Now the ”Dinitz Theorem,” Was a Simple- Sounding Open Question Regarding the Coloring of a Graph Or Array, Combining Ele- Ments of Combinatorics and Graph Theory

Total Page:16

File Type:pdf, Size:1020Kb

Now the ”Dinitz Theorem,” Was a Simple- Sounding Open Question Regarding the Coloring of a Graph Or Array, Combining Ele- Ments of Combinatorics and Graph Theory THE DINITZ PROBLEM ALDEN MATHIEU 1. Introduction The so-called "Dinitz conjecture," now the "Dinitz theorem," was a simple- sounding open question regarding the coloring of a graph or array, combining ele- ments of combinatorics and graph theory. Proposed by Jeff Dinitz in the late Seven- ties, it wasn't solved until the early Nineties, when Fred Galvin produced a simple solution. We follow David Glynn's presentation of the material from [1, Chap- ter 36], which combines elements we recognize from earlier talks, including Daniel Matthews' discussion of the graph theory chapter "Five-coloring plane graphs" and Alden Mathieu's combinatorics presentation on "Three famous theorems on finite sets." 2. Dinitz's Problem Question. Given n2 cells arranged in an (n × n) square array, let (i; j) denote the cell in row i and column j. For each cell (i; j), we have a color set of C(i; j) of n colors. Is it always possible to color the whole array, by selecting colors from C(i; j) for each cell, such that the colors in each row and column are distinct? It is easiest to visualize this array coloring as a Latin square. Definition 2.1. A Latin square is an (n × n) array, where the n2 cells are filled with the numbers f1; 2; :::; ng such that each number appears exactly once in each row and column. For an (n × n) Latin square with a choice of the same n colors for each cell, this is always possible. Consider the Latin square below. We label the first row arbitrarily with distinct colors for each cell, and permute the row as we progress down the square. Coloring a Latin square in this way is identical to solving a sudoku puzzle. 1 2 3 3 1 2 2 3 1 Table 1. A Latin square with distinct coloring in each row and column. Question. What if the total set of colors has more than n colors? That is, is it still possible to color the (n × n) array if C := [i;jC(i; j) > n but each cell (i; j) has a set of n colors, C(i; j), to choose from? Date: 14 November 2018. 1 2 ALDEN MATHIEU Even with the simplest possible example, with a (2 × 2) Latin square with 3 colors to choose from, this is not always possible: f1,2g f2,3g ! 1 2 f1,3g f2,3g 3 3 Table 2. The (2 × 2) array can fail to be distinctly colored with an awkward choice of just 3 colors. To prove the Dinitz conjecture, we will restate it in terms of graph theory to make our proof easier. 3. Graph Theory 3.1. Background. Definition 3.1. A simple graph G = (V; E) is an undirected graph without loops or multiple edges: that is, a simple graph is a collection of V vertices which are connected by E edges such that any pair of vertices in G is connected by at most 1 edge. Definition 3.2. A bipartite graph G = (V; E) is a graph whose vertex set V can be partitioned into two disjoint sets X; Y such that every edge has one endpoint in X and the other endpoint in Y . Definition 3.3. A coloring (specifically, a vertex coloring) of a graph is an assign- ment of a color to each vertex from a given set of colors, such that it is proper (no pair of adjacent vertices share the same color). Bipartite graphs can be equivalently defined as those graphs which are 2-colorable. Definition 3.4. The chromatic number of a graph G, denoted χ(G), is the smallest number of colors that one can assign to the vertices such that the coloring is proper. The chromatic number of a graph can also be visualized as the minimal number of independent sets which partition the set of vertices V . Definition 3.5. The list coloring is a coloring of the vertices v in V , denoted L(v), where the list of allowed colors for each vertex is a subset of all colors in the graph. Hence, the list chromatic number of a graph G, denoted χl(G), is the minimum k such that if every color set C(v) has size k for all vertices v in V , then a list coloring exists. We note that χ(G) ≤ χl(G) always, since an ordinary coloring is a special case of list coloring. 3.2. Reframing the Dinitz problem. We reframe the Dinitz problem by assign- ing a vertex to each cell of our (n × n) array, changing our Latin square problem to 2 a graph theory problem. Our graph, Sn, has n vertices, with two vertices adjacent if and only if they are in the same row or column (see Figure 1). Since we have n2 vertices and any n cells in a row are pairwise adjacent, and recalling our Latin square (Table 1), we clearly require at least n colors. Since we have shown the existence of Latin squares, we infer that χ(Sn) = n. Given that this is the "Dinitz theorem," and not the "disproven Dinitz conjec- ture," we proceed to prove the restated Dinitz problem: Theorem 3.6 (Dinitz theorem). χl(Sn) = n; 8n THE DINITZ PROBLEM 3 (a) A (3 × 3) array (b) The associated graph S3 Figure 1. Associating a graph to an array Remarks 3.7. It is not true that χ(G) = χl(G) for any graph G. Consider the exercise given in the book and depicted below (Figure 2). As a complete bipartite graph, K2;4 has a chromatic number of 2 but is demonstrated not to be 2-list- colorable; χl(K2;4) = 3. Figure 2. K2;4 is 3-list-colorable A 1979 paper by Erd}os,Rubin and Taylor [2] demonstrates that there is no bound on how much the list chromatic number of a graph can exceed the chromatic number of the graph as the list of colors grows. To prove the Dinitz theorem, we will need two results and a few further graph theory concepts. Definition 3.8. An induced subgraph GA is the subgraph of G which has the set of vertices A ⊆ V and the set of all edges of G which connect the vertices in A. GA is the subgraph induced by A. 4 ALDEN MATHIEU −! Definition 3.9. A directed graph, denoted G(V; E), is a graph on which each edge has an orientation or direction. The notation u ! v denotes the directed edge starting at vertex u and ending at vertex v. Definition 3.10. For a vertex v in a graph, we denote the degree of v by d(v). The degree of v is the number of edges which connect to v. We therefore define the outdegree d+(v) as the number of directed edges which start at v. Similiarly, the indegree d−(v) is the number of directed edges which end at v. We also have that d(v) = d+(v) + d−(v). Definition 3.11. A set of vertices S in a graph are independent if they are pairwise non-adjacent; that is, for every pair of vertices of S, there is no connecting edge between them. −! Definition 3.12 (Kernel). Let G = (V; E) be a directed graph. A kernel K ⊆ V is a subset of the vertices such that i) K is independent in G ii) for every vertex u 2 V nK, there is a vertex v 2 K such that u ! v. That is, all vertices not in K have an edge directed into K. We now can state the first result. 4. First Result −! Lemma 4.1. Let G(V; E) be a directed graph, and suppose for all v 2 V there is a color set C(v) such that jC(v)j ≥ d+(v) + 1. Then, if every induced subgraph of −! G has a kernel, then G has a list coloring with C(v) as the color set. Proof. We use induction on the number of vertices. If there is only one vertex, the lemma is trivial; we consider only jV j > 1. Let c be a color, c 2 C = [v2V C(v). Define A(c) := fv 2 V : c 2 C(v)g, the set of vertices with color c in the restricted list C(v). Therefore GA(c) has a kernel: K(c). Because all the vertices in K(c) are independent (by definition 3.12(i)), we are able to color all the vertices in K(c) with the color c. We then delete K(c) from G and delete c from C. Now we let G0 be the induced subgraph on V nK(c) and let the reduced C0(v) = C(v)nfcg. For all vertices u in A(c)nK(c), we have reduced the outdegree by at least 1 (by definition 3.12(ii)), so the condition jC0(u)j ≥ d+(u) + 1 still holds. Similarly, the condition holds for vertices outside A(c) since the sets C(v) were not −! changed. Thus, our new graph G0 has a list coloring. By adding our removed colors back in, we can see that by induction we get a list −! coloring for G. 4.1. Strategy. We now see that we need to find an orientation of edges of our associated graph Sn such that i) d+(v) ≤ n − 1, for all vertices v ii) every induced subgraph has a kernel Hence, for our second result, we require concepts which should be somewhat familiar from an earlier presentation on Hall's marriage theorem.
Recommended publications
  • Restricted Colorings of Graphs
    Restricted colorings of graphs Noga Alon ∗ Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel and Bellcore, Morristown, NJ 07960, USA Abstract The problem of properly coloring the vertices (or edges) of a graph using for each vertex (or edge) a color from a prescribed list of permissible colors, received a considerable amount of attention. Here we describe the techniques applied in the study of this subject, which combine combinatorial, algebraic and probabilistic methods, and discuss several intriguing conjectures and open problems. This is mainly a survey of recent and less recent results in the area, but it contains several new results as well. ∗Research supported in part by a United States Israel BSF Grant. Appeared in "Surveys in Combinatorics", Proc. 14th British Combinatorial Conference, London Mathematical Society Lecture Notes Series 187, edited by K. Walker, Cambridge University Press, 1993, 1-33. 0 1 Introduction Graph coloring is arguably the most popular subject in graph theory. An interesting variant of the classical problem of coloring properly the vertices of a graph with the minimum possible number of colors arises when one imposes some restrictions on the colors available for every vertex. This variant received a considerable amount of attention that led to several fascinating conjectures and results, and its study combines interesting combinatorial techniques with powerful algebraic and probabilistic ideas. The subject, initiated independently by Vizing [51] and by Erd}os,Rubin and Taylor [24], is usually known as the study of the choosability properties of a graph. In the present paper we survey some of the known recent and less recent results in this topic, focusing on the techniques involved and mentioning some of the related intriguing open problems.
    [Show full text]
  • On Latin Squares and Avoidable Arrays for Daniel, and for What Springtime Brings
    On Latin squares and avoidable arrays For Daniel, and for what springtime brings Lina J. Andr´en: On Latin squares and avoidable arrays c 2010 Lina J. Andr´en Tryck: Print & Media, Ume˚auniversitet, Ume˚a isbn 978-91-7459-060-9 issn 1102-8300 Doctoral thesis No. 46, 2010, Department of Mathematics and Mathematical statistics, Ume˚auniversity On Latin squares and avoidable arrays Lina J. Andr´en Doctoral thesis no. 46 Department of Mathematics and Mathematical statistics Ume˚aUniversity, 2010 Contents 1 Summary of papers 1 2 Introduction 3 3 Basic definitions and tools 5 3.1 Latin squares and arrays . 5 3.2 Graphs and colorings . 10 4 Problems and known results 13 5 Structural properties of Latin squares 21 5.1 Cycles and homogeneity . 21 5.2 Transversals and rainbow matchings . 22 6 Research on avoidability and list-edge colorings 25 6.1 Someusefultechniques. 25 Bibliography 33 v Abstract This thesis consists of the four papers listed below and a survey of the research area. I Lina J. Andr´en: Avoiding (m, m, m)-arrays of order n =2k II Lina J. Andr´en: Avoidability of random arrays III Lina J. Andr´en: Avoidability by Latin squares of arrays with even order IV Lina J. Andr´en, Carl Johan Casselgren and Lars-Daniel Ohman:¨ Avoiding arrays of odd order by Latin squares Papers I, III and IV are all concerned with a conjecture by H¨aggkvist saying that there is a constant c such that for any positive integer n,ifm cn, then for every n n array A of subsets of 1,...,n such that no cell contains≤ a set of size greater× than m, and none of the{ elements} 1,...,nbelongs to more than m of the sets in any row or any column of A, there is a Latin square L on the symbols 1,...,n such that there is no cell in L that contains a symbol that belongs to the set in the corresponding cell of A.
    [Show full text]
  • Restricted Extension of Sparse Partial Edge Colorings of Complete Graphs
    Restricted extension of sparse partial edge colorings of complete graphs Carl Johan Casselgren∗ Lan Anh Pham † December 17, 2019 Abstract. Given a partial edge coloring of a complete graph Kn and lists of allowed colors for the non-colored edges of Kn, can we extend the partial edge coloring to a proper edge coloring of Kn using only colors from the lists? We prove that this question has a positive answer in the case when both the partial edge coloring and the color lists satisfy certain sparsity conditions. Keywords: Complete graph, Edge coloring, Precoloring extension, List coloring 1 Introduction An edge precoloring (or partial edge coloring) of a graph G is a proper edge coloring of some subset E′ ⊆ E(G); a t-edge precoloring is such a coloring with t colors. A t-edge precoloring ϕ is extendable if there is a proper t-edge coloring f such that f(e)= ϕ(e) for any edge e that is colored under ϕ; f is called an extension of ϕ. In general, the problem of extending a given edge precoloring is an N P-complete problem, already for 3-regular bipartite graphs [13]. Questions on extending a partial edge coloring seems to have been first considered for balanced complete bipartite graphs, and these questions are usually referred to as the problem of completing partial Latin squares. In this form the problem appeared already in 1960, when Evans [11] stated his now classic conjecture that for every positive integer n, if n − 1 edges in Kn,n have been arXiv:1912.07393v1 [math.CO] 16 Dec 2019 (properly) colored, then the partial coloring can be extended to a proper n-edge-coloring of Kn,n.
    [Show full text]
  • Arxiv:Math/9506215V1 [Math.CO] 23 Jun 1995 2 1 H Iizcnetr Set Htgiven That Asserts Conjecture Dinitz Arrived the Was It Which by Yes Tribulations to and Puzzle
    The Method of Undetermined Generalization and Specialization Illustrated with Fred Galvin’s Amazing Proof of the Dinitz Conjecture Doron ZEILBERGER1 At the very beginning of our waning century, in what turned out to be the most influential math- ematical address ever delivered, David Hilbert[H] said: “If we do not succeed in solving a mathematical problem, the reason frequently consists in our failure to recognize the more general standpoint from which the problem before us appears only as a single link in a chain of related problems.” One paragraph later, he also said: In dealing with mathematical problems, specialization plays, as I believe, a still more important part than generalization. Alas, all this is easier said than done. How does one find the ‘right’ generalization and specialization? The answer is: just go ahead and start proving the conjecture. At first, leave the exact form of the generalization and/or specialization blank, and as you go along, see what kind of generaliza- tion/specialization would be required to make the proof work out. Keep ‘guessing and erasing’ until you get it done, just like doing a crossword puzzle. I will illustrate this proof strategy in terms of Fred Galvin’s[G] recent brilliant proof of the Dinitz conjecture. Following a tradition that goes back to Euclid, Galvin presented his proof as a marvelous but ‘static’ completed edifice, just like the solution to yesterday’s (or last Sunday’s) puzzle, that hides all the trials and tribulations by which it was arrived. Not very useful for solving today’s puzzle... 2 The Dinitz conjecture asserts that given n arbitrary sets Ai,j (1 ≤ i, j ≤ n), each having n elements, then it is always possible to pick elements ai,j ∈ Ai,j such that (ai,j) is a ‘generalized arXiv:math/9506215v1 [math.CO] 23 Jun 1995 Latin square’, which means that each row and each column must have all its n entries distinct.
    [Show full text]
  • On the Relations of Various Conjectures on Latin Squares and Straightening Coefficients
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 128 (1994) 225-236 225 North-Holland On the relations of various conjectures on Latin squares and straightening coefficients Rosa Huang* Mathematics Department Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA Gian-Carlo Rota** Department of Mathematics, M.I.T., Cambridge, MA 02139, USA Received 9 August 1993 1. Introduction We discuss the relations among various combinatorial conjectures, to wit: I. A conjecture of J. Dinitz on partial Latin squares, closely related to a conjec- ture of N. Alon and M. Tarsi on Latin squares. II. A conjecture of the second author on the nonvanishing property of a certain straightening coefficient in the supersymmetric bracket algebra. This conjecture is motivated by the author’s program of extending invariant theory by the use of supersymmetric variables. III. A conjecture of the second author on the exchange property satisfied by sets of bases of a vector space (or more general, for bases of a matroid). IV. A conjecture of J. Kahn which generalizes Dinitz’s conjecture, as well as conjecture III. We begin by discussing Dinitz’s conjecture. Recall that a partial Latin square of order n is an n x n array of symbols with the property that no symbol appears more than once in any row or column. While a graduate student at Ohio State University, Jeff Dinitz proposed the following conjecture. Conjecture 1 (Dinitz, 1978). Associate to each pair (i, j) where 1 <i, j<n a set S, of size n.
    [Show full text]
  • Extensions of Galvin's Theorem
    Extensions of Galvin's Theorem by Maxwell Levit A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Masters of Mathematics in Combinatorics & Optimization Waterloo, Ontario, Canada, 2018 c Maxwell Levit 2018 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract We discuss problems in list coloring with an emphasis on techniques that utilize oriented graphs. Our central theme is Galvin's resolution of the Dinitz problem (Galvin. J. Comb. Theory, Ser. B 63(1), 1995, 153{158). We survey the related work of Alon and Tarsi (Combinatorica 12(2) 1992, 125{134) and H¨aggkvistand Janssen (Combinatorics, Probability & Computing 6(3) 1997, 295{313). We then prove two new extensions of Galvin's theorem. iii Acknowledgements I would like to thank my supervisor, Joseph Cheriyan, and my readers, Penny Haxell and Luke Postle. iv Table of Contents List of Figures vii 1 Introduction 1 2 The Polynomial Method 4 2.1 Definitions and Notations . .4 2.2 The Graph Polynomial . .5 2.3 Oriented Graphs . .6 2.4 The Alon-Tarsi theorem . .9 2.5 Applications to list coloring . 10 2.6 The Alon-Tarsi conjecture . 12 2.7 The Combinatorial Nullstellensatz . 14 3 A result of H¨aggkvistand Janssen 15 3.1 The list chromatic index of the complete graph . 15 3.2 A bound for simple graphs .
    [Show full text]
  • Introduction to Graph Coloring 1 Basic Definitions and Simple Properties
    CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo SUNY at Buffalo, Spring 2004 Scribe: Hung Q. Ngo Introduction to Graph Coloring The authoritative reference on graph coloring is probably [Jensen and Toft, 1995]. Most standard texts on graph theory such as [Diestel, 2000,Lovasz,´ 1993,West, 1996] have chapters on graph coloring. Some nice problems are discussed in [Jensen and Toft, 2001]. 1 Basic definitions and simple properties A k-coloring of a graph G = (V, E) is a function c : V → C, where |C| = k. (Most often we use C = [k].) Vertices of the same color form a color class. A coloring is proper if adjacent vertices have different colors. A graph is k-colorable if there is a proper k-coloring. The chromatic number χ(G) of a graph G is the minimum k such that G is k-colorable. Let H and G be graphs. The disjoint union G + H of G and H is the graph whose vertices and edges are disjoint unions of vertices and edges of G and H, respectively. The join G ∨ H of simple graphs G and H is obtain from G + H by adding all edges of the form (u, v), with u ∈ V (G), v ∈ V (H). The cartesian product G2H of G and H is the graph with vertex set V (G) × V (H) and edges of the form ((u, v), (u0, v0)), where either u = u0 and (v, v0) ∈ E(H), v = v0 and (u, u0) ∈ E(G). Exercise 1.1. Show that G2H is isomorphic to H2G.
    [Show full text]
  • On Some Graph Coloring Problems
    On Some Graph Coloring Problems Carl Johan Casselgren Doctoral Thesis No. 48 Department of Mathematics and Mathematical Statistics Ume˚a University, 2011 Doctoral dissertation Department of Mathematics and Mathematical Statistics Ume˚aUniversity SE-901 87 Ume˚a Sweden Copyright c 2011 Carl Johan Casselgren ISBN 978-91-7459-198-9 ISSN 1102-8300 Printed by Print & Media, Ume˚a 2011 F¨or min egen blekhets skullalskar ¨ jag r¨ott, bl˚att och gult, den stora vithetenar ¨ vemodig som sn¨oskymningen d˚a Sn¨ovits moder satt vid f¨onstret och ¨onskade sig svart och r¨ott d¨artill. F¨argernas l¨angtan ¨ar blodets. Om du t¨orstar efter sk¨onhet skall du slutaogonen ¨ och blicka in i ditt eget hj¨arta. Dock fruktar sk¨onheten dagen och alltf¨or m˚anga blickar, dock t˚al ej sk¨onheten buller och alltf¨or m˚anga r¨orelser - du skall icke f¨ora ditt hj¨arta till dina l¨appar, vi b¨ora icke st¨ora tystnadens och ensamhetens f¨orn¨ama ringar, - vad ¨ar st¨orre att m¨ota ¨an en ol¨ost g˚ata med s¨allsamma drag? ------------- F¨argernas l¨angtan, Edith S¨odergran Contents List of papers vi Abstract vii Preface ix 1 Introduction 1 2 List colorings 4 2.1Coloringgraphsfromrandomlists.................... 6 2.2Avoidingarrays.............................. 11 3 Interval edge colorings 14 3.1 Interval colorings of (a, b)-biregulargraphs............... 15 3.2 The number of colors in an interval coloring of an (a, b)-biregular graph 16 4 Concluding remarks and possible directions for future research 17 References 19 Papers I–IX v List of Papers This thesis is based on the following papers, which are referred to in the text by their roman numerals.
    [Show full text]
  • Graph Colorings
    Algorithmic Graph Theory Part II - Graph Colorings Martin Milanicˇ [email protected] University of Primorska, Koper, Slovenia Dipartimento di Informatica Universita` degli Studi di Verona, March 2013 1/59 What we’ll do 1 THE CHROMATIC NUMBER OF A GRAPH. 2 HADWIGER’S CONJECTURE. 3 BOUNDS ON χ. 4 EDGE COLORINGS. 5 LIST COLORINGS. 6 ALGORITHMIC ASPECTS OF GRAPH COLORING. 7 APPLICATIONS OF GRAPH COLORING. 1/59 THE CHROMATIC NUMBER OF A GRAPH. 1/59 Chromatic Number Definition A k-coloring of a graph G = (V , E) is a mapping c : V → {1,..., k} such that uv ∈ E ⇒ c(u) = c(v) . G is k-colorable if there exists a k-coloring of it. χ(G) = chromatic number of G = the smallest number k such that G is k-colorable. 2/59 Graph Coloring Example: Figure: A 4-coloring of a graph k-coloring ≡ partition V = I1 ∪ . ∪ Ik , where Ij is a (possibly empty) independent set independent set = a set of pairwise non-adjacent vertices 3/59 Graph Coloring Example: Figure: A 3-coloring of the same graph k-coloring ≡ partition V = I1 ∪ . ∪ Ik , where Ij is a (possibly empty) independent set independent set = a set of pairwise non-adjacent vertices 3/59 Graph Coloring Examples: complete graphs: χ(Kn)= n. 2, if n is even; cycles: χ(Cn)= 3, if n is odd. χ(G) ≤ 2 ⇔ G is bipartite. N 4/59 Greedy Coloring How could we color, in a simple way, the vertices of a graph? Order the vertices of G linearly, say (v1,..., vn). for i = 1,..., n do c(vi ) := smallest available color end for 5/59 Greedy Coloring How many colors are used? For every vertex vi , at most d(vi ) different colors are used on its neighbors.
    [Show full text]
  • Graph Factorization from Wikipedia, the Free Encyclopedia Contents
    Graph factorization From Wikipedia, the free encyclopedia Contents 1 2 × 2 real matrices 1 1.1 Profile ................................................. 1 1.2 Equi-areal mapping .......................................... 2 1.3 Functions of 2 × 2 real matrices .................................... 2 1.4 2 × 2 real matrices as complex numbers ............................... 3 1.5 References ............................................... 4 2 Abelian group 5 2.1 Definition ............................................... 5 2.2 Facts ................................................. 5 2.2.1 Notation ........................................... 5 2.2.2 Multiplication table ...................................... 6 2.3 Examples ............................................... 6 2.4 Historical remarks .......................................... 6 2.5 Properties ............................................... 6 2.6 Finite abelian groups ......................................... 7 2.6.1 Classification ......................................... 7 2.6.2 Automorphisms ....................................... 7 2.7 Infinite abelian groups ........................................ 8 2.7.1 Torsion groups ........................................ 9 2.7.2 Torsion-free and mixed groups ................................ 9 2.7.3 Invariants and classification .................................. 9 2.7.4 Additive groups of rings ................................... 9 2.8 Relation to other mathematical topics ................................. 10 2.9 A note on the typography ......................................
    [Show full text]
  • Graph Colorings with Local Constraints — a Survey ∗
    Graph colorings with local constraints — A survey ∗ Zsolt Tuza y Latest update : September 8, 1997 Abstract Contents We survey the literature on those variants of the chro- 0 Introduction 2 matic number problem where not only a proper coloring 0.1 Standard definitions ............ 2 has to be found (i.e., adjacent vertices must not receive 0.2 Notation for vertex colorings ....... 3 the same color) but some further local restrictions are im- 0.3 Some variations ............... 3 posed on the color assignment. Mostly, the list colorings 0.4 Small uncolorable graphs ......... 3 and the precoloring extensions are considered. In one of the most general formulations, a graph 1 General results 4 G =(V,E), sets L(v) of admissible colors, and natural 1.1 Equivalent formulations .......... 4 numbers c for the vertices v ∈ V are given, and the ques- v 1.2 Complete bipartite graphs and the con- tion is whether there can be chosen a subset C(v) ⊆ L(v) struction of Haj´os ............. 4 of cardinality cv for each vertex in such a way that the sets 1.3 Typical behavior of the choice number .. 5 C(v),C(v ) are disjoint for each pair v, v of adjacent ver- 1.4 Unions of graphs and the (am, bm)- tices. The particular case of constant |L(v)| with cv =1 for all v ∈ V leads to the concept of choice number,a conjecture .................. 6 graph parameter showing unexpectedly different behavior 1.5 Graphs and their complements ...... 7 compared to the chromatic number, despite these two in- variants have nearly the same value for almost all graphs.
    [Show full text]
  • Reference List of Indexed Articles
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Discrete Mathematics 227/228 (2001) 303–447 Reference List of Indexed Articles This Reference List of Indexed Articles belongs to the Subject Index Volumes 1–200 (pp. 5–302 of this issue). 1. P. Erdös, On some extremal problems on r-graphs 1 (1971) 1–6 2. F. Harary and P.A. Ostrand, The cutting center theorem for trees 1 (1971) 7–18 3. O.J. Heilmann, D.J. Kleitman, E.H. Lieb and S. Sherman, Some positive definite functions on sets and their application to the Ising model 1 (1971) 19–27 4. G.H. Bradley, Transformation of integer programs to knapsack problems 1 (1971) 29–45 5. D. Kleitman, M. Edelberg and D. Lubell, Maximal sized antichains in partial orders 1 (1971) 47–53 6. C.J. Everett and P.R. Stein, The asymptotic number of integer stochastic matrices 1 (1971) 55–72 7. L. Nebesky, Left-right double trees 1 (1971) 73–81 8. J.W. Essam, Graph theory and statistical physics 1 (1971) 83–112 9. E.G. Whitehead Jr., Algebraic structure of chromatic graphs associated with the ramsey number N.3; 3; 3I 2/ (Note) 1 (1971) 113–114 10. E.A. Bender, A generalized q-binomial Vandermonde convolution 1 (1971) 115–119 11. J.A. Bondy, Large cycles in graphs 1 (1971) 121–132 12. J. Bosák, On the k-index of graphs 1 (1971) 133–146 14. D. de Werra, Investigations on an edge coloring problem 1 (1971) 167–179 15.
    [Show full text]