The Effect of Adding Aspheric Surfaces to a Fixed Focal Length Lens System

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Adding Aspheric Surfaces to a Fixed Focal Length Lens System THE EFFECT OF ADDING ASPHERIC SURFACES TO A FIXED FOCAL LENGTH LENS SYSTEM by Rhiannon Katarina Jenkins ______________________ A Report Submitted to the Faculty of OPTICAL SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES In the Graduate College UNIVERSITY OF ARIZONA 2016 0 ACKNOWLEDGEMENTS I would like to thank Jeremy Govier for his help with designing these lenses and being a great support throughout the duration of this project, Jose Sasian for his help in structuring the written project and discussing the project with me and to Jim Schwiegerling for being a part of the final committee. I am greatly indebted to Edmund Optics Inc. for funding my Masters degree at the University of Arizona. I would especially like to thank Robert Edmund for first suggesting that I could move out to the US to undertake this course. 1 TABLE OF CONTENTS LIST OF FIGURES………………………………………………………………………………………….…..3 ABSTRACT…………………………………………………………………………………………………….….5 1. THE OPTICAL TRANSFER FUNCTION………………………………………………………….…6 History of the OTF…………………………………………………………………………………….…6 Concepts of the OTF…………………………………………………………………………………...9 Linear Shift Invariant Approach to the OTF……………………………………………….11 Tolerancing Using the MTF……………………………………………………………………….12 2. ASPHERIC LENSES…………………………………………………………………………………..…14 History of Aspheric Lenses………………………………………………………………………..14 Describing Aspheric Surfaces…………………………………………………………………….17 Manufacturing Aspheres……………………………………………………………….………….18 3. RESULTS……………………………………………………………………………………………………22 The Original Lens with all Spherical Surfaces…………………………………………….22 Re-Design Using a Single Aspheric Surface………………………………………..………23 Re-Design Using Two or More Aspheric Surfaces………………………………………31 4. CONCLUSION…………………………………………………………………………………………….33 APPENDIX 1……………………………………………………………………………………………………34 REFERENCES…………………………………………………………………………………………………..41 2 LIST OF FIGURES Figure 1.1 1951 USAF resolution test target imaged with progressively worsening resolution. (6) Figure 1.2 Representation showing an imaging system forming a sinusoidal image. (6) Figure 1.3 Spread of OTF data measured for a 50mm PCX lens by 13 separate laboratories. (7) Figure 1.4 Schematic of the linear shift invariant system analysis of an optical system. (8) Figure 1.5 Illustration of the difference between square and sinusoidal spatial frequencies. (9) Figure 1.6 The MTF for a 12.5mm focal length micro video lens calculated in Zemax. (10) Figure 1.7 A defocused image of a star pattern with visible spurious resolution. (10) Figure 1.8 Diagram depicting how lower resolution results in spurious resolution. (11) Figure 1.9 The MTF for a defocused 12.5mm focal length micro video lens calculated in Zemax, with a discontinuity at around 275cycles/mm. It would display spurious resolution in the approximate range 275-500cycles/mm. (11) Figure 1.10 Convolution theorem. (12) Figure 2.1 Depiction of a lens displaying spherical aberration, on the left and a corrected asphere on the right. (14) Figure 2.2 Example of a Cartesian oval. (15) Figure 2.3 Lens design #4 from Sloan and Hopkins 1967 paper. (16) Figure 2.4 Comparison of Double Gauss lens performance with variation in asphere placement. (17) Figure 2.5 Table of conics, Cyclopaedia 1728. (17) Figure 2.6 Descartes’ aspheric grinding machine (1638). (19) Figure 2.7 Active fluid jet polishing by OptoTech. (19) Figure 2.8 Hybrid moulding technique as utilised by Edmund Optics Inc. (20) Figure 3.1 The original #59-870 with all spherical surfaces. (22) Figure 3.2 Lens data for the #59-870. (22) Figure 3.3 MTF for #59-870. (23) Figure 3.4 Design #1 with the highlighted surface aspherized. (23) Figure 3.5 MTF data for Design #1. (24) Figure 3.6 Design #2 with the highlighted surface aspherized. (24) Figure 3.7 MTF data for Design #2. (24) Figure 3.8 Design #3 with the highlighted surface aspherized. (25) 3 Figure 3.9 MTF data for Design #3. (25) Figure 3.10 Design #4 with the highlighted surface aspherized. (25) Figure 3.11 MTF data for Design #4. (26) Figure 3.12 Design #5 with the highlighted surface aspherized. (26) Figure 3.13 MTF data for Design #5. (26) Figure 3.14 Design #6 with the highlighted surface aspherized. (27) Figure 3.15 MTF data for Design #6. (27) Figure 3.16 Design #7 with the highlighted surface aspherized, the original design is on the left and the re-sized version on the right. (27) Figure 3.17 MTF data for Design #7. (28) Figure 3.18 Design #8 with the highlighted surface aspherized. (28) Figure 3.19 MTF data for Design #8. (28) Figure 3.20 Design #9 with the highlighted surface aspherized. (29) Figure 3.21 MTF data for Design #9. (29) Figure 3.22 Design #10 with the highlighted surface aspherized. (29) Figure 3.23 MTF data for Design #10. (30) Figure 3.24 Design #11 with the highlighted surface aspherized. (30) Figure 3.25 MTF data for Design #11. (30) Figure 3.26 Design #12 with the highlighted surface aspherized. (31) Figure 3.27 MTF data for Design #12. (31) Figure 3.28 Table showing the MTF performance of all designs, listing the aspheric deviation in µm for all aspherized surfaces. (32) 4 ABSTRACT In imaging applications there is a growing demand for higher performance imaging lenses that are able to meet the demands of high resolution sensors. MTF is an important performance metric used to describe the performance of an imaging lens. MTF is especially important in the design phase, since optical design programs such as Zemax can quickly calculate the theoretical MTF in real time as the design is progressing and many designs will use MTF as a criteria for specifying the final design. Aspheric surfaces are used to reduce optical aberrations in optical systems and are, if carefully designed, able to correct the optical performance of an optical system, pushing the performance closer to the diffraction limit. This project is concerned with the redesign of a 16mm fixed focal length lens that uses all spherical surfaces, to accommodate one or more aspheric surfaces and investigating the effect that this has on the MTF performance of the lens with the aim of producing a design that has an improved optical design and is suitable for manufacture using industry standard machinery. 5 1. THE OPTICAL TRANSFER FUNCTION ‘The Optical Transfer Function (OTF) is the frequency response, in terms of spatial frequency, of an optical system to sinusoidal distributions of light intensity in the object plane; the OTF is the amplitude and phase in the image relative to the amplitude and phase in the object as a function of frequency, when the system is assumed to respond linearly and to be space invariant.’ [1] History of the OTF Before the introduction of the OTF as a standardized way to define the resolution and contrast of an imaging system, resolution was thought of and tested in terms of blur circles and bar charts, the most famous example of which is the 1951 USAF resolution test chart. Figure 1.1 1951 USAF resolution test target imaged with progressively worsening resolution [2]. Optical design at this time depended solely on geometrical ray tracing and even after the development of wave theory, it was not immediately implemented into design techniques. In fact modern computational ray-tracing programs still use geometrical calculations as the main basis of all their algorithms. However, it has long been known that traditional geometric ray tracing is an approximation that does not take diffraction into account, particularly when the aberrations are small and the lens is diffraction limited [3]. Imaging systems output sinusoidal intensity patterns, such as the distinctive Airy disc that is formed when an optical system images a point source [4, 5]. Figure 1.2 Representation showing an imaging system forming a sinusoidal image [6]. Calculation of the OTF requires consideration of the shape of the wavefront at the exit pupil, which must be done using wave theory analysis of the system. However, in the 19 th century, mathematical methods were such that although a number of optical systems had been worked out using wave theory and were found to be in accordance with observation, this involved lengthy integration and 6 was a slow process. Although Fourier published his breakthrough paper as early as 1807 [7], in which he modelled all functions using trigonometric series and Gauss demonstrated the first fast Fourier transform in 1805 [8], it was only in 1946 that Duffieux first demonstrated the use of the convolution theorem and the point spread function to calculate the OTF and his book on the subject was widely used as a practical source book in this field for many years [9]. Another important advance occurred in 1938 when Friesser suggested that instead of a bar chart, the object target should have a sinusoidal grey scale profile, instead of an abrupt black and white one, so that the form of the image would have the same form as the object and this is the concept that is still used in the OTF today [10]. In the 1950s the OTF was not yet in common use, but it was during this decade that instrumentation for measuring the OTF was greatly advanced. By the end of the decade 2 main methods for OTF measurement were considered the most useful to the industry. One method was to incoherently illuminate a sinusoidal object with a known variable spatial frequency and constant contrast. The object was brought into focus by the test lens and the contrast was measured in the image plane using a narrow slit and a photocell. The second method used a very similar setup, but the light was passed through the system in the reverse direction – the slit was illuminated and followed by a sinusoidal mask that chopped the image. Again, the result was detected by a photocell. Experimental complications arose using this method in the construction of truly sinusoidal object, including a test at 0 cycles/mm and measuring at low light levels, but also independent of room lighting.
Recommended publications
  • View to Define Contact Lens Discomfort And
    Contact Lens Discomfort, Vision Correction Preferences, and Accommodative Treatment in Presbyopic and Non-Presbyopic Contact Lens Wearers Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Erin Marie Rueff, OD, MS Graduate Program in Vision Science The Ohio State University 2018 Dissertation Committee Melissa Bailey, OD, PhD, Advisor Donald Mutti, OD, PhD Teng Leng Ooi, PhD Loretta Szczotka-Flynn, OD, PhD ii Copyrighted by Erin Marie Rueff 2018 iii Abstract Discomfort is the most cited reason for dissatisfaction with and discontinuation of contact lens wear. Most discomfort is attributed to dry eye-type etiologies, but uncomfortable contact lens wearers commonly show few objective signs of dryness, and treatments aimed at eliminating dryness often fail. Uncomfortable contact lens wearers, however, also report symptoms that are similar to binocular vision and accommodative disorders. Research in our laboratory suggested that uncomfortable wearers have an increased incidence of accommodative insufficiency and led us to hypothesize that contact lens discomfort is influenced by symptoms associated with visual discomfort and accommodative fatigue. The projects described in this dissertation sought to better understand how accommodative decline in presbyopes affects comfort and contact lens discontinuation and how alleviation of accommodative demand in non-presbyopes via a multifocal contact lens affects discomfort and satisfaction with contact lens wear. Presbyopes, a group with known accommodative insufficiency, are also known for being particularly uncomfortable contact lens wearers. Few studies, however, have specifically addressed presbyopic reasons for contact lens discontinuation. The first experiment in this dissertation describes a survey study that aimed to determine why presbyopes discontinued contact lens wear and how factors like vision and comfort influenced dropout.
    [Show full text]
  • Professional Fitting And
    PROFESSIONAL FITTING AND INFORMATION GUIDE PARAGON RG-4™ Manufactured in Paragon HDS® 100 (paflufocon D) RIGID GAS PERMEABLE CONTACT LENSES FOR CORNEAL RESHAPING OVERNIGHT WEAR 1 TABLE OF CONTENTS Page Introduction 3 Product Description 3 Actions 6 Indications (Uses) 6 Contraindications 6 Warnings 6 Adverse Effects (Problems and What to Do) 6 Precautions 6 Selection of Patients 6 Fitting Concept 7 Predicting Lens Results 7 Clinical Study Data 7 Risk Analysis 7 Fitting Paragon RG-4™ Contact Lenses for Corneal Reshaping 8 Pre-fitting Examination 8 Initial Lens Power Selection 8 Initial Lens Diameter Selection 8 Initial Lens Base Curve Selection 8 Initial Lens Evaluation 8 Characteristics of a Tight Lens 9 Characteristics of a Loose Lens 9 Diagnostic Lenses 9 Corneal Reshaping Problem Solving 10 Follow-Up Care 12 Recommended Initial Wearing Schedule 12 Myopic Reduction Maintenance Lens (Retainer Lens) Wearing Schedule 13 Handling Of Lenses 13 Patient Lens Care Directions 13 Vertex Distance and Keratometry Conversion Charts 13 How Supplied 13 Reporting Of Adverse Reactions 14 2 INTRODUCTION Paragon RG-4™ Contact Lenses for Corneal Reshaping produce a temporary reduction of myopia by reversibly altering the curvature of the cornea. The Paragon RG-4™ contact lenses are manufactured from Paragon HDS® 100. A slight reduction of the curvature of the cornea can reduce the excessive focusing power of the myopic eye. If the amount of corneal reshaping is precisely controlled as is the objective of Paragon RG-4™ lens design, it is possible to bring the eye into correct focus and completely compensate for myopia. After the contact lens is removed, the cornea retains its altered shape for all or most of one’s waking hours.
    [Show full text]
  • Optical Theory Simplified: 9 Fundamentals to Becoming an Optical Genius APPLICATION NOTES
    LEARNING – UNDERSTANDING – INTRODUCING – APPLYING Optical Theory Simplified: 9 Fundamentals To Becoming An Optical Genius APPLICATION NOTES Optics Application Examples Introduction To Prisms Understanding Optical Specifications Optical Cage System Design Examples All About Aspheric Lenses Optical Glass Optical Filters An Introduction to Optical Coatings Why Use An Achromatic Lens www.edmundoptics.com OPTICS APPLICATION EXAMPLES APPLICATION 1: DETECTOR SYSTEMS Every optical system requires some sort of preliminary design. system will help establish an initial plan. The following ques- Getting started with the design is often the most intimidating tions will illustrate the process of designing a simple detector step, but identifying several important specifications of the or emitter system. GOAL: WHERE WILL THE LIGHT GO? Although simple lenses are often used in imaging applications, such as a plano-convex (PCX) lens or double-convex (DCX) in many cases their goal is to project light from one point to lens, can be used. another within a system. Nearly all emitters, detectors, lasers, and fiber optics require a lens for this type of light manipula- Figure 1 shows a PCX lens, along with several important speci- tion. Before determining which type of system to design, an fications: Diameter of the lens (D1) and Focal Length (f). Figure important question to answer is “Where will the light go?” If 1 also illustrates how the diameter of the detector limits the the goal of the design is to get all incident light to fill a detector, Field of View (FOV) of the system, as shown by the approxi- with as few aberrations as possible, then a simple singlet lens, mation for Full Field of View (FFOV): (1.1) D Figure 1: 1 D θ PCX Lens as FOV Limit FF0V = 2 β in Detector Application ƒ Detector (D ) 2 or, by the exact equation: (1.2) / Field of View (β) -1 D FF0V = 2 tan ( 2 ) f 2ƒ For detectors used in scanning systems, the important mea- sure is the Instantaneous Field of View (IFOV), which is the angle subtended by the detector at any instant during scan- ning.
    [Show full text]
  • Techspec® Precision Aspheric Lenses Precision Techspec® by Edmund Optics by Edmund High Numerical Apertur High Numerical Gener Designed and Manufactur Designed
    Edmund Optics® BROCHURE ASPHERIC LENSES ® COPYRIGHT 2017 EDMUND OPTICS, INC. ALL RIGHTS RESERVED 1/2017 RIGHTS RESERVED ALL 2017 EDMUND OPTICS, INC. ® COPYRIGHT PRODUCTS & CAPABILITIES Contact us for a Stock or Custom Quote Today! UK: +44 (0)1904 788600 | GERMANY: +49 (0)721 6273730 [email protected] | FRANCE: +33 (0)8 20 20 75 55 www.edmundoptics.eu/aspheres-17 CNC POLISHING CAPABILITIES Edmund Optics® is a premier manufacturer of aspheric lenses, producing thousands of precision polished aspheres each month. Lenses are manufactured from a variety of Schott, Ohara, and CDGM glasses, fused silica, and a multitude of fluoride and crys- talline materials. Edmund Optics® utilizes state-of-the-art CNC equipment for coarse and fine grinding and polishing of aspheric lenses with convex or concave geometries. Deterministic figure correction through Magneto-Rheological polishing is available for the ulti- mate in precision (see MRF Polishing Capabilities). Aspheric Manufacturing Capabilities Commercial Precision High Precision Diameter 10 - 150 mm 10 - 150 mm 10 - 150 mm Diameter Tolerance +0/-0,100 mm +0/-0,025 mm +0/-0,010 mm Asphere Figure Error (P - V) 5 μm 0,632 - 1,5 µm < 0,312 µm Vertex Radius (Asphere) ±1% ±0,1% ±0,05% Radius (Spherical) ±0,3% ±0,1% ±0,025% ® COPYRIGHT 2017 EDMUND OPTICS, INC. ALL RIGHTS RESERVED 1/2017 RIGHTS RESERVED ALL 2017 EDMUND OPTICS, INC. ® COPYRIGHT Power (Spherical) 2λ λ/2 λ/10 Irregularity (Spherical) λ/2 λ/4 λ/20 Sag2 25 mm max. 25 mm max. 25 mm max. Typical Slope Tolerance1 1 μm/mm 0,35 μm/mm 0,15 μm/mm Centering (Beam Deviation) 3 arcmin 1 arcmin 0,5 arcmin Center Thickness Tolerance ±0,100 mm ±0,050 mm ±0,010 mm Surface Quality (Scratch Dig) 80-50 40-20 10-5 Aspheric Surface Metrology Profilometry Profilometry Interferometry Slope specification: Diameter PV (Height) Sag (μm) θ Center Thickness Slope Window (1mm) Figure 1: Slope error quantifies the rate of change Figure 2: General geometry of an aspheric lens.
    [Show full text]
  • LDII16 Lens Design II
    Lens Design II Lecture 8: Special correction features I 2016-12-07 Herbert Gross Winter term 2016 www.iap.uni-jena.de 2 Preliminary Schedule 1 19.10. Aberrations and optimization Repetition Zero operands, lens splitting, lens addition, lens removal, 2 26.10. Structural modifications material selection Correction with aspheres, Forbes approach, optimal location 3 02.11. Aspheres of aspheres, several aspheres 4 09.11. Freeforms Freeform surfaces Astigmatism and field curvature, thick meniscus, plus-minus 5 16.11. Field flattening pairs, field lenses Achromatization, axial versus transversal, glass selection 6 23.11. Chromatical correction I rules, burried surfaces secondary spectrum, apochromatic correction, 7 30.11. Chromatical correction II spherochromatism 8 07.12. Special correction topics I Symmetry, wide field systems,stop position 9 14.12. Special correction topics II Anamorphotic lenses, telecentricity 10 21.12. Higher order aberrations high NA systems, broken achromates, induced aberrations 11 04.01. Further topics Sensitivity, scan systems, eyepieces 12 11.01. Mirror systems special aspects, double passes, catadioptric systems 13 18.01. Zoom systems mechanical compensation, optical compensation color correction, ray equivalent model, straylight, third order 14 25.01. Diffractive elements aberrations, manufacturing 15 01.02. Realization aspects Tolerancing, adjustment 3 Contents 1. Symmetry 2. Camera lenses 3. Stop position 4. Vignetting 4 Principle of Symmetry . Perfect symmetrical system: magnification m = -1 . Stop in centre of symmetry . Symmetrical contributions of wave aberrations are doubled (spherical) . Asymmetrical contributions of wave aberration vanishes W(-x) = -W(x) . Easy correction of: coma, distortion, chromatical change of magnification front part rear part 2 3 1 5 Symmetrical Systems Ideal symmetrical systems: .
    [Show full text]
  • Correction Of
    Correction of Presbyopia with GP Contact Lenses Development of the Correction of Presbyopia with GP Contact Lenses booklet was supported through an educational grant from Acknowledgements Polymer Technology, a Bausch & Lomb company. REVIEWERS Albert Noguera Kathryn Dumbleton, MSc, FAAO Director General, Conóptica S.L. Senior Clinical Scientist, Centre for Contact Lens Research Barcelona, Spain EXECUTIVE EDITOR Waterloo, Canada Desmond Fonn, MOptom, FAAO Craig W. Norman, FCLSA Director, Centre for Contact Lens Research Ron Beerten, OD, FAAO South Bend Clinic Professor, School of Optometry, University of Waterloo Director Professional Services, Procornea South Bend, Indiana, USA Eerbeek, Netherlands PROJECT MANAGER Kirstin P. Rhinehart, OD Bonnie Boshart, BBA Hans Bleshøy, BSc, Ph.D, MCOptom, FAAO South Bend Clinic Business Development Coordinator, Centre for Contact Lens Research Danish Contact Lens Consultants South Bend, Indiana, USA Skive, Denmark AUTHORS Philippe Seira, Dipl. Augenoptiker Luigina Sorbara, OD, MSc, FAAO Alex Cannella, RN, FCLSA Lecturer at the University of Applied Sciences, Clinical Scientist, Centre for Contact Lens Research Contact Lens Educator / Consultant Northwestern Switzerland Associate Professor, School of Optometry, University of Waterloo Westford, Massachusetts, USA Olten, Switzerland Craig Woods, PhD, FAAO William Edmondson, MAT, OD, FAAO Frank Widmer, Dipl. Ing. (FH) Augenoptik Research Manager, Centre for Contact Lens Research Professor of Optometry & Chief, Contact Lens Service Hecht Contactlinsen GmbH Adjunct Associate Professor, School of Optometry, University of Waterloo Northeastern State University, College of Optometry Freiburg, Germany Tahlequah, Oklahoma, USA EDITOR Michael Wyss, Dipl. Augenopiker, FAAO Alisa Sivak, MA Michael A. Johnson, FCLSA Kontactlinsen Studio H+M Bärtschi Communications Coordinator, Centre for Contact Lens Research Director of Consultation Services, Art Optical, Inc.
    [Show full text]
  • Complete Course in Dispensing
    Continuing education CET Complete course in dispensing Part 6 – Lens selection After last month’s article (November 14, 2008) discussing the basic properties of materials used for the manufacture of spectacle lenses, Andrew Keirl and Richard Payne give an overview of the vast selection of lens types and designs available for the ‘normal’ power range. Module C10361, two general CET points ith the prevalence of wavelengths. These are the chromatic online information aberrations (6) which were addressed available for consum- in article 5 of this series. The six aberra- ers today, many lens tions are: manufacturers have 1 Spherical aberration -4.00 -2.00 -4.00 -8.00 -6.00 -4.00 Wseen the need to enhance their product +8.00 +6.00 +4.00 +4.00 +2.00 +0.00 2 Coma ranges with marketable brands, employ- 3 Oblique astigmatism ing household names and retail market- 4 Curvature of field ing tactics to ensure their lens ranges are 5 Distortion more appealing. With such an extensive +4.00 D lenses -4.00 D lenses 6 Chromatic aberration (TCA) range of options now available, it is A best form spectacle lens is a lens vital that practitioners can see past the Figure 1 designed to minimise the effects of ever increasing lists of brand names and Lens form oblique astigmatism and therefore marketing terminology used to properly comparisons provide the best possible vision in consider the true attributes of any given oblique gaze. Secondary considerations lens design and use the appropriate are distortion and transverse chromatic ‘tool’ for the appropriate ‘job’.
    [Show full text]
  • Spherical Aberration Compensation Plates
    Optical Components Spherical aberration compensation plates Scott Sparrold, Edmund Optics, Pennsburg, Pennsylvania, USA Anna Lansing, Edmund Optics GmbH, Karlsruhe, Germany Imaging optics strive to obtain perfect or near diffraction limited performance. The main detriment to imaging systems is spherical aberration, and it costs money and effort to eliminate or minimize. This article will outline a new optical component for controlling this aberration. Typical optical components are standard- ly, the article will explore compari- ized to focal length and diameters but sons between aspheres, spherical not so much to their level of aberration. lenses and spherical aberration Within the last decade aspheric lenses have plates in typical user applications. become a commodity, basically eliminating spherical aberration for a single wave- 1 Theory of spherical aberration lens produces “undercorrected” spherical length and specifi c imaging parameters. aberration, defi ned as the marginal rays The introduction of spherical aberration To obtain a mathematically perfect image, focusing closer to the lens than the paraxial plates provides another tool for construct- a mirror requires a parabolic surface while a rays. For a collimated beam and a spherical ing systems that can adequately control lens requires an elliptical surface (Lüneburg lens, equation 1 describes the deviation W and manipulate light. lens) [1]. For ease of manufacturing and from an ideal spherical wavefront [2]. This article will highlight typical scenarios testing, however, most optical elements W = W · ρ4 (Eq.1) involving spherical aberration and demon- have spherical surfaces. This introduces 040 strate how to control it. We’ll discuss the blur or a halo in the image due to spheri- where W040 is the wavefront aberration magnitude of the aberration via equations cal aberration, which results from differ- coeffi cient for spherical aberration (units and general rules of thumb.
    [Show full text]
  • Presbyopia Correction of a Higher Order Introducing the TECNIS® Multifocal IOL
    Presbyopia Correction of a Higher Order Introducing the TECNIS® Multifocal IOL. The first and only pupil independent, full diffractive, wavefront-designed aspheric lens that corrects spherical aberration to essentially zero and reduces chromatic aberration. High-quality vision in any light condition • Near, far, and intermediate: Excellent vision day or night1 • Proprietary non-apodized optic and proven clear hydrophobic acrylic for best image quality Exceptionally high patient satisfaction • Over 94% of patients:2 – Achieve simultaneous 20/25 or better distance and 20/32 or better near – Function comfortably without glasses for ALL distances, including intermediate – Would choose the TECNIS® Multifocal IOL again • Nearly 9 out of 10 patients NEVER wear glasses2 • Low-light reading speed is twice as fast compared to ReSTOR® IOL3 • Delivers a predictable and consistent full range of vision with less halos than other PC-IOLs2,4,5 REFG-5466 TMF Sales sheet V15.indd 1 10/27/08 1:56:43 PM Highest Patient Satisfaction With Proven Superior Results Clinical Data Comparison Data from the US clinical trial demonstrate that the TECNIS® Multifocal IOL provides better performance and extremely high patient satisfaction compared to the ReSTOR® Aspheric IOL.2,4 The study shows that the TECNIS® Multifocal IOL consistently delivers high-quality vision with reports of less halos and glare than other presbyopia-correcting IOLs for optimal visual results.2,4,5 TECNIS® ReSTOR® Aspheric Crystalens® Multifocal IOL2 One-piece IOL4 IOL5 Patient satisfaction 94.6%
    [Show full text]
  • Contact Lens Alternatives for Presbyopia
    8/16/2019 Multifocal Contact Lens Patient Selection, Fitting and Presbyopic Market Problem-Solving • 74 million Baby Boomers born between 1946‐1964* • 66 million Generation Xers born between 1965‐1980* • In 2010, about 1/3 of US population was between 40‐ Edward S. Bennett, OD, MSEd, FAAO and 59 years of age. Vinita Allee Henry, OD, FAAO • In 2015 US census data reports 40% of the population is over 45 • In the next decade, 28% of all contact lens wearers will COPE Course ID: 63329‐CL be >50 y.o. Qualified Credit: 2 hour(s) • 90% of all CL wearers between 35‐55 have worn CL’s majority of their life *Pew Research Center Presbyopic Market Growth of Multifocals from Contact Lens Spectrum 1/2019 • Steady growth of multifocals • Surpassed monovision • Presbyopes are in their peak earning period • Knowledge of multifocal contact lenses is limited • More tech savvy, desire high technology • Want information • Fit early Contact Lens Spectrum 1/2016 Contact Lens Alternatives for Presbyopia • Single Vision/Reading Spectacles • Monovision • Bifocals/ Multifocals 1 8/16/2019 Monovision Issues Driving/Critical Vision Tasks • Depth Perception • Monovision wearers have difficulty suppressing • Possible Suppression headlights with night driving with one-third experiencing glare • Contrast Sensitivity/Vision Loss • It is advised for monovision patients to avoid • Night Driving driving or operating dangerous machinery • Liability during adaptation • Over-correction spectacles strongly recommended MONOVISION VERSUS CL BI/MULTIFOCALS • Johnson J, et al; Multivision Vs. Monovision: A comparative study: presented at CLAO, Feb, 2000 • 6 weeks GP multifocal; 6 weeks monovision (or vice versa) • 75% who completed study preferred multifocal Monovision Versus CL CL MULTIFOCALS DO NOT WORK .
    [Show full text]
  • A Comparison and Evaluation of Aspheric Lens Designs Terry Draeger Kyle Fairless Tom Norfleet
    A COMPARISON AND EVALUATION OF ASPHERIC LENS DESIGNS 1994 TERRY DRAEGER KYLE FAIRLESS TOM NORFLEET ABSTRACT: Six aspheric, single vision lens designs, were subjectively and objectively compared by four non-presbyopic, hyperopic patients. The lenses chosen were Sola Optical's ASL Polycarbonate and Spectralite, Rodenstock's Cosmolit, American Optical's Aspherlite, Silor Optical's Hyperal, and Gentex Optic's Profile. The subjects were previously wearing spherical design single vision spectacles or contact lenses to correct their ametropia. Two of the four subjects preferred the Spectralite Aspherics overall, while the remaining two subjects preferred their habitual contact lenses. INTRODUCTION: Hyperopic patients have long been subject to heavy, thick­ centered, and magnified appearing prescription eyeglasses. Lens manufacturers are continually striving to design new materials free from distortions and other aberrations which become detrimental to image quality and a patients ability to function on both a visual and cosmetic basis. Studies have been conducted which have attempted to describe the aberrations produced by spherical as well as aspherical lenses (1) . Similarly, studies describing measuring and/or comparing distortions produced by progressive addition lenses have been described (2,3,4). Single vision, aspheric lenses are an example of how lens designers have tried to meet the visual and cosmetic needs of the non-presbyopic, hyperopic patient, by utilizing the Cartesian Oval Theory with different lens materials (5). This study was conducted to assess the consequences of fitting non-presbyopic, hyperopic, spherical design spectacle or contact lens wearers with six different aspheric lens designs in order to determine which design(s) seems best based upon subjective and objective subject responses.
    [Show full text]
  • University of Bradford Ethesis
    University of Bradford eThesis This thesis is hosted in Bradford Scholars – The University of Bradford Open Access repository. Visit the repository for full metadata or to contact the repository team © University of Bradford. This work is licenced for reuse under a Creative Commons Licence. Ocular Biometric Change in Orthokeratology An investigation into the effects of orthokeratology on ocular biometry and refractive error in an adult population Annette PARKINSON Submitted for the degree of Doctor of Philosophy Bradford School of Optometry and Vision Science 2012 Annette Parkinson Title: Ocular Biometric Change in Orthokeratology Keywords: Orthokeratology, Ocular Biometry, Corneal Topography, Refractive error ABSTRACT Aim; This study looks at the effect of orthokeratology on a number of biometric parameters and refractive error in an adult population. Method; Forty three myopic subjects were recruited to a twelve month study into the effects of orthokeratology on ocular biometry and refractive error. Two different back surface lens designs were applied right eye) pentacurve and left eye) aspheric. The aspheric design was chosen to more closely mimic the cornea’s natural shape. Anterior and posterior apical radii and p-values; corneal thickness and anterior chamber depth were measured using the Orbscan IIz; together with ocular biometry by IOL Master and a standard clinical refraction. All measurements were repeated at one night, one week, one, three, six and twelve months. Refractive changes were analysed against biometric changes. Results; Twenty seven participants completed one month of lens wear. Twelve subjects completed twelve months of lens wear. Subjects with myopia ≤ -4.00DS were successfully treated with orthokeratology. Both anterior and posterior apical radii and p values were altered by orthokeratology.
    [Show full text]