Diurnal Pollination, Primarily by a Single Species of Rodent, Documented in Protea Foliosa Using Modified Camera Traps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Morphology of the Mouthparts of the Megadiverse South African Monkey Beetles (Scarabaeidae: Hopliini): Feeding Adaptations and Guild Structure
Comparative morphology of the mouthparts of the megadiverse South African monkey beetles (Scarabaeidae: Hopliini): feeding adaptations and guild structure Florian Karolyi1, Teresa Hansal1, Harald W. Krenn1 and Jonathan F. Colville2,3 1 Department of Integrative Zoology, University of Vienna, Vienna, Austria 2 Kirstenbosh Research Center, South African National Biodiversity Institute, Cape Town, South Africa 3 Statistic in Ecology, Environment and Conservation, Department of Statistical Science, University of Cape Town, Rondebosh, Cape Town, South Africa ABSTRACT Although anthophilous Coleoptera are regarded to be unspecialised flower-visiting insects, monkey beetles (Scarabaeidae: Hopliini) represent one of the most important groups of pollinating insects in South Africa’s floristic hotspot of the Greater Cape Region. South African monkey beetles are known to feed on floral tissue; however, some species seem to specialise on pollen and/or nectar. The present study examined the mouthpart morphology and gut content of various hopliine species to draw conclusions on their feeding preferences. According to the specialisations of their mouthparts, the investigated species were classified into different feeding groups. Adaptations to pollen-feeding included a well-developed, toothed molar and a lobe-like, setose lacinia mobilis on the mandible as well as curled hairs or sclerotized teeth on the galea of the maxillae. Furthermore, elongated mouthparts were interpreted as adaptations for nectar feeding. Floral- and folial- Submitted 30 September 2015 tissue feeding species showed sclerotized teeth on the maxilla, but the lacinia was 23 December 2015 Accepted mostly found to be reduced to a sclerotized ledge. While species could clearly be Published 21 January 2016 identified as floral or folial tissue feeding, several species showed intermediate traits Corresponding author Florian Karolyi, suggesting both pollen and nectar feeding adaptations. -
Appendix H.4 –
Curriculum Vitae CHRISTELLE DU PLESSIS 38 Hely Road, Fernglen, Port Elizabeth Mobile: +27 74 148 5583, Email: [email protected] Identity number 8306140057087 Nationality South African Languages Afrikaans (Mother tongue); English (Fluent) Driver’s licence Code B KEY COMPETENCIES I am an environmental consultant with seven years’ experience in the environmental consulting field. My experience includes the management of water use, waste management and environmental applications, strategic environmental management, the development of construction and operational environmental management plans, compliance auditing and monitoring, and project management. I have worked in and managed multidisciplinary teams, and have strong report writing and interpersonal skills. EDUCATION AND PROFESSIONAL STATUS MSc Ecology (cum laude ), Nelson Mandela Metropolitan University, South Africa, 2009 BSc (Hons) Zoology, Nelson Mandela Metropolitan University, South Africa, 2005 BSc Zoology ( cum laude ), Nelson Mandela Metropolitan University, South Africa, 2004 Certificate: Environmental Impact Assessment, Rhodes University, South Africa, 2009 Registered as Professional Natural Scientist with SACNASP (Registration No 400105/17) EMPLOYMENT AND EXPERIENCE RECORD June 2017 – current HABITAT LINK CONSULTING Managing Director / Environmental Consultant • Environmental impact assessments • Strategic environmental management • Compliance monitoring and auditing (against national and international lender standards) • Environmental advisory services • Project -
Response of Plant-Pollinator Interactions to Landscape Transformations in the Greater Cape Floristic Region (GCFR) Biodiversity Hotspot
Response of plant-pollinator interactions to landscape transformations in the Greater Cape Floristic Region (GCFR) biodiversity hotspot by Opeyemi Adebayo Adedoja Dissertation presented for the degree of Doctor of Philosophy (Faculty of AgriSciences) at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF. Supervisor: Prof MJ Samways Co-supervisor: Dr TO Kehinde December 2019 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated) that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2019 Copyright © 2019 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Abstract Landscape transformation is one of the leading causes of global biodiversity decline. This decline is seen in terms of loss of species of ecological importance, and the collapse of important ecological interactions in terrestrial ecosystems. Ecological interactions are highly sensitive to environmental changes, as they are more vulnerable to disruptions than the species involved. Understanding the stability of these interactions in the face of growing environmental changes is key to identifying suitable conservation strategies for ameliorating species loss in transformed landscapes. -