Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download Firenze University Press Caryologia www.fupress.com/caryologia International Journal of Cytology, Cytosystematics and Cytogenetics Chromosome counts and karyotype analysis of species of family Apocynaceae from Egypt Citation: S. Heneidak, E. Martin, F. Altinordu, A. Badr, H.E. Eroğlu (2019) Chromosome counts and karyotype analysis of species of family Apocyn- Samia Heneidak1,*, Esra Martin2, Fahim Altinordu2, Abdelfattah aceae from Egypt. Caryologia 72(4): Badr3, Halil Erhan Eroğlu4 69-78. doi: 10.13128/cayologia-192 1 Department of Botany, Faculty of Science, Suez University, Suez, Egypt Published: December 23, 2019 2 Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey Copyright: © 2019 S. Heneidak, E. 3 Martin, F. Altinordu, A. Badr, H.E. Department of Botany and Microbiology, Faculty of Science, Helwan University, Egypt 4 Eroğlu. This is an open access, peer- Department of Biology, Faculty of Science and Art, Bozok University, Yozgat, Turkey reviewed article published by Firenze *Correspondence: [email protected] University Press (http://www.fupress. com/caryologia) and distributed under the terms of the Creative Commons Abstract. The chromosome counts of 13 species of family Apocynaceae in the flora of Attribution License, which permits Egypt have been reported; one species from subfamily Periplocoideae and the other unrestricted use, distribution, and 12 species from subfamily Asclepiadoideae. The chromosome numbers are 2n = 22 for reproduction in any medium, provided Periploca angustifolia, Glossonema boveanum, Pentatropis nivalis, Cynanchum acutum, the original author and source are Calotropis procera, Gomphocarpus sinaicus, Pergularia daemia and Pergularia tomen- credited. tosa; 2n = 24 for Leptadenia arborea and Solenostemma arghel; 2n = 22, 44 for Caudan- Data Availability Statement: All rel- thera edulis, Caudanthera sinaica and Desmidorchis acutangulus. The chromosome evant data are within the paper and its numbers and karyotype analyses were firstly reported in Leptadenia arborea (2n = 24). Supporting Information files. The polyploid nature was demonstrated by the prevalence of cells with 2n = 4x = 44 chromosomes in Caudanthera edulis, Caudanthera sinaica and Desmidorchis acutangu- Competing Interests: The Author(s) lus. The chromosomes are median and submedian as most species in the Apocynaceae. declare(s) no conflict of interest. The intrachromosomal asymmetry and interchromosomal asymmetry were estimated with MCA and CVCL values. In intrachromosomal asymmetry, Desmidorchis acutangulus is the most symmetrical karyotype, while Pergularia tomentosa is the most asymmet- rical karyotype. In interchromosomal asymmetry, Glossonema boveanum is the most symmetrical karyotype, while Cynanchum acutum is the most asymmetrical karyotype. Keywords. Apocynaceae, chromosome number, Egyptian flora, karyotype asymmetry. INTRODUCTION The family Apocynaceae comprises 366 genera and ca. 5100 species (Meve, 2002; Endress et al., 2014). This family is currently divided into five subfamilies; Periplocoideae, Asclepiadoideae, Apocynoideae, Rauvolfioideae, Secamonoideae (Endress and Bruyns, 2000; Endress et al., 2014). The major- ity of species represented in the Egyptian flora are classified in the two sub- families Periplocoideae and Asclepiadoideae. The subfamily Periplocoideae is a small group of species comprising only ca. 195 species in 33 genera (Henei- dak and Naidoo, 2015). On the other hand, Asclepiadoideae is the largest Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics 72(4): 69-78, 2019 ISSN 0008-7114 (print) | ISSN 2165-5391 (online) | DOI: 10.13128/cayologia-192 70 Samia Heneidak et al. subfamily of the Apocynaceae and contains about 3000 in Cynanchum acutum L. and Pergularia tomentosa L. species in 164 genera of five tribes. The tribes are divided (Fedorov, 1969). The deviating chromosome numbers, into 15 subtribes (Meve, 2002; Endress et al., 2014). i.e. 2n = 24 and x = 9 that were found previously and in Chromosome data have been constantly used for the present work were reported a deviating base chro- systematic purposes but chromosome number alone is mosome numbers in the genera Cynanchum, Microloma, not sufficient to exactly trace the evolutionary history and Sarcostemma (Albers et al. 1993). These authors gave of taxonomic groups. However, comparative karyotype an account of previously published deviating chromo- analysis of related species has traditionally been used to some numbers in the Asclepiadaceae. describe patterns and directions of chromosomal evolu- In subfamily Asclepiadoideae, the polyploidy rate tion within plant groups and to infer the evolutionary is approximately 6%. The polyploid species are mostly role of chromosomal changes in plant evolution (Steb- tetraploid (85%) with 2n = 44 and only a few are hexa- bins, 1971; Badr et al, 1997; 2009; Eroğlu et al., 2013; ploid with 2n = 66 (Albers and Meve, 2001). Albers Kamel et al. 2014). More detailed information about the (1983) reported the polyploid taxa in most of the genera karyotype has been found necessary in order to provide of tribe Ceropegieae. Albers and Meve (1991) observed diagnostics criteria for the systematics and phylogeny of that the proportion of polyploid cells in the meristems of plants (Altay et al., 2017). In fact, karyological features adventives roots is significantly higher than in the mer- are evaluated as important taxonomic characters only istems of primary and secondary roots in genera Duvalia when provide additional information and allow conclu- Haw., Hoodia Sweet ex Decne., Orbea Haw., Pectinaria sions about evolutionary events in the group of interest Haw., Stapelia, Trichocaulon N.E.Br. and Tridentea Haw. (Badr and Elkington, 1977; Peruzzi and Eroğlu, 2013). High ploidy levels were recorded in Tylophora anomala Survey of chromosome counts in the Apocynaceae N. E. Br.; for example the decatetraploid (2n = 132-154) in chromosome count reports, particularly the Index and the hexaploid (2n = 66) (Meve, 1999). to Plant Chromosome Numbers of the Missouri Botani- In Apocynaceae, the counting and measuring of cal Garden (http://www.tropicos.org/Project/IPCN) and small size of the chromosomes is difficult. The chromo- the Chromosome Counts Database (CCDB) (http://ccdb. somes form a graded series with only very slight dif- tau.ac.il) which is a community resource of plant chro- ferences in morphology (Albers, 1983). Within a single mosome numbers (New Phytol. 206(1): 19-26) as well karyotype the chromosomes are comparatively similar as the old counts reported in Federov (1969) as well as in size. The heterogeneous karyotypes were only found the chromosome count reports that was frequenty pub- where chromosome sizes varied considerably in the sub- lished in the Journal Taxon indicated thatseveral authors families Periplocoideae, Asclepiadoideae and Secamo- have reported chromosome numbers of many species of noide (Albers and Meve, 2001). the Apocynaceae. Several authors have reported chro- In the present study, 13 species of the family Apo- mosome numbers of many species of the Apocynaceae cynaceae were investigated karyologically to determine (Francini, 1927; Mitra and Datta, 1967; Fedorov, 1969; the chromosome numbers and to compare with earlier Arrigoni and Mori, 1976; Albers and Delfs, 1983; Albers results. In addition, the karyotype of the examined spe- and Austmann, 1987; Khatoon and Ali 1993; Liede 1996; cies growing in Egypt has been analysed using a number Albers et al., 1993; Albers and Meve, 2001; Kamel et al., of chromosome characterizing parameters such as varai- 2014). These studies showed that the family is karyologi- tions in length, arm ration and centromeric asymmetry cally almost entirely homogenous, especially subfamilies indices in order to gather more information that might Asclepiadoideae and Periplocoideae, with nearly 96% of help a better understanding of the taxonomic treatment the taxa investigated so far having chromosome comple- of the species of Apocynaceae in the Egyptian flora. ments in multiples of a basic number of x = 11, with a few deviating numbers. Deviating chromosome numbers were reported with MATERIALS AND METHODS 2n = 18, 24 in Funastrum clausum (Jacq.) Schulr. and Funastrum cynanchoides (Decne.) Schulr. (tribe Ascle- Plant materials piadeae) (Albers et al., 1993), 2n = 20 in Microloma inca- num Decne. Microloma calycinum E. Mey., Microloma Seeds of 13 species of Apocynaceae were collected sagittatum (L.) R. Br. and Microloma tenuifolium (L.) from mature flowers from sites in their natural habitats K. Schum. (tribe Asclepiadeae) (Albers et al., 1993) and as given in Table 1 and mapped as in Figure 1. Vouch- 2n = 24 in Periploca graeca L. (subfamily Periplocoide- er specimens of the examined species are kept at Suez ae) (Pesci, 1971). In literature, x = 9 was only reported University Herbarium. In the two succulent species (Caudanthera edulis and Desmidorchis acutangulus), Chromosome counts and karyotype analysis of species of family Apocynaceae from Egypt 71 Table 1. List of species examined and the localities from which plants used for chromosome counts were collected and date of collection. Taxa Date Locality 1. Periploca angustifolia Labillardiere 12.06.2009 El-Salûm: Wadi Salufa, 31º37’24’’N–25º09’00’’ E, Morsy et al. s.n. Gebel Elba: Wadi Yahameib, 22º25’18’’N–36º18’33’’E, Morsy et 2. Caudanthera edulis (Edgew) Meve & Liede 27.01.2009 al. s.n. 3. Caudanthera sinaica (Decne.) Plowes 10.05.2009 North Sinai:
Recommended publications
  • Field Release of the Leaf-Feeding Moth, Hypena Opulenta (Christoph)
    United States Department of Field release of the leaf-feeding Agriculture moth, Hypena opulenta Marketing and Regulatory (Christoph) (Lepidoptera: Programs Noctuidae), for classical Animal and Plant Health Inspection biological control of swallow- Service worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Field release of the leaf-feeding moth, Hypena opulenta (Christoph) (Lepidoptera: Noctuidae), for classical biological control of swallow-worts, Vincetoxicum nigrum (L.) Moench and V. rossicum (Kleopow) Barbarich (Gentianales: Apocynaceae), in the contiguous United States. Final Environmental Assessment, August 2017 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Evolução Cromossômica Em Plantas De Inselbergues Com Ênfase Na Família Apocynaceae Juss. Angeline Maria Da Silva Santos
    UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos AREIA - PB AGOSTO 2017 UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CAMPUS II – AREIA-PB Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. Angeline Maria Da Silva Santos Orientador: Prof. Dr. Leonardo Pessoa Felix Tese apresentada ao Programa de Pós-Graduação em Agronomia, Universidade Federal da Paraíba, Centro de Ciências Agrárias, Campus II Areia-PB, como parte integrante dos requisitos para obtenção do título de Doutor em Agronomia. AREIA - PB AGOSTO 2017 Catalogação na publicação Seção de Catalogação e Classificação S237e Santos, Angeline Maria da Silva. Evolução cromossômica em plantas de inselbergues com ênfase na família Apocynaceae Juss. / Angeline Maria da Silva Santos. - Areia, 2017. 137 f. : il. Orientação: Leonardo Pessoa Felix. Tese (Doutorado) - UFPB/CCA. 1. Afloramentos. 2. Angiospermas. 3. Citogenética. 4. CMA/DAPI. 5. Ploidia. I. Felix, Leonardo Pessoa. II. Título. UFPB/CCA-AREIA A Deus, pela presença em todos os momentos da minha vida, guiando-me a cada passo dado. À minha família Dedico esta conquista aos meus pais Maria Geovânia da Silva Santos e Antonio Belarmino dos Santos (In Memoriam), irmãos Aline Santos e Risomar Nascimento, tios Josimar e Evania Oliveira, primos Mayara Oliveira e Francisco Favaro, namorado José Lourivaldo pelo amor a mim concedido e por me proporcionarem paz na alma e felicidade na vida. Em especial à minha mãe e irmãos por terem me ensinado a descobrir o valor da disciplina, da persistência e da responsabilidade, indispensáveis para a construção e conquista do meu projeto de vida.
    [Show full text]
  • TAXON:Boswellia Sacra Flueck. SCORE:-3.0 RATING
    TAXON: Boswellia sacra Flueck. SCORE: -3.0 RATING: Low Risk Taxon: Boswellia sacra Flueck. Family: Burseraceae Common Name(s): frankincense Synonym(s): Boswellia carteri Birdw. Assessor: Chuck Chimera Status: Assessor Approved End Date: 14 Jan 2021 WRA Score: -3.0 Designation: L Rating: Low Risk Keywords: Tree, Unarmed, Palatable, Self-Fertile, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 ? outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 n Tolerates a wide range of soil conditions (or limestone 410 y=1, n=0 n conditions if not a volcanic island) Creation Date: 14 Jan 2021 (Boswellia sacra Flueck.) Page 1 of 16 TAXON: Boswellia sacra Flueck.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • Apocynaceae of Namibia
    S T R E L I T Z I A 34 The Apocynaceae of Namibia P.V. Bruyns Bolus Herbarium Department of Biological Sciences University of Cape Town Rondebosch 7701 Pretoria 2014 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens, which the South African National Biodiversity Institute (SANBI) inherited from its predecessor organisa- tions. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arbores- cent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of SANBI is partly based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It symbolises the commitment of SANBI to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s excep- tionally rich biodiversity for all people. EDITOR: Alicia Grobler PROOFREADER: Yolande Steenkamp COVER DESIGN & LAYOUT: Elizma Fouché FRONT COVER PHOTOGRAPH: Peter Bruyns BACK COVER PHOTOGRAPHS: Colleen Mannheimer (top) Peter Bruyns (bottom) Citing this publication BRUYNS, P.V. 2014. The Apocynaceae of Namibia. Strelitzia 34. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-98-3 Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa Tel.: +27 12 843 5000 E-mail: [email protected] Website: www.sanbi.org Printed by: Seriti Printing, Tel.: +27 12 333 9757, Website: www.seritiprinting.co.za Address: Unit 6, 49 Eland Street, Koedoespoort, Pretoria, 0001 South Africa Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved.
    [Show full text]
  • European Academic Research
    EUROPEAN ACADEMIC RESEARCH Vol. IV, Issue 10/ January 2017 Impact Factor: 3.4546 (UIF) ISSN 2286-4822 DRJI Value: 5.9 (B+) www.euacademic.org Evidences from morphological investigations supporting APGIII and APGIV Classification of the family Apocynaceae Juss., nom. cons IKRAM MADANI Department of Botany, Faculty of Science University of Khartoum, Sudan LAYALY IBRAHIM ALI Faculty of Science, University Shandi EL BUSHRA EL SHEIKH EL NUR Department of Botany, Faculty of Science University of Khartoum, Sudan Abstract: Apocynaceae have traditionally been divided into into two subfamilies, the Plumerioideae and the Apocynoideae. Recently, based on molecular data, classification of Apocynaceae has undergone considerable revisions. According to the Angiosperm Phylogeny Group III (APGIII, 2009), and the update of the Angiosperm Phylogeny Group APG (APGIV, 2016) the family Asclepiadaceae is now included in the Apocynaceae. The family, as currently recognized, includes some 1500 species divided in about 424 genera and five subfamilies: Apocynoideae, Rauvolfioideae, Asclepiadoideae, Periplocoideae, and Secamonoideae. In this research selected species from the previous families Asclepiadaceae and Apocynaceae were morphologically investigated in an attempt to distinguish morphological important characters supporting their new molecular classification. 40 morphological characters were treated as variables and analyzed for cluster of average linkage between groups using the statistical package SPSS 16.0. Resulting dendrograms confirm the relationships between species from the previous families on the basis of their flowers, fruits, 8259 Ikram Madani, Layaly Ibrahim Ali, El Bushra El Sheikh El Nur- Evidences from morphological investigations supporting APGIII and APGIV. Classification of the family Apocynaceae Juss., nom. cons and seeds morphology. Close relationships were reported between species from the same subfamilies.
    [Show full text]
  • Chemical Constituents from Solenostemma Argel and Their Cholinesterase Inhibitory Activity
    Natural Product Sciences 25(2) : 115-121 (2019) https://doi.org/10.20307/nps.2019.25.2.115 Chemical Constituents from Solenostemma argel and their Cholinesterase Inhibitory Activity Rym Gouta Demmak1,2,*, Simon Bordage2, Abederrahmane Bensegueni1, Naima Boutaghane3, Thierry Hennebelle2, El Hassen Mokrani1, and Sevser Sahpaz2 1Laboratoire de Biochimie Appliquée, Département des Sciences de la Nature et de la Vie, Université Frères Mentouri-Constantine 1; 25000 Constantine, Algeria 2Laboratoire de Pharmacognosie, Univ. Lille, EA 7394 – ICV – Institut Charles Viollette; F-59000 Lille, France 3Laboratoire d’Obtention des Substances Thérapeutiques (LOST), Campus Chaabet-Ersas, Département de chimie, Université des Frères Mentouri-Constantine; 25000 Constantine, Algeria Abstract − Alzheimer’s disease is a chronic neurodegenerative disorder with no curative treatment. The commercially available drugs, which target acetylcholinesterase, are not satisfactory. The aim of this study was to investigate the cholinesterase inhibitory activity of Solenostemma argel aerial part. Eight compounds were isolated and identified by NMR: kaempferol-3-O-glucopyranoside (1), kaempferol (2), kaempferol-3-glu- copyranosyl(1→6)rhamnopyranose (3) p-hydroxybenzoic acid (4), dehydrovomifoliol (5), 14,15-dihydroxy- pregn-4-ene-3,20-dione (6), 14,15-dihydroxy-pregn-4-ene-3,20-dione-15β-D-glucopyranoside (7) and solargin I (8). Two of them (compounds 2 and 3) could inhibit over 50 % of butyrylcholinesterase activity at 100 µM. Compound (2) displayed the highest inhibitory effect against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with a slight selectivity towards the latter. Molecular docking studies supported the in vitro results and revealed that (2) had made several hydrogen and π-π stacking interactions which could explain the compound potency to inhibit AChE and BChE.
    [Show full text]
  • Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
    NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica.
    [Show full text]
  • Thesis for the Degree MM. 3. ' WARREN DOUG STEVENS
    -.“,' .- -~.L‘v LOGANIACEAE. AND BUDD it! DISTRtCT, MYSORE STATE, INDIA . Thesis for the Degree MM. 3. MICHIGAN STATE UNIVERSITY ' WARREN DOUG STEVENS ‘ 197-1 ‘ 1 ' o ,. ' . a a I ‘ . ' . n a I _ - u . I . .t . I . - . ,, v ., .. - . ' _ ’ a > 1 . _ ' on '- ' t . o . .. v, , . , . A . ‘,'_. '0' . .t. , a . - , n ." .. ' . , - . ,~, . .. ., . , . .“ . r f . - ..- u 'l 'O' ' c I . A '0 ‘on ' - o A. .,. " ' ‘ - ow l I l’ I o, ,, . ...-:. ..-’ .- . ,, A . o .-'A .. ‘. o.. ' '-'.ui -n "' »/-- ...: -- 2-: .- o O ’I' . ‘ "l"'.n , o . I , p«,., O ‘5 '0. " " . l .. .. o ll 0 I‘ § .- . .. , , . o .‘ . , ... I. - - 0 n "u"- at -.4 Q o o. a "' -- -. 1.. n -~: ---t~ . ‘ c o -:. ' ,. - ..|.', ., .> -.' on - . .r . , . ._a . ..-.,-. - o . v~ a. u ’ ' ' ' r‘,: -- . ‘-' ' -‘ - . - . .-<t - - ., .. .o I -'~'.»- 9. a v. , o v . ... , .. ._. a . _, ._. ‘4 ".- I u .¢ ""r’n'¢ I. v -.m:m-.r.n-wm . ‘V ’ o l '0 -u .,.. ..._,, v , . , V ,. .. 0 3 gr. I - (lav- C : . 9 .0 .II 0.: o .t . ... o l ! i. U) 1.1!. 0 ~ ‘ IV! .A 1 . o .l o - .. n 4 .- ».o 1 0"?- ‘."lfl'v. ' n -' 1', . ... I n o A . .5 0 f O - . 1.. ., u ’_ .' I:.':o lllmu 0!. -, -I: -.. ... 9 ~ « :l 'a ' 1! LIE R A R Y Michigan Stats University ABSTRACT THE ASCLEPIADACEAE, APOCYNACEAE, LOGANIACEAE, AND BUDDLEIACEAE IN HASSAN DISTRICT, MYSORE STATE, INDIA By Warren Douglas Stevens A floristic treatment for the Asclepiadaceae, Apocynaceae. Loganiaceae. and Buddleiaceae in Hassan District. Mysore State. India is presented. The treatment includes keys, brief nomen- clatural citations and synonymys, descriptions. distributions. and specimen citations.
    [Show full text]
  • Issn 0140-786X
    • ISSN 0140-786X THE JOURNAL OF THE INTERNATIONAL ASCLEPIAD SOCIETY FOUNDER-A.WOODWARD ontents May 1992 I Editorial 3 Society Matters 3 A Huernia insigniflora that isn't 6 Martin Land Ceropegia Meyeri 7 Peter Pons Ceropegia Ampliata - A look inside 8 Phil Clark Letters to the Editor 1 O Asclepiads in the Literature 13 compiled by Colin Walker A Note on the Carallumas of Jordan 17 Colin Walker Sultry and Seductive Stranger 20 Tim Longville A Word about Names 20 Phil Clark N.E.Brown's reminiscences on Stapelleae Geoff Hedgecock 21 Catalogues Received 23 Growth Forms of Ceropegia 24 Phil Clark Cover illustration: A - F Marsdenia praestans Schltr., G - N M. glabra Schltr., O - T M. kempteriana Schltr. from R. Shlechter, Die Asclepiadeceen von Deutch-Neu-Guinea (Botanish Jahrbucher 50 p. 148. 1914) Published by the International Asclepiad Society three times per subscription year. ~ The International Asclepiad Society and the Authors of Individual articles. 1992. All enquiries to be addressed to the Editor. Subscription - £10.00 per annum - year commences 1st May II INTERNATIONAL Asclepiad SOCIETY II OFFICIAL 1991/2 CHAIRMAN Philip E. Downs, 77 Chartwell Avenue, Wingerworth, Chesterfield, S42 6SR. SECRETARY L.B.Delderfield, 2 Keymer Court, Burgess Hill, West Sussex, RH15 0AA. TREASURER G.A.Hedgecock, 1 Aster Road, Haydock, St Helens, Merseyside, WA11 0NX. EDITOR P.S.Clark, Ty Cano!, Plas Teg, Llandegla, Wrecsam, Clwyd, LL11 3AO. SEED BANK SECRETARY R.P.Knowles, 26 Arbury Avenue, Blackbrook, St Helens, Merseyside, WA11 9HW. PLANT EXCHANGE P.W.Noble, 21 Caernarvon Drive, Barnburgh, Doncaster, South Yorkshire, DN5 7HF (Tel: 0709 895895) PLANT BANK SECRETARY P.Bent.
    [Show full text]
  • C-4 Gem-Dimethylated Oleanes of Gymnema Sylvestre and Their Pharmacological Activities
    Molecules 2013, 18, 14892-14919; doi:10.3390/molecules181214892 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review C-4 Gem-Dimethylated Oleanes of Gymnema sylvestre and Their Pharmacological Activities Giovanni Di Fabio 1, Valeria Romanucci 1, Mauro Zarrelli 2, Michele Giordano 2 and Armando Zarrelli 1,* 1 Department of Chemical Sciences, University Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli 80126, Italy; E-Mails: [email protected] (G.D.F.); [email protected] (V.R.) 2 IMCB-Institute of Composite and Biomedical Materials CNR–National Research Council P E Fermi, (Granatello) Portici, Napoli 80055, Italy; E-Mails: [email protected] (M.Z.); [email protected] (M.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-081-674-472; Fax: +39-081-674-393. Received: 27 September 2013; in revised form: 21 November 2013 / Accepted: 22 November 2013 / Published: 4 December 2013 Abstract: Gymnema sylvestre R. Br., one of the most important medicinal plants of the Asclepiadaceae family, is a herb distributed throughout the World, predominantly in tropical countries. The plant, widely used for the treatment of diabetes and as a diuretic in Indian proprietary medicines, possesses beneficial digestive, anti-inflammatory, hypoglycemic and anti-helmentic effects. Furthermore, it is believed to be useful in the treatment of dyspepsia, constipation, jaundice, hemorrhoids, cardiopathy, asthma, bronchitis and leucoderma. A literature survey revealed that some other notable pharmacological activities of the plant such as anti-obesity, hypolipidemic, antimicrobial, free radical scavenging and anti-inflammatory properties have been proven too.
    [Show full text]