Changes in Photosynthesis and Carbohydrate Metabolism in Mature Apple Leaves in Response to Whole Plant Source–Sink Manipulation

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Photosynthesis and Carbohydrate Metabolism in Mature Apple Leaves in Response to Whole Plant Source–Sink Manipulation J. AMER. SOC. HORT. SCI. 128(1):113–119. 2003. Changes in Photosynthesis and Carbohydrate Metabolism in Mature Apple Leaves in Response to Whole Plant Source–Sink Manipulation Rui Zhou1 and Bruno Quebedeaux2 Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742 ADDITIONAL INDEX WORDS. Malus sylvestris var. domestica, Sorbitol, sucrose, starch, aldose-6-phosphate reductase, sucrose- phosphate synthase, ADPGlucose pyrophosphorylase ABSTRACT. Photosynthesis and carbohydrate metabolism in apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] source leaves were monitored during a 7-day period after source–sink manipulations by girdling or partial defoliation treatments. In the girdling treatment, sorbitol, sucrose, glucose, and starch accumulated in leaves, and net –1 –1 photosynthetic rates (Pn) at 350 µL·L CO2 decreased during a 7-day period. Pn measured at 1000 µL·L [CO2] was also decreased but the changes were less. Stomatal conductance and intracellular CO2 concentration decreased markedly in leaves of girdled shoots. When shoots were partially defoliated, starch and glucose concentrations in remaining source leaves declined steadily during the 7-day study period. Sorbitol and sucrose concentrations decreased during the first 2 days after defoliation, then increased the following 5 days. Pn of the remaining leaves measured at ambient and elevated CO2 levels were enhanced markedly. Aldose-6-phosphate reductase activity in source leaves increased markedly from 27.5 to 39.2 µmol·h–1·g–1 fresh weight (FW) after partial defoliation but remained unchanged in leaves after girdling. Selective and maximum sucrose phosphate synthase (SPS) activities increased following partial defoliation and decreased following girdling. ADP-glucose pyrophosphorylase activity remained relatively unchanged in the partial defoliation treatments but increased markedly in the girdled-shoot leaves. These results suggested that girdling-induced photosyn- thetic inhibition is mainly due to stomatal limitation, however, the photosynthesis enhancement by partial defoliation may be due primarily to acceleration of photosynthetic capacity per se. These studies showed that the metabolism of sorbitol, sucrose and starch, three photosynthetic end products in mature apple leaves, was coordinately regulated in source leaves in response to source–sink manipulations. Photosynthetically fixed carbon in source leaves can be con- (Buchanan, 1998). Sink regulation of carbohydrate metabolism verted to starch and sucrose in most plant species. Starch is in source leaves involves changes in metabolite levels, in the synthesized and stored within chloroplasts, and in most plants, it activities of key enzymes for sucrose and starch biosynthesis, and is the primary storage form mobilized for translocation, usually in the transcription of some specific photosynthetic and carbohy- during the night. Sucrose is formed in the cytoplasm and acts as drate metabolism genes (Krapp and Stitt, 1995). One model was the transport compound for export from source leaves to sink proposed with respect to this sink regulation. Higher sink demand tissues. In some plants, sucrose may also be a storage compound. removes sucrose and favors sucrose-phosphate synthesis cata- Carbon allocation between these two pathways not only deter- lyzed by sucrose-phosphate synthase (SPS) and the hydrolysis of mines the availability of carbon for export and storage in the sucrose-phosphate catalyzed by sucrose phosphatase. The result- leaves, but also may control the rate of photosynthesis (Stitt and ing increase in phosphate release in the source cytoplasm leads to Sonnewald, 1995). Reduced sucrose synthesis in spinach leaves increased efflux of triose phosphate from the chloroplast via the was shown to decrease the rate of photosynthesis (Battistelli et al., triose-phosphate transporter. Glucose-6-phosphate, which is 1991). formed from triose phosphate, stimulates the activity of SPS, thus Photosynthesis and carbohydrate metabolism in source leaves providing sucrose to meet the increased sink demand (Dunford, respond to sink activity (Aczon-Bieto, 1983; Goldschmidt and 1998). Huber, 1992; Krapp and Stitt, 1995; Paul and Driscoll, 1997; Paul Previously, most investigations on carbon allocation and car- and Foyer, 2001; Plaut et al., 1987; Rufty and Huber, 1983). In bohydrate metabolism have been conducted on plants with su- general, when sink demand increases, photosynthesis is stimu- crose and starch as final photosynthetic end products. In the lated and more carbon is partitioned to sucrose instead of starch. Rosaceae family, including apple, peach and many other tree This process facilitates carbon translocation. On the other hand, fruits, in addition to sucrose and starch, sorbitol is a primary when photosynthate transport of source leaves is blocked, photo- photosynthetic end product. Sorbitol is also the main translocatable synthesis is inhibited, sucrose synthesis is reduced, and starch carbohydrate in these species (Bieleski, 1982; Loescher and synthesis is stimulated (Dunford, 1998). Everard, 1996). The allocation of newly fixed carbon in these The regulation of sucrose and starch metabolism has been species is influenced by the leaf developmental stage (Bieleski extensively studied during the last 2 decades (Preiss and Sivak, and Redgwell, 1985), and environmental conditions, such as 1996; Quick and Schaffer, 1996). Sucrose and starch synthesis water stress (Wang and Stutte, 1992), light intensity (Escober- are competing reactions and are highly coordinated in vivo Gutierrez and Gaudillere, 1997), photoperiod (Wang et al., 1997) and CO2 concentration (Pan et al., 1998). Sink strength may also Received for publication 28 Feb. 2002. Accepted for publication 24 Oct. 2002. regulate carbohydrate metabolism in the source leaves. Layne 1Current address: Department of Horticulture, Cornell University, Ithaca, NY and Flore (1995) reported that carbohydrate metabolism in the 14853. source leaves of sour cherry changed significantly in response to 2To whom reprint requests should be addressed; e-mail [email protected]. the source manipulation. As a strong sink organ in some develop- J. AMER. SOC. HORT. SCI. 128(1):113–119. 2003. 113 9211-Photo 113 11/25/02, 1:45 AM mental stages, fruit was also shown to alter the carbohydrate were generated as Pn–Ci curves. Three leaves per treatment were concentrations of source leaves (Nii, 1997; Wibbe and Blanke, measured for Pn–Ci curves and the typical curve was presented. 1995). However, the biochemical mechanisms are still unknown CARBOHYDRATE ANALYSIS. After the photosynthetic rates were with respect to the regulation of carbon allocation in the leaves of measured, the leaves were harvested and the midrib of each leaf these sorbitol-producing plant species. was removed. One half of the leaf was used for carbohydrate In the present study, girdling and partial defoliation treatments analysis and the other half for enzyme extraction and biochemical were applied to young potted apple (Malus sylvestris var. analyses. Leaf samples for carbohydrate analysis were weighed domestica) trees. Girdling, which blocks the photoassimilate and immediately frozen in liquid nitrogen, lyophilized and kept transport pathway, resulted in reduced sink demand for carbohy- at –80 oC until analysis. Carbohydrate analysis was conducted as drates from the source leaves. Partial defoliation treatments, with described by Wang et al. (1997). One hundred milligrams of the the removal of most source leaves and alteration of the source sink dried sample was extracted three times, each 20 min, with 2 mL ratio, can cause more carbohydrate demand upon the remaining of 80% (v/v) ethanol at 80 oC. The homogenates were centrifuged source leaves by the sink tissues and may allow more carbohy- at 15,000 gn for 10 min to give ethanol-soluble and ethanol- drate export out of the source leaves. The objective of the current insoluble fractions. The pellets were evaporated to dryness and studies was to investigate the effects of sink demand on photosyn- used for starch determination. The ethanol soluble fractions were thesis and the activities of key enzymes related to carbohydrate pooled and evaporated to dryness with a concentrator (SpeedVac; metabolism in apple leaves. Savant Instruments, Inc., Farmingdale, N.Y.), and resolublized in 1.5 mL of deionized water. The soluble fraction was then passed Materials and Methods through a Dowex 50H+ and a Dowex 1Cl– resin column. The soluble neutral fraction eluted from the two columns with dis- PLANT MATERIALS. Young apple trees (‘Gala’ on M9 rootstock) tilled water provided the soluble carbohydrate fraction. Sorbitol, were cut 10 cm above the bud union in early spring and grown sucrose, glucose and fructose were separated with a high-perfor- outside of the University of Maryland greenhouse at College mance liquid chromatograph (HPLC) (Shimadzu Corp., Colum- Park, Md., under a natural environment from April to June in 20- bia, Md.) on a carbohydrate column (HPX-87C; Bio-Rad, Rich- L pots filled with peat-based Professional Growing Medium 300- mond, Calif.) (Wang et al., 1997). Degassed, distilled, deionized S (Pro-Gro Products, Elizabeth City, N.C.). The trees were then water at 0.6 mL·min–1 at 80 oC was used as the mobile phase. A pruned to two shoots per plant with ≈30 leaves on each. The trees refractive index detector (RID-10A; Shimadzu) at 30 oC was used were watered twice each day and fertilized
Recommended publications
  • Archaeological Starch Preservation and Methodological Parameters: Where Does Qaraqara Fit?
    ARCHAEOLOGICAL STARCH PRESERVATION AND METHODOLOGICAL PARAMETERS: WHERE DOES QARAQARA FIT? Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the Graduate School of the Ohio State University By Nicole Marie Hernandez, B.A. Department of Anthropology The Ohio State University 2015 Master’s Committee: Professor Julie S. Field, Advisor Professor Kristen J. Gremillion Professor Robert Cook Copyright by Nicole Marie Hernandez 2015 ABSTRACT Starch granule analysis is a relatively new methodology that can aid in various areas of archaeological research, including the determination of subsistence patterns and transitions, mobility, tool use, and ecology. This study examines undecorated ceramic fragments recovered from Qaraqara, Fiji for the presence of adhered starch. Although the three starch extraction methods used were not successful, the research process provides an opportunity to explain the lack of success by investigating ideal archaeological starch preservation parameters and extraction methodologies. Many factors contribute to the rarity of preserved starch granules in archaeological settings, including its bio-chemical structure, the decomposition of microorganisms in soil, chemical interactions, and environmental conditions. To determine ideal environmental conditions for starch preservation, successful extraction methods, and the effect of archaeological materials on success rates for extraction, a meta-analysis was conducted on a sample of archaeological studies that also sought to extract preserved starch. Key environmental variables that support the preservation of starch were identified, including a specific range of average temperatures, rainfall amounts, and altitudes. Using chi-square statistical tests, this study determined that an average temperature of 19-22° C significantly contributes to the preservation of archaeological starch.
    [Show full text]
  • Starch and Glycogen Analyses: Methods and Techniques
    biomolecules Review Starch and Glycogen Analyses: Methods and Techniques Henrike Brust 1, Slawomir Orzechowski 2 and Joerg Fettke 3,* 1 Leibniz Institute for Plasma Science and Technology, Institute of Biochemistry and Biology, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; [email protected] 2 Department of Biochemistry and Microbiology, Warsaw University of Life Sciences-SGGW, ul. Nowoursynowska 159 Budynek 37 P/12B, 02-776 Warszawa, Poland; [email protected] 3 Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25 Building 20, 14476 Potsdam-Golm, Germany * Correspondence: [email protected] Received: 13 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included. Keywords: starch; glycogen; analytics 1. Introduction Today, several techniques for the analysis of complex carbohydrates exist, though a single all-embracing method is lacking. All methods provide information about glycan samples, but along with this knowledge, there is unfortunately also a partial loss of specific information. As an example, very large and complex glycans can be analyzed only following partial fragmentation.
    [Show full text]
  • ESTABLISHMENT of HIGH-THROUGHPUT TECHNIQUES for STUDYING STARCH FUNCTIONALITIES by Miguel Angel Alvarez Gonzales
    ESTABLISHMENT OF HIGH-THROUGHPUT TECHNIQUES FOR STUDYING STARCH FUNCTIONALITIES by Miguel Angel Alvarez Gonzales A Thesis Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Master of Science Department of Food Science West Lafayette, Indiana August 2019 2 THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Dr. Yuan Yao, Chair Department of Food Science Dr. Bruce Hamaker Department of Food Science Dr. Clifford Weil Department of Agronomy Approved by: Dr. Arun K. Bhunia Head of the Graduate Program 3 Dedicated to my family 4 TABLE OF CONTENTS LIST OF TABLES .......................................................................................................................... 8 LIST OF FIGURES ........................................................................................................................ 9 LIST OF ABREVIATIONS ......................................................................................................... 12 ABSTRACT .................................................................................................................................. 14 CHAPTER 1. LITERATURE REVIEW ................................................................................... 16 1.1 Introduction ....................................................................................................................... 16 1.2 Clean label movement ....................................................................................................... 17
    [Show full text]
  • Quantification of Soluble Starch from Fresh Potatoes Using Photopette
    Application Note SOLUBLE STARCH EDUCATIONAL EXPERIMENT QUANTIFICATION OF SOLUBLE STARCH FROM FRESH POTATOES USING PHOTOPETTE P.Y. Yap, A. Jain and D. Trau, Tip Biosystems Pte Ltd, Singapore • Educational experiment using Photopette® to measure soluble starch in potatoes and other plants. • Simple extraction method combined with iodine reagent allows easy starch quantification. • Bench centrifuge OBJECTIVE Reagents: This application note provides an educational experiment to quantify soluble starch in fresh potatoes using the • Iodine Reagent Photopette® hand held photometer at 600 nm wavelength. • Starch reference solution made from soluble starch powder (Sigma, S9765). INTRODUCTION Material: • Fresh Potato Starch is a carbohydrate based energy storage molecule found in plants. There are two types of starch - amylose METHOD (highly soluble in water) and amylopectin (slightly soluble in Before performing experiments please refer to the risk- water) [1]. Both types of starch are made from glucose assessment and refer to the Photopette® User Manual for monomers but with a different linkage. operating and safety precautions [2]. EXPERIMENTAL PROCEDURE Preparation Iodine Reagent: The preparation of the Iodine reagent is made following the CLEAPSS Recipe. The reagent is prepared by adding 3 g of KI to 2.54 g I2 and toping up with water to 100 mL. Subsequently, the stock solution is diluted Figure 1a: Amylose Figure 1b: Amylopectin 10 times and stored in the dark. The presence of starch can be measured by its reaction with iodine. Starch and iodine form a dark-blue complex with an Starch Reference Solution: A 0.1% starch reference solution absorbance maximum at 600 nm [1]. is made using soluble starch powder (Sigma, S9765).
    [Show full text]
  • ESV1) Protein and Its Homologue Like- Early Starvation 1 (LESV) During Starch Degradation
    Biochemical studies to determine the role of Early Starvation 1 (ESV1) protein and its homologue Like- Early Starvation 1 (LESV) during starch degradation Dissertation zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.) in der Wissenschaftsdisziplin Biochemistry eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät Institut für Biology/Biochemistry der Universität Potsdam von Shadha Abduljaleel AL-Rawi Potsdam. 2020 Main supervisor: Prof Dr. habil. Joerg Fettke Supervisors: Prof. Dr. Alisdair Fernie Reviewers: Prof. Dr. Christophe D’Hulst Prof. Dr. Oluwatoyin A. Odeku Published online on the Publication Server of the University of Potsdam: https://doi.org/10.25932/publishup- 48395 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4- 483956 Table of contents Table of contents Table of contents ................................................................................................................ 1 Abstract ............................................................................................................................... 5 Zusammenfassung ............................................................................................................. 7 Acknowledgement .............................................................................................................. 9 List of Figures .................................................................................................................. 11 List of Tables ...................................................................................................................
    [Show full text]
  • Starch Analysis of HLB-Affected and Control Healthy Citrus Leaves Reveal Variations in the Amylose/ Amylopectin Ratio
    Proc. Fla. State Hort. Soc. 124:69–75. 2011. Starch Analysis of HLB-affected and Control Healthy Citrus Leaves Reveal Variations in the Amylose/ Amylopectin Ratio Pedro Gonzalez, Jose reyes, and ed etxeberria* University of Florida, IFAS, Department of Plant Pathology, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850 AdditionAl index words. Citrus sp., plant disease, phloem disease, starch properties, starch accumulation Leaves of HLB (Huanglongbing or citrus greening)-affected branches contain considerably higher levels of starch than those of HLB-unaffected or “healthy trees.” Over-accumulation of starch takes place in photosynthetic cells, vascular parenchyma, ray parenchyma, and even sieve elements. These observations imply strong disturbances in starch me- tabolism and photoassimilate partitioning brought about by HLB. The elevated starch content, appearance of starch granules in phloem elements, and previous reports of the pathogen effect on starch properties lead us to hypothesize that starch from HLB-affected citrus differs morphologically, physically, and/or chemically from starch accumulated in otherwise healthy leaves. We investigated starch morphology using brightfield, polarized light and SEM and found no morphological differences between HLB-induced starch and that from healthy girdled trees. When reacted with 2% I2, whole starch fractions also showed no significant difference in the absorption spectra (λmax for HLB = 604.1 and girdled 606.2 nm, respectively; n = 6; P ≤ 0.05) nor in their amylose/amylopectin ratio (HLB = 1.4 ± 0.17 and girdled = 1.16 ± 0.07, P ≤ 0.05) after chromatographic separation. Nevertheless, λmax for individual fractions of HLB-affected leaves increased between 11 to 14 nm indicating a significant increase in the degree of polymerization of chain lengths estimated between 12 to 45 glucose units.
    [Show full text]
  • Building a Comparative Starch Reference Collection
    Archaeological science under a microscope: studies in residue and ancient DNA analysis in honour of Thomas H. Loy Lentfer: BUILDING A COMPARatIVE StaRCH REFERENCE COLLECTION FOR INDONESIA AND ITS APPLICatION TO PALAEOENVIRONMEntal AND ARCHAEOLOGICAL RESEARCH 7 BUILDING A COMPARATIVE STARCH REFERENCE COLLECTION FOR INDONESIA AND ITS APPLICATION TO PALAEOENVIRONMENTAL AND ARCHAEOLOGICAL RESEARCH Carol J. Lentfer School of Social Science University of Queensland St. Lucia, QLD 4072 Australia Email: [email protected] ABSTRACT Indonesia has a very long record of hominin occupation involving at least three human species. It also has a rich diversity of plants and a suite of economically important starch-rich staples that include taro (Colocasia esculenta), yams (Dioscorea spp.), bananas (Musa spp.) and sago palms. However very little is known about the prehistory of plant exploitation in the island archipelago. Key archaeological issues that are often discussed and debated, but remain poorly understood, include human adaptations and economic strategies used in different and changing environments, how local economies contributed to the development of plant management systems within the southeast Asian/Pacific regions, and how they might have been influenced by plant management systems initiated and developed elsewhere. Crucial to a burgeoning focus on archaeobotany in island Southeast Asia is the establishment of comparative modern reference collections for the flora of the region. This paper discusses the ‘Indonesian Starch Project’, the relevance of a comparative modern starch reference collection to Indonesian archaeology and the methods and procedures used in its development. The collection is broad-based and focuses on economically and ecologically importat plant groups. To date 121 families and 451genera are represented in the collection.
    [Show full text]
  • STARCH IDENTIFICATION (Microscopy)
    Corn Starch Analysis B-25-1 STARCH IDENTIFICATION (Microscopy) PRINCIPLE Starch granules are suspended in aqueous or nonaqueous media for polarized light microscopy, or are mounted dry on a stub for scanning electron microscopy. The botanical source of the starch is identified according to size and shape of granules, granule surface markings, position of hilum iodine stain color and the presence of maltese crosses under polarized light (Note 1). SCOPE The method is applicable to all starches, but is intended especially for the identification of separated, unmodified, native or commercial starches. SPECIAL APPARATUS 1. Light microscope with bright and polarized light capabilities, equipped with 4X, 10X, 20X, 40X objectives and 8 or 10X wide field eyepieces (Note 2) 2. Precision grade stage and eyepiece micrometers to calibrate microscope magnification (Note 3) 3. Scanning electron microscope with variable KV setting and associated accessories (Note 2) 4. Triode-type sputter coater equipped with gold-palladium target and carbon thread attachment REAGENTS 1. Iodine solution (0.5N): Dissolve 95 g of potassium iodide in 60 mL of purified water, add 32 g iodine crystals, stir until completely in solution, transfer to 500 mL volumetric flask with the aid of purified water, dilute to volume and mix. Analytical Methods of the Member Companies of the Corn Refiners Association, Inc. Accepted 6-20-91 Corn Starch Analysis B-25-2 STARCH IDENTIFICATION (Microscopy) ⎯ continued 2. Iodine solution (0.1 N) : Transfer 100 mL of 0.5 N iodine solution into a 500 mL volumetric flask, dilute to mark with purified water and mix. 3. Buffer solution, pH 5.0 4.
    [Show full text]
  • Starch Grain and Phytolith Evidence for Early Ninth Millennium B.P. Maize
    Starch grain and phytolith evidence for early ninth SEE COMMENTARY millennium B.P. maize from the Central Balsas River Valley, Mexico Dolores R. Pipernoa,b,1, Anthony J. Ranereb,c, Irene Holstb, Jose Iriarted, and Ruth Dickauc aArchaeobiology Program, Department of Anthropology, Smithsonian National Museum of Natural History, Washington, DC 20560 ; bSmithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Republic of Panama; cDepartment of Anthropology, Temple University, Philadelphia, PA 19122; and dDepartment of Archaeology, School of Geography, Archaeology, and Earth Resources, University of Exeter, Exeter EX4 4QJ, United Kingdom Edited by Jeremy A. Sabloff, University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia, PA, and approved January 23, 2009 (received for review December 9, 2008) Questions that still surround the origin and early dispersals of maize lower montane (low mountain) forest occurs at 1,200 m, when oaks (Zea mays L.) result in large part from the absence of information on and other cooler-loving elements become a part of the flora (5). its early history from the Balsas River Valley of tropical southwestern We focused our analyses on starch grains and phytoliths, which Mexico, where its wild ancestor is native. We report starch grain and are effective indicators of wild and domesticated maize and phytolith data from the Xihuatoxtla shelter, located in the Central squash remains in archaeological contexts (6–14). As is common Balsas Valley, that indicate that maize was present by 8,700 calen- in other tropical regions (6, 7, 10–13), the preservation of drical years ago (cal. B.P.). Phytolith data also indicate an early macrofossil plant remains was very poor, consisting of wood preceramic presence of a domesticated species of squash, possibly charcoal and a few unidentified seed fragments.
    [Show full text]
  • Leaf Photosynthesis and Carbon Metabolism Adapt to Crop Load in ‘Gala’ Apple Trees
    horticulturae Article Leaf Photosynthesis and Carbon Metabolism Adapt to Crop Load in ‘Gala’ Apple Trees Xiaohua Yang 1, Li-Song Chen 1,2 and Lailiang Cheng 1,* 1 Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA; [email protected] (X.Y.); [email protected] (L.-S.C.) 2 College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China * Correspondence: [email protected] Abstract: It is widely accepted that a tight coordination between carbon (C) utilization in the sink and C assimilation and metabolism in the source exists in higher plants. However, much of our current understanding is based on research from herbaceous plants, where the source and sink interaction is less sophisticated compared to woody perennials with a significant sink presence. Apple (Malus x domestica Borkh.) is a good representative of the latter category, and its production and transport of sorbitol, in addition to sucrose, adds complexity to C regulation. In this study, four- year-old “Gala”/”M.26” apple trees were subjected to crop load levels at 2.5, 7.5, and 15 fruits/cm2 trunk cross-sectional area. Low crop load trees exhibited reduced leaf C assimilation and extra accumulation of non-structural carbohydrates (NSC). This was primarily a result of reduced activity of Rubisco and increased activities of key enzymes that synthesize starch, sucrose, and sorbitol. Among the NSC, leaf starch was found to be most sensitive to crop load and could function as a leading indicator for source–sink balance in apple. However, even the high crop load trees still retained a significant amount of NSC in leaves at dawn, demonstrating that apple is fundamentally Citation: Yang, X.; Chen, L.-S.; different from herbaceous plants in the way it balances leaf carbon inventories at dawn with carbon Cheng, L.
    [Show full text]
  • Trials and Tribulations of Ancient Starch Research: An
    TRIALS AND TRIBULATIONS OF ANCIENT STARCH RESEARCH: AN INVESTIGATION OF CONTAMINATION AND EARTH OVENS AT FORT HOOD, TEXAS A Dissertation by ANDREW ROBERT LAURENCE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Alston V. Thoms Co-Chair of Committee, Vaughn M. Bryant Committee Members, David L. Carlson Andreas Holzenburg Head of Department, Cynthia Werner May 2013 Major Subject: Anthropology Copyright 2013 Andrew Robert Laurence ABSTRACT Historically, earth ovens have been used to provide direct evidence of ancient plant use through the recovery of charred macrobotanical remains and indirectly by means of experimental archaeology and the ethnographic record. Experiments suggest that direct evidence of ancient starch-rich plant use can be obtained through the recovery of starch granules deposited on fire-cracked-rock (FCR) during cooking episodes even in regions where macrobotanical remains are scarcely preserved. Starch contamination, however, can enter into the archaeological record providing “background noise.” Therefore, this study analyzes the results of the Paluxy Sand Geophyte Project to determine if archaeological starch (starch that is both cultural and ancient in origin) can be differentiated from contamination using FCR recovered from heating elements in well-preserved earth ovens at Fort Hood, Texas. FCR, non-cultural rock control samples (RCS), and air control samples (ACS) were processed and analyzed from 27 earth ovens at 6 sites. Contamination control measures were used, including the use of a clean bench, powder-free latex gloves, washing samples prior to processing, spot sampling, and comparisons between st arch granule assemblages recovered from FCR and control samples.
    [Show full text]
  • Temporal and Spatial Patterns of Growth and Photosynthesis in Leaves of Dicotyledonous Plants
    Temporal and Spatial Patterns of Growth and Photosynthesis in Leaves of Dicotyledonous Plants Under Long-Term CO2- and O3-Exposure Inaugural Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Diplom-Biologin Maja Mareike Christ aus Hannover 2005 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. Ulrich Schurr Korreferent: PD. Dr. Dirk Gansert Tag der mündlichen Prüfung: 22.06.2005 para Andrés Abstract The aim of this Ph.D. thesis was to investigate spatio-temporal effects of elevated [CO2] and [O3] on leaf growth and photosynthesis in dicotyledonous plants. High-resolution spatio-temporal patterns of leaf growth were mea- sured with a digital image sequence processing method (DISP). For further analysis with the DISP method, the accuracy and resolution was estimated. The results led to the conclusion that temporal courses of leaf RGR could be analyzed with a resolution of at least 1-h-means, while 24-h-means could be used for heterogeneity determination, that requires a high spatial resolution. Effects of elevated [CO2] were investigated on Populus deltoides trees at Biosphere 2 Center, AZ, USA. Af- ter four years in elevated [CO2] (800 and 1200 ppm), Populus deltoides did not show acclimation. In 1200 ppm, net CO2 exchange rate was stimulated by a factor of 2–3 in growing leaves, accompanied by reduced stomatal conductance and transpiration rate, resulting in increased water use efficiency (WUE) by a factor of 2. Dark respiration was increased by a factor of ca. 1.5 in growing leaves.
    [Show full text]