Wang Thesis V2

Total Page:16

File Type:pdf, Size:1020Kb

Wang Thesis V2 Social Saliency: Visual Psychophysics and Single-Neuron Recordings in Humans ! ! Thesis by Shuo Wang ! ! In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ! ! ! ! ! ! CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2014 (Defended May 27, 2014) !ii ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! © 2014 Shuo Wang All Rights Reserved !iii ACKNOWLEDGEMENTS My life at Caltech started in 2008. I was fortunate to get a SURF fellowship and worked with Naotsugu Tsuchiya and Ralph Adolphs over the summer. I really enjoyed the research environment at Caltech and learnt a lot from Nao. It was a productive and determinative summer for me, after which I decided to return to Caltech. Again, I was fortunate to get a chance to work with Nao and Ralph as a research assistant until I started officially as a graduate student in 2010. I came to Ralph’s lab with a passion for science. Ralph gave me the anomalous freedom to decide what I would like to work on and to do the projects in my own way. Ralph let me explore all the fields of my interest while always offering me inspiring guidance when I was wandering around with puzzled mind. Freedom came from his trust in the student, while guidance resulted in the trust of the student in him. I have never been intimidated by any hassle or difficulty during my PhD, because he is always supportive as an advisor. Besides the academic advice, Ralph is also broad-minded and outgoing, and always ensures that our PhD study is not boring, with numerous lab parties, camping trips and movies. I cannot imagine such a great advisor anywhere else. This thesis would not have been written without the advice and support of Ralph. Nao was my mentor for the first few projects. I remember all the exciting moments when our experiments worked out. I learnt a lot of visual psychophysics and consciousness from Nao and was strongly influenced by his way of doing research. Without Nao’s help, I could not have published my first paper. I returned to Singapore and worked with Annett Schirmer in the summer of 2009 and have been collaborating with Annett since then. I learnt how to do EEG experiments and analysis, which is a very valuable experience. Christof Koch was my co-advisor. Nao introduced me to Christof to work on a psychophysics project of optic flow. I am very happy that this project eventually turned !iv out to be a paper and became a chapter of my thesis. I would like to thank Christof for all his support and advice. During my rotation, I am very grateful to have had an experience to work on monkeys with Doris Tsao, even though our idea of using fMRI to probe unconscious pressing of faces in face patches failed eventually after struggling for half a year. I thank Shay Ohayon for helping me to set up the experiment and Ty Basinger for helping me train the monkey very hard. I am also grateful to work with John O’Doherty and Mimi Liljeholm on human fMRI, which is a very valuable experience for me. I thank Mimi for teaching me the basics of analyzing fMRI data. I have been working with Ueli Rutishauser on single-unit recordings. I am very happy that our paper has finally been accepted to PNAS after a long struggle. I thank Ueli for teaching me all the single unit analysis and discussing with me all the interesting ideas. I am very impressed by his passion in science and his meticulousness. I thank Qi Zhao for teaching me the computational modeling of saliency and I have been collaborating with her on various saliency projects. I hope our current work will be published in the near future. I have been fortunate to be surrounded my colleagues and talented peers from the CNS program, especially my classmates Bo Chen, Nikki Sullivan, Soyoung Park, Yong-Jun Lin and Dan McNamee. We had many mentally stimulating discussions and I have very cheerful memories of hanging out with my classmates. I thank all of my colleagues in the Adolphs lab and Koch lab, past and present, for their generous help. I am grateful to my thesis committee: Ralph Adolphs, Christof Koch, John O’Doherty, Shinsuke Shimojo, Doris Tsao and Ueli Rutishauser. Finally, I would like to thank my parents for their generous support and encouragement. !v ABSTRACT My thesis studies how people pay attention to other people and the environment. How does the brain figure out what is important and what are the neural mechanisms underlying attention? What is special about salient social cues compared to salient non- social cues? In Chapter I, I review social cues that attract attention, with an emphasis on the neurobiology of these social cues. I also review neurological and psychiatric links: the relationship between saliency, the amygdala and autism. The first empirical chapter then begins by noting that people constantly move in the environment. In Chapter II, I study the spatial cues that attract attention during locomotion using a cued speeded discrimination task. I found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The more ecologically valid the motion features became (e.g., temporal expansion of each object, spatial depth structure implied by distribution of the size of the objects), the stronger the attentional effects. However, compared to inanimate objects and cues, people preferentially attend to animals and faces, a process in which the amygdala is thought to play an important role. To directly compare social cues and non-social cues in the same experiment and investigate the neural structures processing social cues, in Chapter III, I employ a change detection task and test four rare patients with bilateral amygdala lesions. All four amygdala patients showed a normal pattern of reliably faster and more accurate detection of animate stimuli, suggesting that advantageous processing of social cues can be preserved even without the amygdala, a key structure of the “social brain”. People not only attend to faces, but also pay attention to others’ facial emotions and analyze faces in great detail. Humans have a dedicated system for processing faces and the amygdala has long been associated with a key role in recognizing facial emotions. In Chapter IV, I study the neural mechanisms of emotion perception and find that single neurons in the human amygdala are selective for subjective judgment of others’ emotions. Lastly, people typically pay special attention to faces and people, but !vi people with autism spectrum disorders (ASD) might not. To further study social attention and explore possible deficits of social attention in autism, in Chapter V, I employ a visual search task and show that people with ASD have reduced attention, especially social attention, to target-congruent objects in the search array. This deficit cannot be explained by low-level visual properties of the stimuli and is independent of the amygdala, but it is dependent on task demands. Overall, through visual psychophysics with concurrent eye- tracking, my thesis found and analyzed socially salient cues and compared social vs. non- social cues and healthy vs. clinical populations. Neural mechanisms underlying social saliency were elucidated through electrophysiology and lesion studies. I finally propose further research questions based on the findings in my thesis and introduce my follow-up studies and preliminary results beyond the scope of this thesis in the very last section, Future Directions. !vii TABLE OF CONTENTS Acknowledgements ...........................................................................................................iii Abstract ...............................................................................................................................v Table of Contents .............................................................................................................vii List of Figures ..................................................................................................................xii List of Tables ...................................................................................................................xiv Chapter I: General Introduction ......................................................................................1 1.1 Overview ........................................................................................................................1 1.2 Socially salient cues .......................................................................................................2 1.2.1 Eye gaze ......................................................................................................................3 1.2.2 Faces ...........................................................................................................................5 1.2.3 Head direction .............................................................................................................7 1.2.4 Finger gestures ............................................................................................................7 1.2.5 Postures, actions and biological motion ......................................................................8 1.2.6 Personal distance .........................................................................................................9 1.2.7 Social touch .................................................................................................................9 1.2.8 Social rewards ...........................................................................................................10
Recommended publications
  • Neural Construction of Conscious Perception
    Neural construction of conscious perception Thesis by Janis Karan Hesse In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 (Defended May 28th, 2020) ii 2020 Janis Hesse ORCID: 0000-0003-0405-8632 iii ACKNOWLEDGEMENTS I'd like to thank Doris Tsao for being an incredible advisor and undepletable source of ideas, advice and inspiration, for sharing her passion for science with me, and giving me the courage to ask big questions. I am very happy about the choice of my thesis committee. Markus Meister, Ueli Rutishauser, and Ralph Adolphs contributed substantially by providing useful ideas, discussions, and criticisms throughout this thesis. I want to thank current and past members of the Tsao lab, including Varun Wadia, Nicole Schweers, Audo Flores, Pinglei Bao, Liang She, Steven Le Chang, Xueqi Cheng Shay Ohayon, Tomo Sato, Joseph Wekselblatt, Francisco Luongo, Lu Liu, Anne Martin, Jessa Alexander, Erin Koch, Jialiang Lu, Yuelin Shi, Alex Farhang, Irene Caprara, Frank Lanfranchi, Lindsay Salay, Hongsun Guo, Abriana Sustaita, and Sebastian Moeller, who have all been very willing to offer me help whenever I needed, taught me the different techniques in the lab, and gave me great comments, ideas and discussions. I would also like to note that the work on human epilepsy patients described in Chapter VI is as much of Varun Wadia's work as it is mine. I am grateful to have started my PhD with such a lovely cohort. My PhD would not have been as fun without Mason McGill, Vineet Augustine, Gabriela Tavares, and Ryan Cho.
    [Show full text]
  • The Physiology and Computation of Pyramidal Neurons
    The Physiology and Computation of Pyramidal Neurons Thesis by Adam Shai In Partial Fulfillment of the Requirements for the degree of Bioengineering CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2016 (Defended December 8, 2015) ii © 2016 Adam Shai All Rights Reserved iii ACKNOWLEDGEMENTS “Sitting in the gaudy radiance of those windows hearing the organ play and the choir sing, his mind pleasantly intoxicated from exhaustion, Daniel experienced a faint echo of what it must be like, all the time, to be Isaac Newton: a permanent ongoing epiphany, an endless immersion in lurid radiance, a drowning in light, a ringing of cosmic harmonies in the ears.” Neal Stephenson in Quicksilver Sometimes it feels as if graduate school was designed specifically to keep a certain type of soul happy. Those of us whose obsessions tend to overtake polite conversation, betraying either a slight social ineptitude or quirky personality trait, depending on who you ask, tend to find a home in the academic life. That such a setting was afforded to me requires my unrelenting thanks. I cannot think of a more joyous situation than the last six years of my life, where I was expected and able to be thinking intensely about what I wanted to think about. I came to Caltech primarily as a result of an interesting conversation with Christof Koch, about consciousness, quantum mechanics, and art, when I first visited during the winter of 2009. That he became my advisor guaranteed that I would be cared for during my graduate studies. Christof takes the calling of Doktorvater seriously. The environment of K-lab, by Christof’s example and design, was one of intense intellectual playfulness.
    [Show full text]
  • Dynamics of Excitatory-Inhibitory Neuronal Networks With
    I (X;Y) = S(X) - S(X|Y) in c ≈ p + N r V(t) = V 0 + ∫ dτZ 1(τ)I(t-τ) P(N) = 1 V= R I N! λ N e -λ www.cosyne.org R j = R = P( Ψ, υ) + Mγ (Ψ, υ) σ n D +∑ j n k D k n MAIN MEETING Salt Lake City, UT Feb 27 - Mar 2 ................................................................................................................................................................................................................. Program Summary Thursday, 27 February 4:00 pm Registration opens 5:30 pm Welcome reception 6:20 pm Opening remarks 6:30 pm Session 1: Keynote Invited speaker: Thomas Jessell 7:30 pm Poster Session I Friday, 28 February 7:30 am Breakfast 8:30 am Session 2: Circuits I: From wiring to function Invited speaker: Thomas Mrsic-Flogel; 3 accepted talks 10:30 am Session 3: Circuits II: Population recording Invited speaker: Elad Schneidman; 3 accepted talks 12:00 pm Lunch break 2:00 pm Session 4: Circuits III: Network models 5 accepted talks 3:45 pm Session 5: Navigation: From phenomenon to mechanism Invited speakers: Nachum Ulanovsky, Jeffrey Magee; 1 accepted talk 5:30 pm Dinner break 7:30 pm Poster Session II Saturday, 1 March 7:30 am Breakfast 8:30 am Session 6: Behavior I: Dissecting innate movement Invited speaker: Hopi Hoekstra; 3 accepted talks 10:30 am Session 7: Behavior II: Motor learning Invited speaker: Rui Costa; 2 accepted talks 11:45 am Lunch break 2:00 pm Session 8: Behavior III: Motor performance Invited speaker: John Krakauer; 2 accepted talks 3:45 pm Session 9: Reward: Learning and prediction Invited speaker: Yael
    [Show full text]
  • Alumni Director Cover Page.Pub
    Harvard University Program in Neuroscience History of Enrollment in The Program in Neuroscience July 2018 Updated each July Nicholas Spitzer, M.D./Ph.D. B.A., Harvard College Entered 1966 * Defended May 14, 1969 Advisor: David Poer A Physiological and Histological Invesgaon of the Intercellular Transfer of Small Molecules _____________ Professor of Neurobiology University of California at San Diego Eric Frank, Ph.D. B.A., Reed College Entered 1967 * Defended January 17, 1972 Advisor: Edwin J. Furshpan The Control of Facilitaon at the Neuromuscular Juncon of the Lobster _______________ Professor Emeritus of Physiology Tus University School of Medicine Albert Hudspeth, M.D./Ph.D. B.A., Harvard College Entered 1967 * Defended April 30, 1973 Advisor: David Poer Intercellular Juncons in Epithelia _______________ Professor of Neuroscience The Rockefeller University David Van Essen, Ph.D. B.S., California Instute of Technology Entered 1967 * Defended October 22, 1971 Advisor: John Nicholls Effects of an Electronic Pump on Signaling by Leech Sensory Neurons ______________ Professor of Anatomy and Neurobiology Washington University David Van Essen, Eric Frank, and Albert Hudspeth At the 50th Anniversary celebraon for the creaon of the Harvard Department of Neurobiology October 7, 2016 Richard Mains, Ph.D. Sc.B., M.S., Brown University Entered 1968 * Defended April 24, 1973 Advisor: David Poer Tissue Culture of Dissociated Primary Rat Sympathec Neurons: Studies of Growth, Neurotransmier Metabolism, and Maturaon _______________ Professor of Neuroscience University of Conneccut Health Center Peter MacLeish, Ph.D. B.E.Sc., University of Western Ontario Entered 1969 * Defended December 29, 1976 Advisor: David Poer Synapse Formaon in Cultures of Dissociated Rat Sympathec Neurons Grown on Dissociated Rat Heart Cells _______________ Professor and Director of the Neuroscience Instute Morehouse School of Medicine Peter Sargent, Ph.D.
    [Show full text]
  • The Macaque Face Patch System: a Window Into Object Representation
    Downloaded from symposium.cshlp.org on August 3, 2015 - Published by Cold Spring Harbor Laboratory Press The Macaque Face Patch System: A Window into Object Representation DORIS TSAO Division of Biology and Biological Engineering and Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125 Correspondence: [email protected] The macaque brain contains a set of regions that show stronger fMRI activation to faces than other classes of object. This “face patch system” has provided a unique opportunity to gain insight into the organizing principles of IT cortex and to dissect the neural mechanisms underlying form perception, because the system is specialized to process one class of complex forms, and because its computational components are spatially segregated. Over the past 5 years, we have set out to exploit this system to clarify the nature of object representation in the brain through a multilevel approach combining electrophysiology, anatomy, and behavior. These experiments reveal (1) a remarkably precise connectivity of face patches to each other, (2) a functional hierarchy for representation of view-invariant identity comprising at least three distinct stages along the face patch system, and (3) the computational mechanisms used by cells in face patches to detect and recognize faces, including measurement of diagnostic local contrast features for detection and measurement of face feature values for recognition. How does the brain represent objects? This question nature of these steps remains a mystery. One major trans- had its beginnings in philosophy. Our fundamental intu- formation appears to be segmentation (i.e., organizing ition of the physical world consists of a space containing visual information into discrete pieces corresponding to objects, and philosophers starting from Plato wondered different objects) (Zhou et al.
    [Show full text]
  • Functional Neuroanatomy of Intuitive Physical Inference
    Functional neuroanatomy of intuitive physical inference Jason Fischera,b,c,d,1, John G. Mikhaela,b,c,e, Joshua B. Tenenbauma,b,c, and Nancy Kanwishera,b,c,1 aDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bMcGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139; cThe Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139; dDepartment of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21202; and eHarvard Medical School, Boston, MA 02115 Contributed by Nancy Kanwisher, June 29, 2016 (sent for review May 24, 2016; reviewed by Susan J. Hespos and Doris Tsao) To engage with the world—to understand the scene in front of us, region or family of regions essentially engaged in physical in- plan actions, and predict what will happen next—we must have an ferences and recruited more for physical inference than for intuitive grasp of the world’s physical structure and dynamics. other similarly difficult prediction or perception tasks? How do the objects in front of us rest on and support each other, Although some studies have explored the neural representation how much force would be required to move them, and how will of objects’ surface and material properties (2–4) and weights (5–7) they behave when they fall, roll, or collide? Despite the centrality or investigated the brain areas involved in explicit, textbook-style of physical inferences in daily life, little is known about the brain physical reasoning (8, 9), little is known about the cortical ma- mechanisms recruited to interpret the physical structure of a scene chinery that supports the more implicit perceptual judgments about and predict how physical events will unfold.
    [Show full text]
  • Dissecting Neural Circuits for Vision in Non-Human Primates Using Fmri-Guided Electrophysiology and Optogenetics
    1 Dissecting neural circuits for vision in non-human primates using fMRI-guided electrophysiology and optogenetics Thesis by Shay Ohayon In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2014 (Defended 15th May 2014) ii 2014 Shay Ohayon All Rights Reserved iii This work is dedicated to my parents The distance between your dreams and reality is called action. - Unknown iv v Acknowledgements There are many people without whom this thesis would not exist. First and foremost, I would like to acknowledge my PhD advisor, Doris Tsao, for giving me the opportunity to perform research in her lab and the freedom to pursue my own research ideas. She provided continuous guidance and support throughout the years and trusted me in leading experiments and procedures from day one (“OK, now you drill…” will forever be remembered as the ultimate show of confidence to a young graduate student with zero surgical experience). Nicole Schweers, our lab manager, for always lending an ear and taking care of my animals as if they were her own children. I would like to thank Prof. Pietro Perona for a joyful collaboration throughout my years at Caltech. Many thanks also go to all the past members of the Tsao lab. Winrich Freiwald who was a close collaborator throughout the years and provided many important advices on electrophysiology. Sebastian Moeller, for many fruitful discussions and teaching me how to perform electrical microstimulation and fMRI data analysis. Piercesare Grimaldi, who I owe everything I know about histology and immunohistochemistry.
    [Show full text]
  • Michael Paul Stryker
    BK-SFN-NEUROSCIENCE_V11-200147-Stryker.indd 372 6/19/20 2:19 PM Michael Paul Stryker BORN: Savannah, Georgia June 16, 1947 EDUCATION: Deep Springs College, Deep Springs, CA (1964–1966) University of Michigan, Ann Arbor, MI, BA (1968) Massachusetts Institute of Technology, Cambridge, MA, PhD (1975) Harvard Medical School, Boston, MA, Postdoctoral (1975–1978) APPOINTMENTS: Assistant Professor of Physiology, University of California, San Francisco (1978–1983) Associate Professor of Physiology, UCSF (1983–1987) Professor of Physiology, UCSF (1987–present) Visiting Professor of Human Anatomy, University of Oxford, England (1987–1988) Co-Director, Neuroscience Graduate Program, UCSF (1988–1994) Chairman, Department of Physiology, UCSF (1994–2005) Director, Markey Program in Biological Sciences, UCSF (1994–1996) William Francis Ganong Endowed Chair of Physiology, UCSF (1995–present) HONORS AND AWARDS (SELECTED): W. Alden Spencer Award, Columbia University (1990) Cattedra Galileiana (Galileo Galilei Chair) Scuola Normale Superiore, Italy (1993) Fellow of the American Association for the Advancement of Science (1999) Fellow of the American Academy of Arts and Sciences (2002) Member of the U.S. National Academy of Sciences (2009) Pepose Vision Sciences Award, Brandeis University (2012) RPB Stein Innovator Award, Research to Prevent Blindness (2016) Krieg Cortical Kudos Discoverer Award from the Cajal Club (2018) Disney Award for Amblyopia Research, Research to Prevent Blindness (2020) Michael Stryker’s laboratory demonstrated the role of spontaneous neural activity as distinguished from visual experience in the prenatal and postnatal development of the central visual system. He and his students created influential and biologically realistic theoretical mathematical models of cortical development. He pioneered the use of the ferret for studies of the central visual system and used this species to delineate the role of neural activity in the development of orientation selectivity and cortical columns.
    [Show full text]
  • Studying Conscious and Unconscious Vision with Fmri: the Bold Promise
    STUDYING CONSCIOUS AND UNCONSCIOUS VISION WITH FMRI: THE BOLD PROMISE Thesis by Julien Dubois In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2013 (Defended May 29, 2013) ii © 2013 Julien Dubois All Rights Reserved iii To my wife Christine, whose face I consciously perceive every morning when I open my eyes, and it makes me so happy. iv v ACKNOWLEDGEMENTS Every single day I wake up and I am grateful. Yes, even on those days while I was writing this thesis, an infamously grueling experience. I have always been free to pursue my dream, even if it has been in constant evolution. When I was in high school, my dream was to study and save the tigers with an organization like the World Wildlife Fund. Then, as my studies went on, my dream evolved into wanting to solve the puzzle of how our planet got to be what it is (I got a bachelor’s and master’s degree in earth and atmospheric sciences). My dream evolved further into wanting to understand how life started (I got a master’s degree in biochemistry, focused on the origins of life). But my dream was not done maturing yet. I gave it a little more time to do so, and went traveling around the world with my favorite person on this planet. During my travels, I came across Christof Koch’s 2004 book, The Quest for Consciousness, and my dream finally entered puberty. I needed to understand the brain! I needed to understand what made us do everything that we did, know everything that we knew, feel everything that we felt, discover everything that we discovered.
    [Show full text]
  • Brain's Face Detector Lights up Questions About Autism’
    Spectrum | Autism Research News https://www.spectrumnews.org NEWS Brain’s face detector lights up questions about autism's origins BY SARAH DEWEERDT 15 OCTOBER 2015 The brain’s face detector is not hard to find. To see to it, simply put someone in a magnetic resonance imaging (MRI) scanner and show them a series of images: a house, a face, a landscape, a face, a bicycle, another face. An irregular patch on the surface of the brain, just behind the ear, glows brighter in response to faces than it does for any other object or scene. This fusiform face area (FFA) occupies a spot on the cerebral cortex — the outer shell of the brain that is responsible for complex cognitive functions — and is larger in the right hemisphere than in the left. The area “is overwhelmingly reliable in its activation and in our ability to identify it in individual people time and time and time again,” says Suzy Scherf, assistant professor of psychology and neuroscience at Penn State University in University Park, Pennsylvania. Abnormalities in the FFA in people with autism are as easy to identify as the area itself: It tends to glow less brightly in people with autism when they look at faces than it does in controls1. “It’s not that you can’t find it,” Scherf says. “It just is a very weak signal.” The meaning of this difference, however, is harder to pinpoint. Most scientists agree that difficulties in understanding human faces and their expressions are tied to social deficits in autism. And yet weak activation of the FFA is not at the root of the disorder.
    [Show full text]
  • 2015.01-2015.12)
    Colloquia and Symposia Sponsored by ION (2015.01-2015.12) Date Name Affiliations Title Why is the brain's resting state relevant University of Ottawa, 2015.01.07 Georg Northoff for mental features and their alterations Canada in neuropsychiatric disorders? Center for Cognition and Thalamocortical circuits in control of 2015-01-08 Hee-Sup Shi Sociality, Institute for Basic consciousness and cognition Science, Korea Michael M. 2015-01-14 Brain Plasticity Institute, U.S.A. Brain plasticity-based medicine Merzenich UT Southwestern Medical Biochemical Reconstitution of the 2015-02-05 Qinghua Liu Center, U.S.A. Catalytic Engine of RNA Interference Department of Precision Instrument, Center for Brain-like Computing – Development of 2015-03-16 Luping Shi Brain-like Computing, Computer Inspired by Brain Science Tsinghua University Neural Circuit Mechanisms of Icahn School of Medicine at 2015-03-26 Minghu Han Susceptibility and Resilience to Social Mount Sinai U.S.A. Stress Duke University Medical Secreted miRNAs as novel 2015-03-31 Ru-Rong Ji Center, U.S.A. neuromodulators and pain mediators Developmental Biology Organizing the Cerebral Cortex-The Program, Memorial Sloan 2015-04-09 Hua-Tai Xu Role of Lineage Relationship in the Kettering Cancer Center, Hippocampus U.S.A. Research Associate, Department of We can see it in your eyes: What do eye 2015-04-16 Yan Yang Neurobiology, Duke movements tell us about the brain University School of Medicine, U.S.A. California Institute of The macaque face patch system: A 2015-05-08 Doris Tsao Technology, U.S.A. window into object representation A new sensory motor loop interfacing the Institut du Cerveau et de la 2015-05-08 Claire Wyart cerebrospinal fuid with the central Moelle épinière, France pattern generator in vertebrates Janelia Research Campus, Imaging molecules and cells at high 2015-05-19 Kai Wang Howard Hughes Medical spatiotemporal resolution throughout Institute, USA whole living organisms Neural mechanisms for cross-brain Yale School of Medicine, 2015-05-20 Joy Hirsch human communication: A functional near U.S.A.
    [Show full text]
  • Open Letter to Francis Collins and Michael Lauer
    To: Francis Collins, MD, PhD Director National Institutes of Health CC: Michael Lauer, MD Deputy Director for Extramural Research National Institutes of Health 26 September 2017 Dear Dr. Collins, We, the 62 undersigned awardees of the NIH High-Risk, High-Reward Research Program, are writing to express our concern about the NIH’s policy that broadens the definition of a clinical trial to include a great deal of basic discovery science. We join others in asking you to delay the implementation of any rule change until its implications have been entirely fleshed out, with input from the basic science community. We are not alone in our concern. Over 3500 scientists have signed an open letter addressed to you [http://ipetitions.com/petition/open-letter-nih-collins], requesting that the NIH delays implementation of this policy. The requested delay would give the NIH more time to work with basic scientists to update its clinical trials policy so as to ensure that it does not have adverse effects on basic research communities. Those 3500 scientists believe that the clinical trials policy should ensure that research is conducted in an open, transparent, and reproducible fashion, without handcuffing discovery science. We agree with them. In its current form, unfortunately, the policy will have a chilling effect. It will reduce the number of funding opportunities available to basic scientists, severely complicate review of discovery science proposals, and reduce access to research experience for undergrads and graduate students. Plainly, the policy hurts discovery science and the people who do it. We agree with the analyses presented in a recent Neuron article, which noted that NIH’s case studies, which are intended to clarify the types of research newly classified as clinical trials, are, in fact, rife with contradictions [http://www.cell.com/neuron/fulltext/S0896-6273(17)30789-4].
    [Show full text]