Cambridge University Press 978-0-521-57437-2 — The Cosmological Background Radiation Marc Lachièze-Rey , Edgard Gunzig , Translated by John Simmons Index More Information

Index

Abell galaxy clusters 220±3 Boltzmann law 88 ACME-HEMT 166, 182, 194±5 Boltzmann's equation 158 adiabatic ¯uctuations 47, 52±4, 106 Boomerang project 167, 205±6 Advanced Cosmic Explorer (ACE) 167±8 Bose±Einstein period 75, 81±3 AELITA 170 bosons 77 angular scales Bouchet, F. 134 at recombination 97±8 Bremsstrahlung (free±free emission) 74±5, ¯uctuation analysis 183±92 81, 111, 112±13, 140±1, 210 intermediate measurements 135±6, 214±16 large scale measurements 136, 192±200 CARA (Center for Astrophysical Research in measurement 178±83 Antarctica, USA) 147 small scale measurements 217±20 carbon atoms, CMBR measurement 160±1 anisotropic expansion 130±1 carcinotron 155 Antarctica, CMBR observations 146±7, 163, causality problem 22, 27±8 194±7 CH molecule 155, 160 antennae, CMBR measurement 2±3, 146, COBE satellite 170±5 151±4 anisotropy observations 72, 210±14 antimatter problem 22±4, 84 cold dark matter scenario 68±9 ARGO balloon 167, 214 DIRBE photometer 138, 143, 170±1, atmospheric emissions 144±6 174±5 autocorrelation function 41, 188±92 DMR (Diffuse Microwave Radiometer) 68, 171±3, 189, 192±93, 200, Balloon Anisotropy Measurement (BAM) 210±14, 229 167 FIRAS (Far InfraRed Absolute balloon observations 143, 145, 148, 167±8, Spectrophotometer) 141, 143, 151, 200±8, 214 163±4, 170±1, 173±4, 213, 229, baryogenesis 30 236±7 baryonic matter 23, 46, 48, 54, 66±7, 235 large angular scales 32, 136 beam switching 181±3, 192±3 observations of distortions 81±2, 110±11, beam width, in calculations 188±92 113 Bianchi classes 130±1 radiation observations 119 bias parameter 68 COBRA group 163 biasing factor 60±2 cold dark matter (CDM) 46, 55, 61, 67±9, big bang model 1, 5, 7±32, 73, 233 116, 236 Big Plate experiment 193 Coma cluster 121±2, 220 black-body spectrum 4, 74±6, 77±81, 83, comoving co-ordinates 9±10, 20 117±18, 237 comoving proper distance 12 bolometers 156±8, 167, 200, 202, 205, Compton scattering 76±7, 79±81 220±1 double 75, 81

243

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-57437-2 — The Cosmological Background Radiation Marc Lachièze-Rey , Edgard Gunzig , Translated by John Simmons Index More Information

244 Index

Comptonisation 76±7, 79±83, 110±13, double switching 183 119±20 dust Comptonisation parameter ( y) 80, 120 contamination of CMBR measurements contamination of CMBR observations 141, 143±4, 203±4, 210 139±46, 162 radiation scattering 118±19 correlation function 41±3, 102, 212±14 Cosmic Anisotropy Telescope (CAT) 167, ECHO satellite 1±2 199 Einstein±de Sitter model 8, 15, 18, 52±3 cosmic strings 70, 133±6 Einstein's equations 13±14 232 electrons 74, 84±5 cosmic velocities 229±32, 234 Enrico Fermi Institute, Chicago 164 cosmological constant (Ë) 8, 13±14, 16, entropy ¯uctuations 47 26±7, 65 equivalence of matter and radiation 14±15, cosmological microwave background 19, 49, 53 radiation (CMBR) European Southern Observatory, Chile anisotropies 66±7, 100, 138±9, 177±232 (ESO) 159, 161 characteristics 78 expanding universe 9 constraints 71±2 explosive scenarios 70±1, 114, 236±7 correlation function 102, 212±14 cosmic strings 133±6 Far Infra-Red Survey (FIRS) 167, 191, dipole 224±31 200±1 discovery of 1±4 Far InfraRed Space Telescope (FIRST) 150, distortions 109±19 169±70 ¯uctuations 95±107, 117±36 fermions 77 galaxy formation scenarios 235±7 ®lling factor 123 gravitational effects 125±30 FIRAS see COBE satellite intrinsic ¯uctuations 35, 89±90, 95±107, ¯atness problem see curvature problem 115, 129 ¯uctuations isotropy 4±5, 27±8, 33, 95 adiabatic 47, 52±4, 106 origin 4±6, 35, 73±93 after recombination 55±65 polarisation 164±5 before recombination 51±5 quadrupole 224±5, 227, 231±2 correlation function 41±3, 102 re-ionisation effects 114±17 cosmological microwave background spectrum 4, 90±1 radiation (CMBR) 95±107, 117±36 see also measuring the CMBR damping 54±5, 66 cosmological parameters 7±8, 16±17, 65 density 33±65 cosmological principle 7, 9, 34 in¯ation 31±2 curvature parameter (k) 8±10 initial 45±51 curvature problem 22, 24±5, 31 linear 35, 49±50, 56±7 cyanogen molecule (CN) 4, 91±2, 158±60 mass 36±7, 41±2, 50±3, 56 primordial 31±2, 35, 45±8, 133±6 deceleration parameter (q0) 8, 16, 123, 224 radiation 47, 98±9 density, critical 15±16 scale lengths 35±7, 51, 56±7 density contrast 34±5 smoothing 58 density ¯uctuations 33±65 spectrum 38±40, 43±6, 48, 52±4 density parameter (Ù) 7±8, 15±16, 23±5, statistics 37±46 31, 65, 69, 236 temperature 100±102, 188 Dicke receiver 151, 155±6, 161±2, 228 velocities 40 dipole 212, 224±31, 234 Vishniac-type 117, 124±5 distance, types 10±12 Ford, W. K. Jr 231 distortions foreground degradation factor (FDF) 140 Comptonised 76±7, 79±81, 110±13 Fourier transforms 34±6, 38, 41±3, 53 early universe 83±6 free±free processes see Bremsstrahlung global 109±19 frequencies, CMBR observations 152 DMR see COBE satellite Friedmann±LemaõÃtre equations 13±17 Doppler effect 98, 104±6, 122, 126, 225±7 Friedmann±LemaõÃtre models 7±8, 20, 25, Doppler peak 124, 199 27±8, 31, 34, 45, 65, 226

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-57437-2 — The Cosmological Background Radiation Marc Lachièze-Rey , Edgard Gunzig , Translated by John Simmons Index More Information

Index 245

Friedmann±Robertson±Walker (FRW) Jeans length 50±1 model 125±6 Jeans mass 50±1, 56 Josephson junction 155 galactic emissions 143±4, 210, 229 galaxies klystron 155 birth scenarios 65±71, 235±7 Kompaneets' equation 80 distribution 63 formation 33±72, 98±101, 235±7 Large Deployable Re¯ector (LDR) 150, 170 primordial 64±5 large scale matter distribution 63 protogalaxies 64±5 last scattering surface see surface of last galaxy clusters scattering distribution 63 Legendre polynomials 184, 189, 191 Sunyaev±Zel'dovich effect 119±24, length 220±4 Jeans length 50±1 velocity measurements 122±4 scale length 17, 34±7, 40 gas, hot 113±14, 119±21 Lick Observatory, Arizona 159 Gaussian statistics 37±8, 46, 48±9, 99, 102, linear ¯uctuation growth 35, 49±50, 56±7 188 Local Group, velocity 229±30 general relativity theory 7, 8, 10, 13, 132 grand uni®ed theory (GUT) 29, 133 Mach's principle 26, 132 gravitational instability 33±7, 51, 56 maps, of the sky 180, 210±11 gravitational lensing 129±30 MASERs 2, 155±6, 215 gravitational waves 103, 132±3 mass, ¯uctuations 36±7, 41±2, 50±3, 56 Great Attractor 126±8, 231 mass function 71 ground-based measurements of CMBR massive particles 29, 117±18 166±7, 193±200, 215±20 Mather, J. 171 Gunn±Peterson effect 114±15 matter density 15, 23 harmonic decomposition 184±8 distribution 57±65 Harrison±Zel'dovich spectrum see scale- dominance 55 invariant spectrum intergalactic 114 heterodyne detection 154±6 radiation equilibrium 5, 74, 81±3 High Electron Mobility Transistor (HEMT) radiation equivalence 14±15, 19, 49, 53 156, 167±8, 169, 194±5 radiation interaction 74±81 homogeneity of universe 9±10, 27±8, 31, 33, temperature after recombination 92±3 45, 126 types in universe 48 horizon 19±21, 27, 51±2 MAX mission 143, 148, 167, 182, 204±8 hot dark matter (HDM) 46, 55, 69±70, 236 MAXIMA project 167 Hubble constant (H0) 7, 9, 11, 16, 25, 30, measuring the CMBR 137±75 123, 222 absolute measurements 138, 150±1, Hubble length 17 161±5 Hubble radius 24 anisotropy measurements 138±9, 177±232 Hubble time 18 antennae 2±3, 146, 151±4 Hubble's law 11 balloon observations 143, 145, 148, 167±8, 200±8, 214 incoherent detection 156±8 calibration 150±1, 173 in¯ation 28±32, 70 contamination sources 139±46, 162 Institut de Radio Astronomie MillimeÂtrique direct detection 154 (IRAM) 166, 181, 219 ground-based experiments 166±7, interferometry 180±1, 217±18, 221±3 193±200, 215±20 intergalactic matter 114 heterodyne detection 154±6 ionisation 88±90 incoherent detection 156±8 see also re-ionisation molecules 158±61 IRAS satellite 65, 143±4, 174±5 satellite observations 149±50, 168±75, isocurvature 47, 52, 54, 66±7 208±14 telescopes 146, 166±7 Jeans criterion 50±2 Microwave Anisotropy Probe (MAP) 169

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-57437-2 — The Cosmological Background Radiation Marc Lachièze-Rey , Edgard Gunzig , Translated by John Simmons Index More Information

246 Index

MilliMeter Array (MMA) 181 quadrupole 130, 132, 187±8, 224±5, 227, Millimeter-wave Anisotropy Experiment see 231±2 MAX mission quantum cosmology 26, 46 minimal spectrum 44 quantum gravity 18 `mocked formation' models 237 quantum statistics 5, 77±81 molecules, for measuring CMBR 158±61 quantum superconductor mixers 155±6 MSAM experiment 167, 183, 194, 201±2 quasars 63, 114 Multi Mirror Telescope 161 radiation National Radio Astronomy Observatory, density 23, 25 West Virginia (NROA) 166, 181, 215 dominance 51±2 neutrinos 84±5, 236 ¯uctuations 47, 98±9 Nobeyama Millimetre Array (NMA), Japan matter equilibrium 5, 74, 81±3 181 matter equivalence 14±15, 19, 49, 53 non-baryonic matter 54±5, 67±70, 236 matter interaction 74±81 non-linear scale distribution 62, 64 scattering by dust 118±19 normalisation 47, 59±62 temperature after recombination 91±2 North Celestial Pole (NCP) programme 216 radiometry, Sunyaev-Zel'dovich effect 220 notation, differences 183±4, 185±6 RATAN telescope 166, 214 nucleosynthesis 85±6, 131 Rayleigh±Jeans wavelengths black-body spectrum 78, 80 CMBR measurement 139, 153±4 Owens Valley radio telescope (OVRO) 135, distortions 81, 111±12, 237 166, 189, 215±16, 220, 223 temperature 120±1 re-ionisation 98, 114±17, 237 `pancakes' 70 recombination 5, 19, 35, 51, 55±65, 73, `particles in a box' 45 86±91 Penzias, A. 1±3, 161 redshift 9, 12±13, 21, 115±16, 121 photoconductors 158 Rees±Sciama effect 128 photons RELIKT programme 168, 208±9, 228±9, black-body spectrum 77±81, 84±5 231±2 early universe 74±6 RING programme 216 energy distortion 111 Robertson±Walker (RW) metric 9 formation 117±18 rockets, CMBR observations 148±9 number density 23 ROSAT satellite 221±3 scattering 87±8, 90 rotating universe 131±2 mission 123±4, 168±9, 224 Ryle Telescope 166, 221 Planck time 18, 27 Poisson equation 40 Sachs±Wolfe effect 101±3, 127 Poissonian spectrum 45 Saha equation 88±9 polarisation of CMBR 164±5 Saskatoon experiment 166, 182, 185, 193±4 positrons, annihilation 84±5 satellites, CMBR observations 149±50, power law spectrum 43±5, 103, 187, 212±13 168±75, 208±14 power spectrum 38±40, 46, 52±3, 99±100, scale factor (R(t)) 8±13, 17±18, 56 187±8 scale lengths, ¯uctuations 34±7, 40 Press and Schechter formalism 59 scale-invariant spectrum (Harrison± primordial ¯uctuations 31±2, 35, 45±8, Zel'dovich) 32, 45, 48, 99±100, 135, 133±6 213 primordial galaxies 64±5 Schottky diode 155 primordial universe 5, 19, 73±4, 83 selection function 42±3 PROGNOZ satellite 168, 208±9 sensitivity of CMBR detectors 153±4 PRONAOS 167 `Silk mass' 54, 66, 69, 106 protogalaxies 64±5 Smoot, G. 171, 228 PSI/FIRE 169 Space Infra-Red Telescope Facility (SIRTF) Python experiment 166, 195±7 170 space observations, CMBR measurement QMAP 168 148±50

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-57437-2 — The Cosmological Background Radiation Marc Lachièze-Rey , Edgard Gunzig , Translated by John Simmons Index More Information

Index 247

space±time, spatial properties 10±13 ULISSE experiment 167, 203±4 space±time metric 8±10 universe spectrum age 17±18 black-body 4, 74±81, 83, 117±18, 237 anisotropic expansion 130±1 ¯uctuations 38±40, 43±6, 48 curvature 24±5 spheres, mass ¯uctuation 41±2 homogeneity 9±10, 27±8, 31, 33, 45, 126 spherical harmonics 184, 189±92 models 7±8 Submillimeter Wave Astronomy Satellite observable 19±21 (SWAS) 170 opaque 5, 20, 73 Sun, observations 147 primordial 5, 19, 73±4, 83 Sunyaev±Zel'dovich effect 119±24, rotating 131±2 137±8, 142, 169, 220±4, 234 University of California at Santa Barbara Sunyaev±Zel'dovich Experiment see SuZIE (UCSB), Antarctica observations 147, Sunyaev±Zel'dovich parameter 80±2, 111, 189 163 surface of last scattering vacuum energy 26±30 blue shift 226 variance index 44 de®nition 87±8 velocities homogeneity 31, 95±7 cosmic 229±32, 234 redshift 90, 115±6 ¯uctuations 40 thickness 100±1, 106±7 galaxy clusters 122±4 SuZIE 123, 166±7, 219±21, 223 Very Large Array (VLA) 142, 166, 181, symmetry breaking 28±9, 133±4 217±18, 222±3 synchrotron emission 140, 210 (VSA) 200 Vishniac effect 117, 124±5 telescopes, CMBR measurement 146, 166±7 visibility function 107 temperature voids 63, 128 after recombination 91±3 of detection antennae 153±4 white noise spectrum 45 ¯uctuations 100±2, 188 Wien wavelengths of the universe 29, 81 black-body spectrum 78, 80 166, 182, 193, 197±200 CMBR measurement 139, 162 thermal deviations 137±9, 234 distortions 81, 111 thermal equilibrium 4±5 temperature 121 thermalisation 74±6 Wilson, R. 1±3, 161 Thomson optical depth 120 window function 42±3, 58, 102, 179±80, 77, 115, 119 190±2 three-beam method 183, 215±16 time, cosmic 18, 21 TopHat 167, 202±3 X-rays 113, 121, 123 transfer function, ¯uctuations 39±40, 100 turn-around point, ¯uctuations 36 Zodiacal light 144, 174

© in this web service Cambridge University Press www.cambridge.org