Acoustic Profiling of the Landscape
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zoologische Mededeelingen
ZOOLOGISCHE MEDEDEELINGEN UITGEGEVEN VANWEGE 's RIJKS MUSEUM VAN NATUURLIJKE HISTORIE te Deel V. Aflevering 4. LEIDEN XIV. - ZUR DEUTUNG DER DE HAAN'SCHEN LAUBHEU- SCHRECKEN. VON DR. H. KARNY- Im Begriffe, nach Niederlandisch-Ostindien auszureisen, benutzte ich einen mebrwocbentlichen Aufenthalt in Holland zum Studium der De Haan'schen Orthopterentypen, die im Leidener Museum aufbewahrt sind. Es schien mir dies umso wichtiger, als so manche der yon De Haan aufgestellten Arten den neueren Monograpben nicbt vorlagen und ihre Deutung daher in der modernen Literatur vielfach zweifelhaft und strittig geblieben ist. Besonderen Dank scbulde ich hier den Herren Director Dr. van Oort und Konservator van Eecke, die mir in der liebenswur- digsten und entgegenkommendsten Weise das wertvolle Material zur Un- tersuchung uberliessen. Behindert wurde meine Arbeit einigermaassen durch den Umstand, dass ich meine eigene orthopterologische Bibliotbuk hier nicht zur Ver- fugung hatte, die Bibliothek des Leidener Museums aber nur wenige orthopterologische Arbeiten besitzt. In dieser Situation half mir aber Herr Professor Dr. W. Roepke von der Landbouw-Hoogeschool in Wa- geningen aus, indem er mir die in seinem Besitz befindlichen Mono- graphien von Brunner und Redtenbacher fur die Dauer meiner Unter- suchungen zur Verfugung stellte. Auch ihm sei an dieser Stelle fiir seine bereitwillige Aushilfe der warmste Dank ausgesprochen. STEKOPELMATINAE. Locusta (Rhaphidophorus) cubaensis. De Haan, 1842, Bijdragen, p. 218. Diese Spezies wurde von Brunner meiner Ansicht nach wohl richtig gedeutet (Monogr., p. 282), aber ich muss zu seiner Beschreibung doch einiges hinzufiigen. (lO-Xi-1920) 140 ZOOLOGISCHE MEDEDEELINGEN — DEEL V. In der De Haan'schen Sammlung liegt ein einziges Exemplar (cT) vor, mit dem man nach den Brunner'schen Tabellen (p. -
Articulata 2012 27 (1/2): 1728 Zoogeographie
© Deutsche Gesellschaft für Orthopterologie e.V.; download http://www.dgfo-articulata.de/; www.zobodat.at ARTICULATA 2012 27 (1/2): 1728 ZOOGEOGRAPHIE Small scale ecological zoogeographic methods in explanation of the distribution patterns of grasshoppers Kenyeres, Z., & Rácz, I.A. Abstract We examined in this study, in a Central-European low mountain range, whether methods of ecological zoogeography can explain better the distribution patterns of grasshopper species and species-groups, than the methods of the historical zoogeography. Our results showed that zoogeographically defined microregions could be specified more precisely by the distribution of species groups of differ- ent eco-types than the distribution of species groups of the different faunal-types. We found that the macroclimate elements and landscape features determine the regional distribution patterns of the orthopteran species and species-groups with similar thermal and humidity requirements. Our case study revealed the impor- tant role of the ecological zoogeography in zoogeographical analyses of Orthop- tera fauna at small geographical scale. Zusammenfassung Wir haben untersucht, ob man mit ökologisch-tiergeographischen Methoden die Verteilungsmuster von Heuschrecken in einem mitteleuropäischen Mittelgebirge analysieren kann. Unsere Ergebnisse zeigen, dass die Unterschiede auf dem Niveau der Mikroregion bei den Heuschrecken nicht in den Fauna-Typen, son- dern in der Verteilung von Tierarten bzw. Tiergruppen mit unterschiedlichen öko- logischen Ansprüchen zu finden sind. Wir können somit die Elemente des Makro- klimas und die Merkmale der Landschaft identifizieren, die das lokale Vertei- lungsmuster von Artengruppen mit ähnlichen ökologischen Ansprüchen, bezie- hungsweise von bestimmten Tierarten bestimmen. Introduction Questions and methodology in the biogeographical searching have been domi- nated by the conceptions of the historical biogeography for a long time. -
Orthoptera): a Comparative Analysis Using
Morphological determinants of carrier frequency signal in katydids 1 1 Morphological determinants of carrier frequency signal 2 in katydids (Orthoptera): a comparative analysis using 3 biophysical evidence 4 5 Fernando Montealegre-Z1*, Jessica Ogden1, Thorin Jonsson1, & Carl D. Soulsbury1 6 7 1University of Lincoln, School of Life Sciences, Joseph Banks Laboratories 8 Green Lane, Lincoln, LN6 7DL, United Kingdom 9 10 * Corresponding author: [email protected] 11 12 13 14 15 Page 1 of 29 Morphological determinants of carrier frequency signal in katydids 2 16 Abstract 17 Male katydids produce mating calls by stridulation using specialized structures on the 18 forewings. The right wing (RW) bears a scraper connected to a drum-like cell known as the 19 mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral 20 side, the stridulatory file. Sound is generated with the scraper sweeping across the file, 21 producing vibrations that are amplified by the mirror. Using this sound generator, katydids 22 exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with 23 species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has 24 been shown to scale negatively with CF, but such observations derive from studies based on 25 few species, without phylogenetic control, and/or using only the RW mirror length. We 26 carried out a phylogenetic comparative analysis involving 94 species of katydids to study the 27 relationship between LW and RW components of the sound generator and the CF of the 28 male’s mating call, while taking into account body size and phylogenetic relationships. -
A Review of the Japanese Kateretidae Fauna (Coleoptera: Cucujoidea)
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 9.xii.2011 Volume 51(2), pp. 551–585 ISSN 0374-1036 A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea) Sadatomo HISAMATSU Entomological Laboratory, Faculty of Agriculture, Ehime University, Tarumi 3–5–7, Matsuyama, 790–8566 Japan; e–mail: [email protected] Abstract. The family Kateretidae of Japan is revised. Nine species belonging to 6 genera are recognized, including: Kateretes japonicus Hisamatsu, 1985, K. takagii S-T. Hisamatsu, 2006, Platamartus jakowlewi Reitter, 1892, Heterhelus (Heterhelus) scutellaris (Heer, 1841), H. (Heterhelus) morio (Reitter, 1878), H. (Boreades) solani (Heer, 1841), Sibirhelus corpulentus (Reitter, 1900), Brachyp- terus urticae (Fabricius, 1792), and Brachypterolus pulicarius (Linnaeus, 1758). Heterhelus morio, which was synonymized under H. scutellaris by KIREJTSHUK (1989), is found to be a valid species, and is herein resurrected. Platamartus jakowlewi is newly recorded from Japan. Brachypterolus shimoyamai Hisamatsu, 1985, syn. nov., is synonymized under Brachypterolus pulicarius. Dorsal habitus images, illustrations of male and female genitalia, and other important diagnostic characters are provided for all species. A key for identifi cation of all Japanese taxa is also provided. Key words. Coleoptera, Kateretidae, taxonomy, new synonym, new record, key, Japan, Palaearctic Region Introduction The family Kateretidae, belonging to the superfamily Cucujoidea, is mainly distributed in the Holarctic Region, and comprises about 95 species within 14 genera worldwide (JELÍNEK & CLINE 2010). Both larval and adult Kateretidae are anthophagous: the larvae are monophagous or oligophagous, while adults are more generalized feeders, occurring on true host plants only during mating and ovipositing periods; otherwise, they feed on a broader assortment of fl owering plants (JELÍNEK & CLINE 2010). -
Insectivory Characteristics of the Japanese Marten (Martes Melampus): a Qualitative Review
Zoology and Ecology, 2019, Volumen 29, Issue 1 Print ISSN: 2165-8005 Online ISSN: 2165-8013 https://doi.org/10.35513/21658005.2019.1.9 INSECTIVORY CHARACTERISTICS OF THE JAPANESE MARTEN (MARTES MELAMPUS): A QUALITATIVE REVIEW REVIEW PAPER Masumi Hisano Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada Corresponding author. Email: [email protected] Article history Abstract. Insects are rich in protein and thus are important substitute foods for many species of Received: 22 December generalist feeders. This study reviews insectivory characteristics of the Japanese marten (Martes 2018; accepted 27 June 2019 melampus) based on current literature. Across the 16 locations (14 studies) in the Japanese archi- pelago, a total of 80 different insects (including those only identified at genus, family, or order level) Keywords: were listed as marten food, 26 of which were identified at the species level. The consumed insects Carnivore; diet; food were categorised by their locomotion types, and the Japanese martens exploited not only ground- habits; generalist; insects; dwelling species, but also arboreal, flying, and underground-dwelling insects, taking advantage of invertebrates; trait; their arboreality and ability of agile pursuit predation. Notably, immobile insects such as egg mass mustelid of Mantodea spp, as well as pupa/larvae of Vespula flaviceps and Polistes spp. from wasp nests were consumed by the Japanese marten in multiple study areas. This review shows dietary general- ism (specifically ‘food exploitation generalism’) of the Japanese marten in terms of non-nutritive properties (i.e., locomotion ability of prey). INTRODUCTION have important functions for martens with both nutritive and non-nutritive aspects (sensu, Machovsky-Capuska Dietary generalists have capability to adapt their forag- et al. -
Recognition of a Two-Element Song in the Grasshopper <Emphasis Type="Italic">Chorthippus Dorsatus</Emphasis&G
J Comp Physiol A (1992) 171:405-412 Joul~l of Comparative .....,, Physiology A ~%", Springer-Verlag 1992 Recognition of a two-element song in the grasshopper Chorthippus dorsatus (Orthoptera: Gomphocerinae) Andreas Stumpner 1 and Otto von Helversen Institut fiir Zoologie II, Friedrich-Alexander Universit~it Erlangen-Nfirnberg, Staudtstr. 5, W 8520 Erlangen, FRG Accepted June 6, 1992 Summary. Males of the grasshopper Chorthippus dor- by the second note "qui" (Narins and Capranica 1976, satus produce songphrases which contain two differently 1978). Calling songs of the cricket Teleogryllus oceanicus structured elements - pulsed syllables in the first part (A) also consist of two distinctly different elements, "chirp" and ongoing noise in the second part (B). Females of Ch. and "trill". T. oceanicus females prefer song models com- dorsatus answer to artificial song models only if both prising chirps but no trills over 100% trill models, while elements A and B are present. Females strongly prefer males show the reversed preference (Pollack and Hoy song models in which the order of elements is A preced- 1979, 1981; Pollack 1982). Also, in the seventeen-year ing B. Females discriminate between the two elements cicada Magicicada cassini the first calling song element mainly by the existence of gaps within A-syllables. Pulses "tick" obviously is used for synchronizing male chorus- of 5-8 ms separated by gaps of 8-15 ms make most ing, while the second element "buzz" effectively elicits effective A-syllables, while syllable duration and syllable phonotaxis in females (Huber et al. 1990). intervals are less critical parameters. Females respond to In addition to frogs, crickets and cicadas, many spe- models which contain more than 3 A-syllables with high cies of grasshoppers have evolved complex acoustic com- probability. -
Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten. -
Generation of Extreme Ultrasonics in Rainforest Katydids Fernando Montealegre-Z1,*, Glenn K
4923 The Journal of Experimental Biology 209, 4923-4937 Published by The Company of Biologists 2006 doi:10.1242/jeb.02608 Generation of extreme ultrasonics in rainforest katydids Fernando Montealegre-Z1,*, Glenn K. Morris2 and Andrew C. Mason1 1Integrative Behaviour and Neuroscience Group, Department of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada, M1C 1A4 and 2Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6 *Author for correspondence: (e-mail: [email protected]) Accepted 19 October 2006 Summary The calling song of an undescribed Meconematinae species make pure-tone ultrasonic pulses. Wing velocities katydid (Tettigoniidae) from South America consists of and carriers among these pure-tone species fall into two trains of short, separated pure-tone sound pulses at groups: (1) species with ultrasonic carriers below 40·kHz 129·kHz (the highest calling note produced by an that have higher calling frequencies correlated with higher Arthropod). Paradoxically, these extremely high- wing-closing velocities and higher tooth densities: for these frequency sound waves are produced by a low-velocity katydids the relationship between average tooth strike movement of the stridulatory forewings. Sound production rate and song frequency approaches 1:1, as in cricket during a wing stroke is pulsed, but the wings do not pause escapement mechanisms; (2) a group of species with in their closing, requiring that the scraper, in its travel ultrasonic carriers above 40·kHz (that includes the along the file, must do so to create the pulses. We Meconematinae): for these katydids closing wing velocities hypothesize that during scraper pauses, the cuticle behind are dramatically lower and they make short trains of the scraper is bent by the ongoing relative displacement of pulses, with intervening periods of silence greater than the the wings, storing deformation energy. -
Dispersers and Herbivores : the Positive and Negative Effects of Consumers on Plants
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2003 Dispersers and herbivores : the positive and negative effects of consumers on plants Lindsay K. Amsberry The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Amsberry, Lindsay K., "Dispersers and herbivores : the positive and negative effects of consumers on plants" (2003). Graduate Student Theses, Dissertations, & Professional Papers. 6684. https://scholarworks.umt.edu/etd/6684 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature ** Yes, I grant permission No, I do not grant permission _________ Author's Signature: 1 (] t ^ Date : |2_ _________________ Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Dispersers and herbivores: The positive and negative effects of consumers on plants Lindsay K. -
Amphibian Diversity and Community-Based Ecotourism in Ndumo Game Reserve, South Africa
Amphibian diversity and Community-Based Ecotourism in Ndumo Game Reserve, South Africa FM Phaka orcid.org/0000-0003-1833-3156 Previous qualification (not compuLsory) Dissertation submitted in fulfilment of the requirements for the Masters degree in Environmental Science at the North-West University Supervisor: Prof LH du Preez Co-supervisor: Dr DJD Kruger Assistant Supervisor: Mr EC Netherlands Graduation May 2018 25985469 Declaration I, Fortunate Mafeta Phaka, declare that this work is my own, that all sources used or quoted have been indicated and acknowledged by means of complete references, and that this thesis was not previously submitted by me or any other person for degree purposes at this or any other university. Signature Date 18/11/2017 i i AcknowLedgements A great debt of gratitude is owed to my study supervisor L.H. Du Preez, co-supervisor D.J.D. Kruger, and assistant supervisor E.N. Netherlands for guidance and encouragement to focus on my strengths. To my mentors, D. Kotze and L. De Jager, and the Phaka clan, your faith in me has kept me going through all these years. Thank you to African Amphibian Conservation Research Group and Youth 4 African Wildlife for accepting me as part of your family. Members of the Zululand community are thanked for their enthusiasm and assistance towards this study. Fieldwork and running expenses for this research were funded by the South African National Biodiversity Institute’s (SANBI) Foundational Biodiversity Information Programme (Grant UID 98144). Financial assistance for studying towards this degree was provided by SANBI’s Foundational Biodiversity Information Programme (National Research Foundation Grant- Holder Linked Bursary for Grant UID 98144), and the North-West University (NWU Masters Progress Bursary, and NWU Masters Bursary). -
The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers
The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers Dissertation To Fulfil the Requirements for the Degree of “Doctor of Philosophy” (PhD) Submitted to the Council of the Faculty of Biological Sciences of the Friedrich Schiller University Jena by Bachelor of Science, Master of Science, Abhijeet Shah born on 7th November 1984, Hyderabad, India 1 Academic reviewers: 1. Prof. Holger Schielzeth, Friedrich Schiller University Jena 2. Prof. Manja Marz, Friedrich Schiller University Jena 3. Prof. Rolf Beutel, Friedrich Schiller University Jena 4. Prof. Frieder Mayer, Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin 5. Prof. Steve Hoffmann, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena 6. Prof. Aletta Bonn, Friedrich Schiller University Jena Date of oral defense: 24.02.2020 2 Table of Contents Abstract ........................................................................................................................... 5 Zusammenfassung............................................................................................................ 7 Introduction ..................................................................................................................... 9 Genetic polymorphism ............................................................................................................. 9 Lewontin’s paradox ....................................................................................................................................... 9 The evolution -
Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system.