity flaws (e.g. to maintain up-to-date SSL certificate revocation lists). As with antivirus software, this may cost something; e.g. with Microsoft (Windows and Office), it may re- quire your software be legally purchased (or use the WSUS Offline Update tool, which helps in low-bandwidth environments).