Environmental Controls on the Diversity and Distribution Of

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Controls on the Diversity and Distribution Of University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2015 Environmental Controls on the Diversity and Distribution of Endosymbionts Associated with Phacoides pectinatus (Bivalvia: Lucinidae) from Shallow Mangrove and Seagrass Sediments, St. Lucie County, Florida Thomas Walters Doty University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Biodiversity Commons, Biogeochemistry Commons, Geochemistry Commons, Marine Biology Commons, Molecular Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Doty, Thomas Walters, "Environmental Controls on the Diversity and Distribution of Endosymbionts Associated with Phacoides pectinatus (Bivalvia: Lucinidae) from Shallow Mangrove and Seagrass Sediments, St. Lucie County, Florida. " Master's Thesis, University of Tennessee, 2015. https://trace.tennessee.edu/utk_gradthes/3548 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Thomas Walters Doty entitled "Environmental Controls on the Diversity and Distribution of Endosymbionts Associated with Phacoides pectinatus (Bivalvia: Lucinidae) from Shallow Mangrove and Seagrass Sediments, St. Lucie County, Florida." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Geology. Annette Engel, Major Professor We have read this thesis and recommend its acceptance: Michael McKinney, Andrew Steen Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Environmental Controls on the Diversity and Distribution of Endosymbionts Associated with Phacoides pectinatus (Bivalvia: Lucinidae) from Shallow Mangrove and Seagrass Sediments, St. Lucie County, Florida A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Thomas Walters Doty December 2015 Acknowledgments I would like to start by thanking the National Science Foundation and Department of Earth and Planetary Sciences for their finical support. I would also like to sincerely thank the staff throughout The University of Tennessee that continuously supported and assisted me. Dr. Annette Engel, thank you for encouraging me to enter and continue through with graduate school. I have undergone quite a transformation as a scientist, and certainly owe much of that to your dedication and efforts. I would also like to thank my committee members, Mike McKinney and Drew Steen. Furthermore, I greatly appreciate the assistance and support of Kathleen Brannen-Donnelly, Terri Brown, Caroline Dietz, Chanda Drennen, Aaron Goemann, Brendan Headd, Hunter Johnson, Sarah Keenan, Audrey Paterson, and the other friends and individuals that have helped me along the way. I appreciate Laurie Anderson, Brooke Long, Jean Lim, and Barbara Campbell for their time and efforts while completing field work in Florida. Finally, Mom and Dad, thank you so much for making sure that my education was always a priority. It’s been a long journey, and I could not have done it without you. Beth and John, you are both amazing students and individuals, and I am always amazed and inspired at the way you work and live. ii Abstract Lucinid bivalves are capable of colonizing traditionally inhospitable shallow marine sediments due to the chemosynthetic metabolic functions of bacterial endosymbionts located within their gills. Because lucinids can often be the dominant sediment infauna species, defining their abundances and roles in sediment and pore fluid biogeochemical cycling is necessary to understand coastal biological diversity and the sensitivity of threatened coastal ecosystems over time. However, there has been limited research done to evaluate the diversity and distribution of many lucinid chemosymbiotic systems. The goals of this study were to access the distribution of the lucinid Phacoides pectinatus and its endosymbiont communities from Ft. Pierce, St. Lucie County, Florida, and to define the environmental controls on potential free-living P. pectinatus endosymbionts to understand symbiont distribution patterns and host acquisition. Nearly all of the encountered P. pectinatus hosts were confined to within one meter of the mangrove canopy. P. pectinatus distribution correlated to concentrations of organic carbon in the sediments, but not to total dissolved sulfide concentrations or sea grass vegetation densities. Sequencing of bacterial 16S rRNA genes from sediment and pore fluids from the P. pectinatus habitat revealed that Proteobacteria dominated the communities, including Alpha-, Delta-, and Gammaproteobacteria classes. Other major phyla included the Bacteroidetes, Chloroflexi, Planctomycetes, and Spirochaetae. 16S rRNA genes obtained from P. pectinatus gills and feet were closely related to novel bacterial communities comprised of Sedimenticola, Kistimonas, Methylomarinum, and Spirochaeta spp., unclassified Rickettsiales (Alphaproteobacteria) and unclassified Lentisphaerae. This level of potential endosymbiont diversity has not been previously reported for lucinids. Moreover, potential endosymbiont populations differed by lucinid location, as gills iii containing higher Rickettsiales abundances occurred in areas with the lowest clam density and hosts from deeper sediments contained a higher proportion of Methylomarinum. Despite broad sediment and pore water bacterial diversity, no genetically similar sequences that matched those from P. pectinatus hosts were retrieved from the environment. These results, while strengthening our understanding of a lucinid-symbiont system, still highlight how limited our knowledge is about these systems. These results provide new directions for future research and can be used to help understand how sensitive these systems are to environmental change. iv Table of Contents CHAPTER ONE: INTRODUCTION ................................................................................. 1 Background ..................................................................................................................... 2 Lucinid Symbiont Acquisition, Identity, and Ecology ................................................... 4 Phacoides pectinatus ...................................................................................................... 7 Objectives and Hypothesis .............................................................................................. 7 CHAPTER TWO: MATERIALS AND METHODS ......................................................... 9 Study Site and Sample Collection................................................................................... 9 Oceanographic and Meteorological Data ...................................................................... 13 DNA Extraction, Amplicon Pyrosequencing, and Analysis ......................................... 14 Statistical Analyses ....................................................................................................... 16 CHAPTER THREE: RESULTS ....................................................................................... 18 Aqueous and Sediment Geochemistry .......................................................................... 18 Fauna and Vegetation of Wildcat Cove ........................................................................ 19 Lucinid Gill and Foot Bacterial Diversity .................................................................... 21 Bacterial Populations in Environmental Water and Sediment ...................................... 24 CHAPTER FOUR: DISCUSSION ................................................................................... 27 CHAPTER FIVE: CONCLUSION................................................................................... 34 REFERENCES ................................................................................................................. 36 APPENDIX ....................................................................................................................... 48 VITA ............................................................................................................................... 141 v List of Tables Table 1 - Field physiochemical parameters from Wildcat Cove, St. Lucie County, Florida ........50 Table 2 - Cation and anion concentrations (mmol/L) at Wildcat Cove, St. Lucie County, Florida ....................................................................................................................................51 Table 3 - Dissolved gases measured by gas chromatography and fluorescence spectroscopy indices for water for Wildcat Cove, St. Lucie County, Florida. ............................................52 Table 4 - Average percent organic carbon based on loss-on-ignition (LOI) measurements and P. pectinatus abundancesa (in parentheses) from Wildcat Cove sediments ....................53 Table 5 - Organic carbon content measured by Loss on Ignition (LOI) ......................................54 Table 6 - Summary of 454 tag pyrosequencing
Recommended publications
  • Spatio-Temporal Study of Microbiology in the Stratified Oxic-Hypoxic-Euxinic, Freshwater- To-Hypersaline Ursu Lake
    Spatio-temporal insights into microbiology of the freshwater-to- hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake Baricz, A., Chiriac, C. M., Andrei, A-., Bulzu, P-A., Levei, E. A., Cadar, O., Battes, K. P., Cîmpean, M., enila, M., Cristea, A., Muntean, V., Alexe, M., Coman, C., Szekeres, E. K., Sicora, C. I., Ionescu, A., Blain, D., O’Neill, W. K., Edwards, J., ... Banciu, H. L. (2020). Spatio-temporal insights into microbiology of the freshwater-to- hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake. Environmental Microbiology. https://doi.org/10.1111/1462-2920.14909, https://doi.org/10.1111/1462-2920.14909 Published in: Environmental Microbiology Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2019 Wiley. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • Uncoupling Binding of Substrate CO from Turnover by Vanadium Nitrogenase
    Uncoupling binding of substrate CO from turnover by vanadium nitrogenase Chi Chung Leea, Aaron W. Faya, Tsu-Chien Wengb,c, Courtney M. Krestb, Britt Hedmanb, Keith O. Hodgsonb,d,1, Yilin Hua,1, and Markus W. Ribbea,e,1 aDepartment of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; bStanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025; cCenter for High Pressure Science & Technology Advanced Research, Shanghai 201203, China; dDepartment of Chemistry, Stanford University, Stanford, CA 94305; and eDepartment of Chemistry, University of California, Irvine, CA 92697-2025 Contributed by Keith O. Hodgson, October 5, 2015 (sent for review September 21, 2015; reviewed by Russ Hille and Douglas C. Rees) Biocatalysis by nitrogenase, particularly the reduction of N2 and toward certain substrates; most notably, the V-nitrogenase is CO by this enzyme, has tremendous significance in environment- ∼800-fold more active than its Mo counterpart in reducing CO to and energy-related areas. Elucidation of the detailed mechanism hydrocarbons (10, 11). The V-nitrogenase catalytically turns over of nitrogenase has been hampered by the inability to trap sub- CO as a substrate, generating 16.5 nmol reduced carbon/nmol strates or intermediates in a well-defined state. Here, we report protein/min; in contrast, the Mo-nitrogenase forms 0.02 nmol the capture of substrate CO on the resting-state vanadium-nitro- reduced carbon/nmol protein/min, which is far below the catalytic genase in a catalytically competent conformation. The close resem- turnover rate. Such a discrepancy implies a difference between the blance of this active CO-bound conformation to the recently described redox potentials of the protein-bound V and M clusters, which structure of CO-inhibited molybdenum-nitrogenase points to the could originate from a difference between the heterometal com- mechanistic relevance of sulfur displacement to the activation of positions (V vs.
    [Show full text]
  • Morphological Variations of the Shell of the Bivalve Lucina Pectinata
    I S S N 2 3 47-6 8 9 3 Volume 10 Number2 Journal of Advances in Biology Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791) Emma MODESTIN PhD of Biogeography, zoology and Ecology University of the French Antilles, UMR AREA DEV ABSTRACT In Martinique, the species Lucina pectinata (Gmelin, 1791) is called "mud clam, white clam or mangrove clam" by bivalve fishermen depending on the harvesting environment. Indeed, the individuals collected have differences as regards the shape and colour of the shell. The hypothesis is that the shape of the shell of L. pectinata (P. pectinatus) shows significant variations from one population to another. This paper intends to verify this hypothesis by means of a simple morphometric study. The comparison of the shape of the shell of individuals from different populations was done based on samples taken at four different sites. The standard measurements (length (L), width or thickness (E - épaisseur) and height (H)) were taken and the morphometric indices (L/H; L/E; E/H) were established. These indices of shape differ significantly among the various populations. This intraspecific polymorphism of the shape of the shell of P. pectinatus could be related to the nature of the sediment (granulometry, density, hardness) and/or the predation. The shells are significantly more elongated in a loose muddy sediment than in a hard muddy sediment or one rich in clay. They are significantly more convex in brackish environments and this is probably due to the presence of more specialised predators or of more muddy sediments. Keywords Lucina pectinata, bivalve, polymorphism of shape of shell, ecology, mangrove swamp, French Antilles.
    [Show full text]
  • Bacterial Diversity in the Surface Sediments of the Hypoxic Zone Near
    ORIGINAL RESEARCH Bacterial diversity in the surface sediments of the hypoxic zone near the Changjiang Estuary and in the East China Sea Qi Ye, Ying Wu, Zhuoyi Zhu, Xiaona Wang, Zhongqiao Li & Jing Zhang State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China Keywords Abstract Bacteria, Changjiang Estuary, hypoxia, Miseq Illumina sequencing, sediment Changjiang (Yangtze River) Estuary has experienced severe hypoxia since the 1950s. In order to investigate potential ecological functions of key microorgan- Correspondence isms in relation to hypoxia, we performed 16S rRNA-­based Illumina Miseq Qi Ye, East China Normal University, State Key sequencing to explore the bacterial diversity in the surface sediments of the Laboratory of Estuarine and Coastal Research, hypoxic zone near the Changjiang Estuary and in the East China Sea (ECS). 3663 North Zhongshan Road, SKLEC Building, Room 419, Shanghai 200062, China. The results showed that numerous Proteobacteria-­affiliated sequences in the sedi- Tel: 86-021-52124974; ments of the inner continental shelf were related to both sulfate-­reducing and Fax: 86-021- 62546441; sulfur-­oxidizing bacteria, suggesting an active sulfur cycle in this area. Many E-mail: [email protected] sequences retrieved from the hypoxic zone were also related to Planctomycetes from two marine upwelling systems, which may be involved in the initial break- Funding Information down of sulfated heteropolysaccharides. Bacteroidetes, which is expected to degrade This study was funded by the Shanghai Pujiang high-­molecular-­weight organic matter, was abundant in all the studied stations Talent Program (12PJ1403100), the National except for station A8, which was the deepest and possessed the largest grain Natural Science Foundation of China (41276081), the Key Project of Chinese size.
    [Show full text]
  • AEBR 114 Review of Factors Affecting the Abundance of Toheroa Paphies
    Review of factors affecting the abundance of toheroa (Paphies ventricosa) New Zealand Aquatic Environment and Biodiversity Report No. 114 J.R. Williams, C. Sim-Smith, C. Paterson. ISSN 1179-6480 (online) ISBN 978-0-478-41468-4 (online) June 2013 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY ....................................................................................................... 1 1. INTRODUCTION ............................................................................................................ 2 2. METHODS ....................................................................................................................... 3 3. TIME SERIES OF ABUNDANCE .................................................................................. 3 3.1 Northland region beaches .......................................................................................... 3 3.2 Wellington region beaches ........................................................................................ 4 3.3 Southland region beaches .........................................................................................
    [Show full text]
  • The Analysis of Trace Contaminants in High Purity Ethylene and Propylene Using GC/MS Agilent Technologies/Wasson ECE Monomer Analyzer Application
    The Analysis of Trace Contaminants in High Purity Ethylene and Propylene Using GC/MS Agilent Technologies/Wasson ECE Monomer Analyzer Application (thermal conductivity detection), the Introduction Authors use of GC/MSD demonstrates com- Fred Feyerherm parable performance with respect to For the polymer industry, the 119 Forest Cove Dr. linearity and repeatability: for exam- purity of ethylene and propylene Kingwood, TX 77339 ple, for mercaptans and sulfides monomer feedstocks is a high (40–100 ppb) in the ethylene assay, priority. Trace contaminants at John Wasson correlation coefficients for calibra- the part-per-billion (ppb) con- Wasson-ECE Instrumentation tion curves range from 0.992 to 1.000 centration levels can affect 101 Rome Court and relative standard deviations yields dramatically by altering Fort Collins, Colorado 80524 range from 1.95% to 9.31% RSD. subsequent polymer properties Compared to GC/FID for the range of and characteristics. Additionally, contaminant analytes studied here, some trace impurities can irre- Abstract the sensitivity is increased 50-fold; versibly poison reactor catalysts. compared to GC/TCD, the sensitivity The competitive marketing A new product (Application 460B-00) is increased 5000-fold. While the strategies of monomer manufac- from Agilent Technologies/Wasson- sensitivity of MS detection is compa- turers include using new analyti- ECE uses a 5973N GC/MSD (gas rable to that of sulfur chemilumines- cal technologies to guarantee chromatograph/mass selective cence detection for sulfur-containing lower and lower trace impurity detector) for the determination of compounds, MS has the same sensi- levels. trace levels of impurities that are tivity for a broader range of com- moderate-to-low carbon-content pound types.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]
  • Effects of Different Straw Biochar Combined with Microbial Inoculants on Soil Environment of Ginseng
    Effects of Different Straw Biochar Combined With Microbial Inoculants on Soil Environment of Ginseng Yuqi Qi Jilin Agricultural University Haolang Liu Jilin Agricultural University Jihong Wang ( [email protected] ) Jilin Agricultural University Yingping Wang Jilin Agricultural University Research Article Keywords: Microbial agent, Ginseng, Biochar, Soil remediation, Microbiota Posted Date: February 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-189319/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on July 19th, 2021. See the published version at https://doi.org/10.1038/s41598-021-94209-1. Page 1/23 Abstract Ginseng is an important cash crop. The long-term continuous cropping of ginseng causes the imbalance of soil environment and the exacerbation of soil-borne diseases, which affects the healthy development of ginseng industry. In this study, ginseng continuous cropping soil was treated with microbial inocula using broad-spectrum biocontrol microbial strain Frankia F1. Wheat straw, rice straw and corn straw were the best carrier materials for microbial inoculum. After treatment with microbial inoculum prepared with corn stalk biochar, the soil pH value, organic matter, total nitrogen, available nitrogen, available phosphorus, and available potassium were increased by 11.18%, 55.43%, 33.07%, 26.70%, 16.40%, and 9.10%, the activities of soil urease, catalase and sucrase increased by 52.73%, 16.80% and 43.80%, respectively. A Metagenomic showed that after the application of microbial inoculum prepared fromwith corn stalk biochar, soil microbial OTUs, Chao1 index, Shannon index, and Simpson index increased by 19.86%, 16.05%, 28.83%, and 3.16%, respectively.
    [Show full text]
  • Dissertation Implementing Organic Amendments To
    DISSERTATION IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE Submitted by Erika J. Foster Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: M. Francesca Cotrufo Louise Comas Charles Rhoades Matthew D. Wallenstein Copyright by Erika J. Foster 2018 All Rights Reserved i ABSTRACT IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE To sustain agricultural production into the future, management should enhance natural biogeochemical cycling within the soil. Strategies to increase yield while reducing chemical fertilizer inputs and irrigation require robust research and development before widespread implementation. Current innovations in crop production use amendments such as manure and biochar charcoal to increase soil organic matter and improve soil structure, water, and nutrient content. Organic amendments also provide substrate and habitat for soil microorganisms that can play a key role cycling nutrients, improving nutrient availability for crops. Additional plant growth promoting bacteria can be incorporated into the soil as inocula to enhance soil nutrient cycling through mechanisms like phosphorus solubilization. Since microbial inoculation is highly effective under drought conditions, this technique pairs well in agricultural systems using limited irrigation to save water, particularly in semi-arid regions where climate change and population growth exacerbate water scarcity. The research in this dissertation examines synergistic techniques to reduce irrigation inputs, while building soil organic matter, and promoting natural microbial function to increase crop available nutrients. The research was conducted on conventional irrigated maize systems at the Agricultural Research Development and Education Center north of Fort Collins, CO.
    [Show full text]
  • The Bacterial Communities of Sand-Like Surface Soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA) Yang Wang
    The bacterial communities of sand-like surface soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA) Yang Wang To cite this version: Yang Wang. The bacterial communities of sand-like surface soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA). Agricultural sciences. Université Paris-Saclay, 2015. English. NNT : 2015SACLS120. tel-01261518 HAL Id: tel-01261518 https://tel.archives-ouvertes.fr/tel-01261518 Submitted on 25 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2015SACLS120 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N°577 Structure et Dynamique des Systèmes Vivants Spécialité de doctorat : Sciences de la Vie et de la Santé Par Mme Yang WANG The bacterial communities of sand-like surface soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA) Thèse présentée et soutenue à Orsay, le 23 Novembre 2015 Composition du Jury : Mme. Marie-Claire Lett , Professeure, Université Strasbourg, Rapporteur Mme. Corinne Cassier-Chauvat , Directeur de Recherche, CEA, Rapporteur M. Armel Guyonvarch, Professeur, Université Paris-Sud, Président du Jury M.
    [Show full text]