NC-Suckers-And-Identification-Key
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shorthead Redhorse Moxostoma Macrolepidotum ILLINOIS RANGE
shorthead redhorse Moxostoma macrolepidotum Kingdom: Animalia FEATURES Phylum: Chordata The shorthead redhorse has big scales, and those on Class: Actinopterygii the back and sides have dark, crescent-shaped spots Order: Cypriniformes in them. The dorsal fin is short, and its outer margin curves inward. The rear edge of the lower lip is Family: Catostomidae straight. Teeth are present in the throat. The air ILLINOIS STATUS bladder has three chambers. The back and upper sides are green-brown. The lower sides are yellow- common, native brown, and the belly is white or yellow. The caudal fin is red, and the dorsal fin is green or gray. The pectoral and pelvic fins may have an orange tinge. Breeding males have tubercles on all fins except the dorsal. Adults range from about nine to 30 inches in length. BEHAVIORS This species lives in medium-sized to large rivers that have a strong current and substantial areas without silt. It may also be present in pools of small streams. It eats mainly insects. Adults migrate from large to smaller rivers and streams to spawn. ILLINOIS RANGE © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © Uland Thomas Aquatic Habitats rivers and streams; lakes, ponds and reservoirs Woodland Habitats none Prairie and Edge Habitats none © Illinois Department of Natural Resources. 2020. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources.. -
Habitat Selection of Robust Redhorse Moxostoma Robustum
HABITAT SELECTION OF ROBUST REDHORSE MOXOSTOMA ROBUSTUM : IMPLICATIONS FOR DEVELOPING SAMPLING PROTOCOLS by DIARRA LEMUEL MOSLEY (Under the Direction of Cecil A. Jennings) ABSTRACT Robust Redhorse, described originally in 1870, went unnoticed until 1991 when they were rediscovered in the lower Oconee River, Georgia. This research evaluated one hypothesis (habitat use) for explaining the absence of juveniles (30 mm – 410 mm TL) from samples of wild-caught robust redhorse. Two mesocosms were used to determine if juvenile robust redhorse use available habitats proportionately. Pond-reared juveniles were exposed to four, flow-based habitats (eddies = - 0.12 to -0.01 m/s, slow flow = 0.00 to 0.15 m/s, moderate flow = 0.16 to 0.32 m/s, and backwaters). Location data were recorded for each fish, and overall habitat use was evaluated with a Log-Linear Model. In winter, the fish preferred eddies and backwaters. In early spring the fish preferred eddies. Catch of wild juveniles may be improved by sampling eddies and their associated transitional areas. INDEX WORDS: backwaters, catostomid, eddies, habitat selection, juvenile fish, mesocosm, Moxostoma robustum, Oconee River, robust redhorse HABITAT SELECTION OF ROBUST REDHORSE MOXOSTOMA ROBUSTUM : IMPLICATIONS FOR DEVELOPING SAMPLING PROTOCOLS by DIARRA LEMUEL MOSLEY BSFR, University of Georgia, 1998 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2006 © 2006 Diarra Lemuel Mosley All Rights Reserved HABITAT SELECTION OF ROBUST REDHORSE MOXOSTOMA ROBUSTUM : IMPLICATIONS FOR DEVELOPING SAMPLING PROTOCOLS by DIARRA LEMUEL MOSLEY Major Professor: Cecil A. -
PHYLOGENY and ZOOGEOGRAPHY of the SUPERFAMILY COBITOIDEA (CYPRINOIDEI, Title CYPRINIFORMES)
PHYLOGENY AND ZOOGEOGRAPHY OF THE SUPERFAMILY COBITOIDEA (CYPRINOIDEI, Title CYPRINIFORMES) Author(s) SAWADA, Yukio Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 28(2), 65-223 Issue Date 1982-03 Doc URL http://hdl.handle.net/2115/21871 Type bulletin (article) File Information 28(2)_P65-223.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP PHYLOGENY AND ZOOGEOGRAPHY OF THE SUPERFAMILY COBITOIDEA (CYPRINOIDEI, CYPRINIFORMES) By Yukio SAWADA Laboratory of Marine Zoology, Faculty of Fisheries, Bokkaido University Contents page I. Introduction .......................................................... 65 II. Materials and Methods ............... • • . • . • . • • . • . 67 m. Acknowledgements...................................................... 70 IV. Methodology ....................................•....•.........•••.... 71 1. Systematic methodology . • • . • • . • • • . 71 1) The determinlttion of polarity in the morphocline . • . 72 2) The elimination of convergence and parallelism from phylogeny ........ 76 2. Zoogeographical methodology . 76 V. Comparative Osteology and Discussion 1. Cranium.............................................................. 78 2. Mandibular arch ...................................................... 101 3. Hyoid arch .......................................................... 108 4. Branchial apparatus ...................................•..••......••.. 113 5. Suspensorium.......................................................... 120 6. Pectoral -
Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5
Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5 Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5 Prepared by: Amy J. Benson, Colette C. Jacono, Pam L. Fuller, Elizabeth R. McKercher, U.S. Geological Survey 7920 NW 71st Street Gainesville, Florida 32653 and Myriah M. Richerson Johnson Controls World Services, Inc. 7315 North Atlantic Avenue Cape Canaveral, FL 32920 Prepared for: U.S. Fish and Wildlife Service 4401 North Fairfax Drive Arlington, VA 22203 29 February 2004 Table of Contents Introduction ……………………………………………………………………………... ...1 Aquatic Macrophytes ………………………………………………………………….. ... 2 Submersed Plants ………...………………………………………………........... 7 Emergent Plants ………………………………………………………….......... 13 Floating Plants ………………………………………………………………..... 24 Fishes ...…………….…………………………………………………………………..... 29 Invertebrates…………………………………………………………………………...... 56 Mollusks …………………………………………………………………………. 57 Bivalves …………….………………………………………………........ 57 Gastropods ……………………………………………………………... 63 Nudibranchs ………………………………………………………......... 68 Crustaceans …………………………………………………………………..... 69 Amphipods …………………………………………………………….... 69 Cladocerans …………………………………………………………..... 70 Copepods ……………………………………………………………….. 71 Crabs …………………………………………………………………...... 72 Crayfish ………………………………………………………………….. 73 Isopods ………………………………………………………………...... 75 Shrimp ………………………………………………………………….... 75 Amphibians and Reptiles …………………………………………………………….. 76 Amphibians ……………………………………………………………….......... 81 Toads and Frogs -
Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86
2009. Proceedings of the Indiana Academy of Science 1 1 8(2): 143—1 86 THE "LOST" JORDAN AND HAY FISH COLLECTION AT BUTLER UNIVERSITY Carter R. Gilbert: Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA ABSTRACT. A large fish collection, preserved in ethanol and assembled by Drs. David S. Jordan and Oliver P. Hay between 1875 and 1892, had been stored for over a century in the biology building at Butler University. The collection was of historical importance since it contained some of the earliest fish material ever recorded from the states of South Carolina, Georgia, Mississippi and Kansas, and also included types of many new species collected during the course of this work. In addition to material collected by Jordan and Hay, the collection also included specimens received by Butler University during the early 1880s from the Smithsonian Institution, in exchange for material (including many types) sent to that institution. Many ichthyologists had assumed that Jordan, upon his departure from Butler in 1879. had taken the collection. essentially intact, to Indiana University, where soon thereafter (in July 1883) it was destroyed by fire. The present study confirms that most of the collection was probably transferred to Indiana, but that significant parts of it remained at Butler. The most important results of this study are: a) analysis of the size and content of the existing Butler fish collection; b) discovery of four specimens of Micropterus coosae in the Saluda River collection, since the species had long been thought to have been introduced into that river; and c) the conclusion that none of Jordan's 1878 southeastern collections apparently remain and were probably taken intact to Indiana University, where they were lost in the 1883 fire. -
Creek Chubsucker
Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Erimyzon oblongus (Creek Chubsucker) Priority 3 Species of Greatest Conservation Need (SGCN) Class: Actinopterygii (Ray-finned Fishes) Order: Cypriniformes (Carps, Minnows, Loaches And Allies) Family: Catostomidae (Suckers) General comments: none Species Conservation Range Maps for Creek Chubsucker: Town Map: Erimyzon oblongus_Towns.pdf Subwatershed Map: Erimyzon oblongus_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: Erimyzon oblongus is listed as a species of Special Concern in Maine. Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: NA High Climate Change Vulnerability: NA Understudied rare taxa: Recently documented or poorly surveyed rare species for which risk of extirpation is potentially high (e.g. few known occurrences) but insufficient data exist to conclusively assess distribution and status. *criteria only qualifies for Priority 3 level SGCN* Notes: few known occurrences - all clustered in western ME; poor understanding of basic ecology Historical: NA Culturally Significant: NA Habitats Assigned to Creek Chubsucker: Formation Name Freshwater Aquatic Macrogroup Name Lakes and Ponds Habitat System Name: Lakes and Ponds Macrogroup - Unknown habitat system Macrogroup Name Rivers and Streams Habitat System Name: Headwaters and Creeks Habitat System Name: Medium River Habitat System Name: Small River Stressors Assigned to Creek Chubsucker: -
Pennsylvania Fishes IDENTIFICATION GUIDE
Pennsylvania Fishes IDENTIFICATION GUIDE Editor’s Note: During 2018, Pennsylvania Angler & the status of fishes in or introduced into Pennsylvania’s Boater magazine will feature select common fishes of major watersheds. Pennsylvania in each issue, providing scientific names and The table below denotes any known occurrence. WATERSHEDS SPECIES STATUS E O G P S D Freshwater Eels (Family Anguillidae) American Eel (Anguilla rostrata) N N N N Species Status Herrings (Family Clupeidae) EN = Endangered Blueback Herring (Alosa aestivalis) N TH = Threatened Skipjack Herring (Alosa chrysochloris) DL N Hickory Shad (Alosa mediocris) EN N C = Candidate Alewife (Alosa pseudoharengus) I N N American Shad (Alosa sapidissima) N N EX = Believed extirpated Atlantic Menhaden (Brevoortia tyrannus) N DL = Delisted (removed from the Gizzard Shad (Dorosoma cepedianum) N N N N endangered, threatened or candidate species list due to significant Suckers (Family Catostomidae) expansion of range and abundance) River Carpsucker (Carpiodes carpio) N Quillback (Carpiodes cyprinus) N N N N Highfin Carpsucker (Carpiodes velifer) EX N Watersheds Longnose Sucker (Catostomus catostomus) EN N N White Sucker (Catostomus commersonii) N N N N N N E = Lake Erie Blue Sucker (Cycleptus elongatus) EX N O = Ohio River Eastern Creek Chubsucker (Erimyzon oblongus) N N N Lake Chubsucker (Erimyzon sucetta) EX N G = Genesee River Northern Hogsucker (Hypentelium nigricans) N N N N N X Smallmouth Buffalo (Ictiobus bubalus) DL N N P = Potomac River Bigmouth Buffalo (Ictiobus cyprinellus) -
Kyfishid[1].Pdf
Kentucky Fishes Kentucky Department of Fish and Wildlife Resources Kentucky Fish & Wildlife’s Mission To conserve, protect and enhance Kentucky’s fish and wildlife resources and provide outstanding opportunities for hunting, fishing, trapping, boating, shooting sports, wildlife viewing, and related activities. Federal Aid Project funded by your purchase of fishing equipment and motor boat fuels Kentucky Department of Fish & Wildlife Resources #1 Sportsman’s Lane, Frankfort, KY 40601 1-800-858-1549 • fw.ky.gov Kentucky Fish & Wildlife’s Mission Kentucky Fishes by Matthew R. Thomas Fisheries Program Coordinator 2011 (Third edition, 2021) Kentucky Department of Fish & Wildlife Resources Division of Fisheries Cover paintings by Rick Hill • Publication design by Adrienne Yancy Preface entucky is home to a total of 245 native fish species with an additional 24 that have been introduced either intentionally (i.e., for sport) or accidentally. Within Kthe United States, Kentucky’s native freshwater fish diversity is exceeded only by Alabama and Tennessee. This high diversity of native fishes corresponds to an abun- dance of water bodies and wide variety of aquatic habitats across the state – from swift upland streams to large sluggish rivers, oxbow lakes, and wetlands. Approximately 25 species are most frequently caught by anglers either for sport or food. Many of these species occur in streams and rivers statewide, while several are routinely stocked in public and private water bodies across the state, especially ponds and reservoirs. The largest proportion of Kentucky’s fish fauna (80%) includes darters, minnows, suckers, madtoms, smaller sunfishes, and other groups (e.g., lam- preys) that are rarely seen by most people. -
Aquatic Species Mapping in North Carolina Using Maxent
Aquatic Species Mapping in North Carolina Using Maxent Mark Endries U.S. Fish and Wildlife Service, Ecological Services Field Office, Asheville North Carolina INTRODUCTION The mission of the U.S. Fish and Wildlife Service (Service) is to work with others to conserve, protect, and enhance fish, wildlife, and plants and their habitats for the continuing benefit of the American people. The Service is the lead governmental agency involved in the recovery of federally endangered and threatened species in freshwater and terrestrial habitats. To meet its recovery and protection goals, the Service: (1) works with other federal agencies to minimize or eliminate impacts to fish, wildlife, and plants from projects they authorize, fund, or carry out; (2) supports the improvement of fish and wildlife habitat on private land through technical and financial assistance; and (3) provides scientific knowledge and analyses to help guide the conservation, development, and management of the Nation’s fish and wildlife resources. Freshwater ecosystems present unique management challenges due to their linear spatial orientation and their association with upland habitat variables. On broad scales, the movement of aquatic species within the stream environment is limited to upstream and downstream migration. The inability of aquatic species to circumnavigate man-made obstacles causes them to be particularly vulnerable to habitat fragmentation. Habitat fragmentation has a major influence on species distribution and complicates distribution mapping. To better understand the spatial distributions of freshwater aquatic species in North Carolina, the Service created predictive habitat maps for 226 different aquatic species using geographic information systems (GIS) and maximum entropy (Maxent) modeling. These maps were derived by comparing known species occurrences with a suite of stream- or land-cover-derived environmental variables. -
Assessment and Public Outreach of Low Water Level Impacts on Fish
2 St. Lawrence Drive Cornwall, Ontario K6H 4Z1 (613) 936-6620 Assessment and public outreach of low water level impacts on fish community and aquatic habitat in Lake St. Lawrence Authors Project Supervisor: March 29, 2019 Matt Windle Aquatic Biologist E: [email protected] Project Lead: Jesse St John Environmental Field/GIS Technician E: [email protected] 1 Contents INTRODUCTION ............................................................................................................................... 3 METHODS ........................................................................................................................................ 4 Study Area ................................................................................................................................... 4 Fish Community Data .................................................................................................................. 4 Critical habitat requirements of life history stages ..................................................................... 6 Water Level Data ......................................................................................................................... 6 RESULTS & DISCUSSION ................................................................................................................... 7 ACKNOWLEDGEMENTS ................................................................................................................. 10 REFERENCES ................................................................................................................................. -
Notchlip Redhorse Moxostoma Collapsum
Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Notchlip Redhorse Moxostoma collapsum Contributor (2005): Forest Sessions, Scott Lamprecht, and Jason Bettinger [SCDNR] Reviewed and Edited (2013): Mark Scott, Andrew R. Gelder, and M. Troy Cribb [SCDNR] DESCRIPTION Taxonomy and Basic Description The Notchlip Redhorse is a member of the family Catostomidae and belongs to the genus Moxostoma. M. collapsum was formerly downgraded to a race of M. anisurum, the Silver Redhorse (Jenkins 1970). Jenkins and Burkhead (1994) reported that the Atlantic slope populations of M. anisurum appear to have a more elongate body form, smaller head parts, and perhaps a tendency to occupy smaller streams than the Mississippi Basin Silver Redhorse. Further, Warren et al. (2000) noted a forthcoming taxonomic rearrangement and recognized M. collapsum as a species distinct from M. anisurum (Nelson et al. 2004). Adult Notchlip Redhorse range in length from 350 to 450 mm (14 to 18 in.) and have a moderate to high-back form. These fish have a V-shaped lower lip with lip surfaces that are semipapillose. The dorsal fin has a slightly concave or straight margin and usually 14 or 15 dorsal rays. The upper tip of the caudal fin is often pointed with the lower tip usually rounded. The back is tan, brown or olive. The sides can be shiny silver, yellow, gold, copper, or mixtures of these. Scale bases are a pale iridescent green. Pale red can be present in the dorsal and caudal fins with orange-red present in the lower fins (Jenkins and Burkhead 1994). Status The Notchlip Redhorse is currently considered stable throughout its native range (Warren et al. -
Phylogeny of Suckers (Teleostei: Cypriniformes: Catostomidae): Further Evidence of Relationships Provided by the Single-Copy Nuclear Gene IRBP2
Zootaxa 3586: 195–210 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:66B1A0F0-5912-4C52-A9EA-D7265024064B Phylogeny of suckers (Teleostei: Cypriniformes: Catostomidae): further evidence of relationships provided by the single-copy nuclear gene IRBP2 WEI-JEN CHEN1 & RICHARD L. MAYDEN2* 1Institute of Oceanography, National Taiwan University, No.1 Sec. 4 Roosevelt Rd. Taipei 10617, Taiwan. E-mail: [email protected] 2Department of Biology, 3507 Laclede Ave, Saint Louis University, St. Louis, Missouri, 63103 USA. E-mail: [email protected] *Corresponding author: R.L. Mayden Abstract The order Cypriniformes and family Catostomidae, the Holarctic suckers, have received considerable phylogenetic attention in recent years. These studies have provided contrasting phylogenies and classifications to historical, morphology-based phylogenetic and prephylogenetic hypotheses of relationships of species and the naturalness of hypothesized genera, tribes, and subfamilies. To date, nearly all molecular work on catostomids has been done using DNA sequence variation of mitochondrial genes. In this study, we add to our previous investigations to identify single-copy nuclear gene markers for diploid and polyploid cypriniforms, and to expand sequences of nuclear IRBP2 gene to 1,933 bp for 23 catostomid species. This effort expands our previous studies using only partial sequences of 849 bp. The extended gene fragment consists of nearly the complete gene across exon1 to exon 4 and is used in two analyses to infer phylogenetic relationships of the currently, or formerly, recognized genera, tribes, and subfamilies. One analysis includes 23 ingroup species for which the larger fragment of IRBP2 could be obtained; these taxa were also included in a second analysis of 67 samples of 52 species for the shorter fragment.