<<

Layered structures: transfer matrix formalism Petr Kužel • Interfaces between LHI media • Transfer matrix formalism • Practically only one formula is to be known in order to calculate any structure • Applications: • Antireflective coatings • , Chirped mirrors • Laser output couplers • Beam-splitters • Beam-splitting mirrors • Interference filters Transfer matrix formalism E TE polarization H + − E k k 0 0 α α 0 0 n0 H E = + Ei0 r0 E01 Et1 Es1 y E01 E η H = ()E − E γ (tangential) Et1 s1 0 01 t1 s1 n1 x

α z 1 E

H − + E = E + E k k 12 ()i1 r1 (tangential) E 1 1 i1 Er1 η = − γ 0H12 Ei1 Er1 E12

n2 …

− δ  γ = cosα  E = E e i  n1 1  i1 t1 2π −iδ δ = d k = n d cosα  E = E e  1 z1 λ 1 1 1  s1 r1 Introduction of transfer matrix

 isin δ   E01   cosδ   E12    =  γ    η H   η H  0 01  iγ sin δ cosδ   0 12  Transfer matrix connects tangential fields on both ends of a layer For j-th layer:  isin δ   m m   cosδ j  =  11 12  = j γ M    j  m21 m22   γ δ δ  i j sin j cos j 

For the whole structure:

 E   E +   E +   01  = M M M  N ,N 1  = M  N ,N 1  η  1 2 ! N η  tot η   0H01   0H N ,N +1   0H N ,N +1  Reflection and transmission coefficients

 E   E + E   E   E +   01  =  i0 r0  = M  t  = M  N ,N 1  η   − γ  tot  γ  tot η   0H01  (Ei0 Er0 ) 0   t Et   0H N ,N +1 

γ m + γ γ m − m − γ m r = 0 11 0 t 12 21 t 22 γ + γ γ + + γ 0m11 0 t m12 m21 t m22 2γ t = 0 γ + γ γ + + γ 0m11 0 t m12 m21 t m22

γ = α δ = ω α polarisation TE: j n j cos j j n j d j cos j / c γ = α δ = ω α polarisation TM: j n j cos j j n j d j cos j / c γ = δ = ω normal incidence: j n j j n j d j / c Generalization

The formalism is also valid for − κ • absorbing layers; j-th layer absorbs: Nj = nj i j N 2 − n2 sin2 α α = j 0 0 cos j N j • layers where total reflection occurs; total reflection on j-th layer:

n sin 2 α − n2 α = − 0 0 j cos j i n j δ γ ∆ δ Γ γ j and j become imaginary; one introduces: j = i j and j = i j, ∆ Γ where j and j are real. The transfer matrix becomes:

 sh ∆   ch ∆ i j  = j Γ M j  j  − Γ ∆ ∆   i j sh j ch j  Applications

Optical elements and coatings are designed for given incidence angle Specific layer thicknesses are frequently used in stacks: • quarter-wave (λ/4) layer π π δ = 2 α =  0 i γ n1d1 cos 1 M =   λ %"$ "# 2  γ  λ 4 i 0  •half-wave (λ/2) layer

2π −1 0  δ = n d cosα = π M =   λ %1"$1 "#1  0 −1 λ 2 • quarter-wave (λ/4-λ/4) bilayer

 0 i γ   0 i γ  − γ γ 0  M =  1   2  =  2 1   γ   γ   − γ γ  i 1 0  i 2 0   0 1 2  Antireflective single layer Let’s try λ/4-layer (then waves with λ/2 phase delay will interfere)

γ = 1  0 i 1  n0 M =   γ λ/4 = i 1 0  MgF2 n1 1.38

= BK7 ns 1.51 γ γ − γ2 n − n2 r = 0 s 1 = s 1 γ γ + γ2 + 2 0 s 1 ns n1 6

ns = 1.51

n = n 4 glass (not treated) 1 s Antireflective coating (for 550 nm) R (%) λ/4 Broadband 2 Less efficient (no degree 0 of freedom for n1) 400 500 600 700 800 Wavelength (nm) Antireflective bilayer

• quarter-wave (λ/4-λ/4) bilayer − γ γ  2 1 0 λ   /4 CeF3 n = 1.65 M =   1 − γ γ λ = 2.1  0 1 2  /4 ZrO2 n2

2 2 2 2 BK7 glass n = 1.51 γ γ − γ γ n − n n s r = 2 0 s 1 = 2 s 1 γ2γ + γ γ2 2 + 2 2 0 s 1 n2 nsn1 6 n2 n = 1.51 = n s n s 1 glass (not treated) Antireflective coating 4 (for 550 nm) V-like shape (narrow λ/4

R (%) λ/4-λ/4 frequency range) 2 More efficient (one degree of freedom for n1, n2) 0 400 500 600 700 800 Wavelength (nm) Broadband AR coating

• trilayer structure (λ/4-λ/4-λ/4)  γ   0 − i 2   γ γ  M = 1 3  γ γ  λ/4 = 1 3 n 1.38 − i 0 1  γ    λ = 2 /4 n2 2.0 λ = /4 n3 1.8 γ2γ γ − γ2γ2 n2n − n2n2 r = 2 0 s 1 3 = 2 s 1 3 γ2γ γ + γ2γ2 n2n + n2n2 2 0 s 1 3 2 s 1 3 = BK7 glass ns 1.51

n1n3 = ns n2 Broadband AR coating

• trilayer structure (λ/4-λ/2-λ/4): similar to a quarter-wave bilayer at the resonant wavelength • half-wave layer helps to extend the antireflective range

γ γ λ =   0 /4 1.38 n M =  3 1  1  γ γ   0 1 3  λ = /2 n2 2.2

2 2 2 2 − γ γ + γ γ n n − n λ/4 n = 1.7 r = 3 0 s 1 = s 1 3 3 γ2γ + γ γ2 2 + 2 3 0 s 1 n3 nsn1 BK7 glass n = 1.51 n3 = s ns n1 Antireflective coating: summary

10 Antireflective coating for 550 nm λ 8 /4 λ/4-λ/4 λ/4-λ/2 n = 1.51 6 λ/4-λ/4-λ/4 s λ/4-λ/2-λ/4

R (%) glass (not treated) 4

2

0 400 500 600 700 800 Wavelength (nm) Dielectric mirrors λ /4 n 1 bilayer (n << n ): L H H λ /4 n − n n 0  L M =  L H   −   0 n n  n H L H

N bilayers: nL

()− n n N 0  M =  L H   N  ()−  0 nH nL 

n H

Reflectivity: nL

2  ()1 n ()n n 2N −1 R =  s L H  n  ()()2N +  s  1 ns nL nH 1 Dielectric mirrors: example

1 1 0.6 0.8 0.2 -0.2

Phase change -0.6 0.6 -1 0.9×104 1.1×104 1.3×104 1.5×104

R Wavenumber (cm-1) 0.4 Dielectric mirrors for 800 nm

Number of bilayers (ZnS/MgF2): 0.2 20 8 3 0 400 600 800 1000 1200 1400 1600 Wavelength (nm) Chirped dielectric mirrors The resonant wavelength is linearly tuned along the stack of bilayers • Different wavelengths are reflected at different depths → different optical paths • Adding or compensating of a chirp of the pulses

0.3 Mirrors for 800 nm (12500 cm-1) (20 bilayers) 0.2 Standard dielectric Chirped mirror (10 nm step) 0.1

0

-0.1 Departure from the linear phase shift phase linear the from Departure -0.2 1.1×104 1.2×104 1.3×104 1.4×104 Wavenumber (cm-1) Laser

λ = 514.5 nm

→ R0 1 Rx < 1

Rx

Reflective (~ 90%) coating

AR coating Beamsplitter

n , d R R 20%

n , d 1 1 45° n s n , d 2 2

80% Beamsplitting mirror

• Separation of harmonic frequencies (e.g. Nd:YAG fundamental beam at 1064 nm and its second harmonic at 532 nm) • Long-pass or cut-off filters Example of solution: 1) Stack of λ/4 bilayers forming a dielectric mirror for 1064 nm These layers are λ/2 for the second harmonics so it passes through unchanged 2) We add below an AR coating for 532 nm 1064 nm component does not penetrate down to these layers Result: 1064 nm is reflected, 532 nm is transmitted • Sometimes a detuning of a resonant wavelength is used in several layers of the HR coating: it can smooth the unwanted interference maxima and minima. Interference band-pass filters

Contain: • Stacks of high-reflecting bilayers • Antireflective coatings • Fabry-Pérot cavities • Detuning of the resonant wavelength is also often used for smoothing of the interferences