APPLIED MATHEMATICS and STATISTICS Applied Mathematics and Statistics (AMS)

Total Page:16

File Type:pdf, Size:1020Kb

APPLIED MATHEMATICS and STATISTICS Applied Mathematics and Statistics (AMS) Spring 2009: updates since Spring 2007 are in red APPLIED MATHEMATICS AND STATISTICS Applied Mathematics and Statistics (AMS) Major and Minor in Applied Mathematics and Statistics Department of Applied Mathematics and Statistics, College of Engineering and Applied Sciences CHAIRPERSON: James Glimm UNDERGRADUATE PROGRAM DIRECTOR: Alan C. Tucker ASSISTANT TO THE CHAIR: Janice Hackney OFFICE: P-139B Math Tower PHONE: (631) 632-8370 E-MAIL: [email protected] WEB ADDRESS: http:// www.ams.stonybrook.edu Students majoring in Applied Mathematics and Statistics often double major in one of the following: Computer Science (CSE), Economics (ECO), Information Systems (ISE) Faculty Bradley Plohr, Adjunct Professor, Ph.D., mathematically ori ented students a lib - Princeton University: Conservation laws; Hongshik Ahn, Professor, Ph.D., University of eral education in quantitative problem computational fluid dynamics. Wisconsin: Biostatistics; survival analysis. solving. The courses in this program sur - John Reinitz, Professor, Ph.D., Yale University: Esther Arkin, Professor, Ph.D., Stanford vey a wide variety of mathematical theo - Mathematical biology. University: Computational geometry; combina - ries and techniques that are currently torial optimization. Robert Rizzo, Assistant Professor, Ph.D., Yale used by analysts and researchers in University: Bioinformatics; drug design. Edward J. Beltrami, Professor Emeritus, Ph.D., government, industry, and science. Many Adelphi University: Optimization; stochastic Roman Samulyak, Assistant Professor, Ph.D., of the applied mathematics courses give models. NJIT/Rutgers University: Applied computa - students the opportunity to develop tional mathematics; Fluid dynamics. Yung Ming Chen, Professor Emeritus, Ph.D., problem-solving techniques using cam - New York University: Partial differential equa - David Sharp, Adjunct Professor, Ph.D., California pus computing facilities. Institute of Technology: Mathematical physics. tions; inverse problems. About half of the Applied Mathematics Yuefan Deng, Professor, Ph.D., Columbia Ram P. Srivastav, Professor, D.Sc., University of majors enter graduate or professional University: Computational fluid dynamics; Glasgow; Ph.D., University of Lucknow: Integral programs, primarily in statistics, opera - equations; numerical solutions. parallel computing. tions research, computer science, and Daniel Dicker, Professor Emeritus, D. Eng. Sci., Michael Taksar, Professor Emeritus, Ph.D., business management. Others go directly Columbia University: Civil engineering. Cornell University: Stochastic processes. into professional careers as actuaries, Eugene Feinberg, Professor, Ph.D., Vilnius Reginald P. Tewarson, Professor Emeritus, programmer analysts, management trai- University: Operations research. Ph.D., Boston University: Numerical analysis; nees, and secondary school teachers. biomathematics. Stephen Finch, Professor, Ph.D., Princeton University: Applied statistics. Alan C. Tucker, Distinguished Teaching While some career-oriented course Professor, Ph.D., Stanford University: sequences are listed below, students are Robert Frey, Research Professor, Ph.D., Stony Combinatorics; applied models. Recipient of strongly encouraged to seek faculty Brook University: Operations research. the State University Chancellor’s Award for advice in coordinating their career plans James Glimm, Distinguished Professor, Ph.D., Excellence in Teaching, 1974. with their academic programs. In the Columbia University: Mathematical physics; Haiping Xing, Assistant Professor, Ph.D., spring of their junior year, all students nonlinear physics. Stanford University: Multiple change-point contemplating graduate studies, upon David Green, Assistant Professor, Ph.D., MIT: problems; Economic time series; Computational graduation or at a later date, should con - Computational biology. biology. sult with the Department’s graduate John Grove, Adjunct Professor, Ph.D., Ohio Wei Zhu, Professor, University of California, Los placement advisor, who assists them in State University: Conservation laws; Angeles: Biostatistics. choice of schools and provides information computational fluid dynamics. about Graduate Record Examinations, Jiaqiao Hu, Assistant Professor, Ph.D., Affiliated Faculty etc. Students considering secondary University of Maryland: Stochastic models. Hussein Badr, Computer Science school mathematics teaching can major Xiangmin Jio, Assistant Professor, Ph.D., Michael Bender, Computer Science in Applied Mathematics and Statistics or University of Illinios at Urbana-Champaign: in Mathematics. Computational mesh processing; High perform - Pradeep Dubey, Economics ance computing. David Ferguson, Technology and Society Courses Offered in Applied Xiaolin Li, Professor, Ph.D., Columbia Abraham Neyman, Economics Mathematics and Statistics University: Computational applied mathematics. Steven Skiena, Computer Science See the Course Descriptions listing in Brent Lindquist, Professor, Ph.D., Cornell Jadranka Skorin-Kapov, College of Business University: Computational fluid dynamics; this Bulletin for complete information. Judith Tanur, Sociology reservoir modeling. Recipient of the State AMS 101-C Applied Precalculus University Chancellor's Award for Excellence Adjunct Faculty AMS 102-C Elements of Statistics in Teaching, 2002. Estimated number: 2 Nancy Mendell, Professor, Ph.D., University of AMS 110 Probability and Statistics in North Carolina, Chapel Hill: Biostatistics; statis - Teaching Assistants the Life Sciences Estimated number: 30 tical genetics. AMS 151-C, 161-C Applied Calculus I, II Joseph Mitchell, Professor, Ph.D., Stanford AMS 201 Matrix Methods and Models University: Computational geometry. Recipient The undergraduate program in Applied AMS 210 Applied Linear Algebra of the State University Chancellor’s Award for Mathematics and Statistics aims to give Excellence in Teaching, 1996. 116 www.stonybrook.edu/ugbulletin Spring 2009: updates since Spring 2007 are in red APPLIED MATHEMATICS AND STATISTICS AMS 261 Applied Calculus III Sample Course Sequence for the AMS 300 Writing in Applied Major in Applied Mathematics and Statistics Mathematics AMS 301 Finite Mathematical Freshman Fall Credits Spring Credits Structures First Year Seminar 101 1 First Year Seminar 102 1 AMS 303 Graph Theory D.E.C. A 3 AMS 161* 3 AMS 151* 3 D.E.C. 3 AMS 310 Survey of Probability and D.E.C. 3 D.E.C. 3 Statistics D.E.C. 3 CSE 110* 3 AMS 311 Probability Theory Total 13 D.E.C. 3 AMS 312 Mathematical Statistics Total 16 AMS 315 Data Analysis AMS 316 Introduction to Time Series Sophomore Fall Credits Spring Credits Analysis AMS 210 3 AMS 301 3 AMS 318 Theory of Interest AMS 261 4 AMS 310 3 D.E.C. 3 Elective 3 AMS 321 Computer Projects in Applied D.E.C. 3 AMS Upper-Division elective 3 Mathematics D.E.C. 3 AMS Upper-Division elective 3 AMS 326 Numerical Analysis Total 16 Total 15 AMS 331 Mathematical Modeling AMS 333 Mathematical Biology Junior Fall Credits Spring Credits AMS 335 Game Theory AMS Upper-Division elective 3 Upper-Division elective 3 AMS 341 Operations Research I: Upper-Division elective 3 Upper-Division elective 3 Deterministic Models AMS Upper-Division elective 3 Related Area course** 3 AMS 342 Operations Research II: AMS Upper-Division elective D.E.C. 3 or ECO 321 3-4 Elective 3 Stochastic Models AMS Upper-Division elective 3 Total 15 AMS 345 Computational Geometry Total 15-16 AMS 351 Applied Algebra AMS 361 Applied Calculus IV: Senior Fall Credits Spring Credits Differential Equations AMS 300 1 Related Area course** 3 AMS 394 Statistical Laboratory Upper-Division elective 3 Related Area course** 3 Upper-Division elective 3 Elective 3 AMS 410 Actuarial Mathematics Related Area course** 3 Elective 3 AMS 421 Statistical Quality Control Related Area course** 3 Elective 3 and Design of Experiments Elective 3 Total 15 Total 16 AMS 441 Business Enterprise AMS 475 Undergraduate Teaching *See A. 1. for alternate course selections. Practicum ** Consult the department for appropriate courses. AMS 487 Research in Applied Mathematics substituted for AMS 151, 161 in AMS 492 Topics in Applied Requirements for the Major in major requirements or prerequisites: Mathematics Applied Mathematics and Statistics (AMS) MAT 125, 126, 127 Acceptance into the Applied The major in Applied Mathematics or MAT 131, 132 and Statistics leads to the Bachelor Mathematics and Statistics Major or MAT 141, 142 Qualified freshman and transfer students of Science degree. or MAT 171 who have indicated their interest in the Completion of the major requires major on their applications are accepted approximately 60 credits. 2. CSE 110 Introduction to Computer directly into the major upon admission to Science A. Study Within the Area of the Major the University. Students who did not or CSE 114 Computer Science I 1. AMS 151, 161 Applied Calculus I, II apply for the major and those who were or CSE 130 Introduction to AMS 210 or MAT 211 Applied not accepted into the major when they Programming in C entered the University may apply Linear Algebra or ESG 111 C Programming for directly to the Department only after AMS 261 or MAT 203 or MAT 205 Engineering completion of AMS 161 or MAT 132 or Applied Calculus III or MEC 111 Computer Science 142 or 127; AMS 210 or MAT 211; and Note: The following alternate for Engineers CSE 110 or 114 or 130 or ESG 111 or calculus course sequences may be MEC 111 or 112. www.stonybrook.edu/ugbulletin 117 Spring 2009: updates since Spring 2007 are in red APPLIED MATHEMATICS AND STATISTICS or MEC 112 Practical
Recommended publications
  • Multi-Armed Bandits with Applications to Markov Decision Processes and Scheduling Problems
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Multi-Armed Bandits with Applications to Markov Decision Processes and Scheduling Problems A Dissertation Presented by Isa M. Muqattash to The Graduate School in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University December 2014 Stony Brook University The Graduate School Isa M. Muqattash We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Jiaqiao Hu { Dissertation Advisor Associate Professor, Department of Applied Mathematics and Statistics Esther Arkin { Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Yuefan Deng Professor, Department of Applied Mathematics and Statistics Luis E. Ortiz Assistant Professor Department of Computer Science, Stony Brook University This dissertation is accepted by the Graduate School. Charles Taber Dean of the Graduate School ii Abstract of the Dissertation Multi-Armed Bandits with Applications to Markov Decision Processes and Scheduling Problems by Isa M. Muqattash Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University 2014 The focus of this work is on practical applications of stochastic multi-armed bandits (MABs) in two distinctive settings. First, we develop and present REGA, a novel adaptive sampling- based algorithm for control of ¯nite-horizon Markov decision pro- cesses (MDPs) with very large state spaces and small action spaces. We apply a variant of the ²-greedy multi-armed bandit algorithm to each stage of the MDP in a recursive manner, thus comput- ing an estimation of the \reward-to-go" value at each stage of the MDP.
    [Show full text]
  • Stony Brook University
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Integrating Mobile Agents and Distributed Sensors in Wireless Sensor Networks A Dissertation presented by Jiemin Zeng to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science Stony Brook University May 2016 Copyright by Jiemin Zeng 2016 Stony Brook University The Graduate School Jiemin Zeng We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation Jie Gao - Dissertation Advisor Professor, Computer Science Department Joseph Mitchell - Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Esther Arkin Professor, Department of Applied Mathematics and Statistics Matthew P. Johnson - External Member Assistant Professor Department of Mathematics and Computer Science at Lehman College PhD Program in Computer Science at The CUNY Graduate Center This dissertation is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Dissertation Integrating Mobile Agents and Distributed Sensors in Wireless Sensor Networks by Jiemin Zeng Doctor of Philosophy in Computer Science Stony Brook University 2016 As computers become more ubiquitous in the prominent phenomenon of the In- ternet of Things, we encounter many unique challenges in the field of wireless sensor networks. A wireless sensor network is a group of small, low powered sensors with wireless capability to communicate with each other. The goal of these sensors, also called nodes, generally is to collect some information about their environment and report it back to a base station.
    [Show full text]
  • 2Majors and Minors.Qxd.KA
    APPLIED MATHEMATICS AND STATISTICS Spring 2007: updates since Fall 2006 are in red Applied Mathematics and Statistics (AMS) Major and Minor in Applied Mathematics and Statistics Department of Applied Mathematics and Statistics, College of Engineering and Applied Sciences CHAIRPERSON: James Glimm UNDERGRADUATE PROGRAM DIRECTOR: Alan C. Tucker UNDERGRADUATE SECRETARY: Elizabeth Ahmad OFFICE: P-139B Math Tower PHONE: (631) 632-8370 E-MAIL: [email protected] WEB ADDRESS: http://naples.cc.sunysb.edu/CEAS/amsweb.nsf Students majoring in Applied Mathematics and Statistics often double major in one of the following: Computer Science (CSE), Economics (ECO), Information Systems (ISE) Faculty Bradley Plohr, Adjunct Professor, Ph.D., he undergraduate program in Princeton University: Conservation laws; com- Hongshik Ahn, Associate Professor, Ph.D., Applied Mathematics and Statistics putational fluid dynamics. University of Wisconsin: Biostatistics; survival Taims to give mathematically ori- analysis. John Reinitz, Professor, Ph.D., Yale University: ented students a liberal education in quan- Mathematical biology. Esther Arkin, Professor, Ph.D., Stanford titative problem solving. The courses in University: Computational geometry; combina- Robert Rizzo, Assistant Professor, Ph.D., Yale this program survey a wide variety of torial optimization. University: Bioinformatics; drug design. mathematical theories and techniques Edward J. Beltrami, Professor Emeritus, Ph.D., David Sharp, Adjunct Professor, Ph.D., that are currently used by analysts and Adelphi University: Optimization; stochastic California Institute of Technology: Mathematical researchers in government, industry, and models. physics. science. Many of the applied mathematics Yung Ming Chen, Professor Emeritus, Ph.D., Ram P. Srivastav, Professor, D.Sc., University of courses give students the opportunity to New York University: Partial differential equa- Glasgow; Ph.D., University of Lucknow: Integral develop problem-solving techniques using equations; numerical solutions.
    [Show full text]
  • Games of Threats
    Accepted Manuscript Games of threats Elon Kohlberg, Abraham Neyman PII: S0899-8256(17)30190-2 DOI: https://doi.org/10.1016/j.geb.2017.10.018 Reference: YGAME 2771 To appear in: Games and Economic Behavior Received date: 30 August 2017 Please cite this article in press as: Kohlberg, E., Neyman, A. Games of threats. Games Econ. Behav. (2017), https://doi.org/10.1016/j.geb.2017.10.018 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. GAMES OF THREATS ELON KOHLBERG∗ AND ABRAHAM NEYMAN+ Abstract. Agameofthreatsonafinitesetofplayers,N, is a function d that assigns a real number to any coalition, S ⊆ N, such that d(S)=−d(N \S). A game of threats is not necessarily a coalitional game as it may fail to satisfy the condition d(∅)=0.We show that analogs of the classic Shapley axioms for coalitional games determine a unique value for games of threats. This value assigns to each player an average of d(S)acrossall the coalitions that include the player. Games of threats arise naturally in value theory for strategic games, and may have applications in other branches of game theory. 1. Introduction The Shapley value is the most widely studied solution concept of cooperative game theory.
    [Show full text]
  • DEPARTMENT of ECONOMICS NEWSLETTER Issue #1
    DEPARTMENT OF ECONOMICS NEWSLETTER Issue #1 DEPARTMENT OF ECONOMICS SEPTEMBER 2017 STONY BROOK UNIVERSITY IN THIS ISSUE Message from the Chair by Juan Carlos Conesa Greetings from the Department of Regarding news for the coming Economics in the College of Arts and academic year, we are very excited to Sciences at Stony Brook University! announce that David Wiczer, currently Since the beginning of the spring working for the Research Department of semester, we’ve celebrated several the Federal Reserve Bank of St Louis, 2017 Commencement Ceremony accomplishments of both students and will be joining us next semester as an Juan Carlos Conesa, Vincent J. Cassidy (BA ‘81), Anand George (BA ‘02) and Hugo faculty alike. I’d also like to tell you of Assistant Professor. David is an what’s to come for next year. enthusiastic researcher working on the Benitez‐Silva intersection of Macroeconomics and The beginning of 2017 has been a very Labor Economics, with a broad exciting time for our students. Six of our perspective combining theoretical, PhD students started looking for options computational and data analysis. We are to start exciting professional careers. really looking forward to David’s Arda Aktas specializes in Demographics, interaction with both students and and will be moving to a Post‐doctoral faculty alike. We are also happy to position at the World Population welcome Prof. Basak Horowitz, who will Program in the International Institute for join the Economics Department in Fall Applied Systems Analysis (IIASA), in 2017, as a new Lecturer. Basak’s Austria. Anju Bhandari specializes in research interests are microeconomic Macroeconomics, and has accepted a theory, economics of networks and New faculty, David Wiczer position as an Assistant Vice President matching theory, industrial organization with Citibank, NY.
    [Show full text]
  • Games of Threats
    Games of Threats The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kohlberg, Elon, and Abraham Neyman. "Games of Threats." Games and Economic Behavior 108 (March 2018): 139–145. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:39148383 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP GAMES OF THREATS ELON KOHLBERG∗ AND ABRAHAM NEYMAN+ Abstract. Agameofthreatsonafinitesetofplayers,N, is a function d that assigns a real number to any coalition, S ⊆ N, such that d(S)=−d(N \S). A game of threats is not necessarily a coalitional game as it may fail to satisfy the condition d(∅)=0.We show that analogs of the classic Shapley axioms for coalitional games determine a unique value for games of threats. This value assigns to each player an average of d(S)acrossall the coalitions that include the player. Games of threats arise naturally in value theory for strategic games, and may have applications in other branches of game theory. 1. Introduction The Shapley value is the most widely studied solution concept of cooperative game theory. It is defined on coalitional games, which are the standard objects of the theory. A coalitional game on a finite set of players, N, is a function v that assigns a real number to any subset (“coalition”), S ⊆ N, such that v(∅) = 0.
    [Show full text]
  • 2018 Unité De Recherche Dossier D'autoévaluation
    Évaluation des unités de recherche Novembre 2016 Vague D Campagne d’évaluation 2017 – 2018 Unité de recherche Dossier d’autoévaluation Informations générales Nom de l’unité : Centre de Recherche en Mathématiques de la Décision Acronyme : CEREMADE UMR CNRS 7534 Champ de recherche de rattachement : Recherche Nom du directeur pour le contrat en cours : Vincent Rivoirard Nom du directeur pour le contrat à venir : Vincent Rivoirard Type de demande : Renouvellement à l’identique x Restructuration □ Création ex nihilo □ Établissements et organismes de rattachement : Liste des établissements et organismes tutelles de l’unité de recherche pour le contrat en cours et pour le prochain contrat (tutelles). Contrat en cours : | Prochain contrat : - Université Paris-Dauphine |- Université Paris-Dauphine - CNRS |- CNRS Choix de l’évaluation interdisciplinaire de l’unité de recherche ou de l’équipe interne : Oui □ Non x Vague D : campagne d’évaluation 2017 – 2018 1 Département d’évaluation de la recherche 2 Table des matières 1 Présentation du Ceremade7 1.1 Introduction..............................................7 1.2 Tableau des effectifs et moyens du Ceremade............................7 1.2.1 Effectifs............................................7 1.2.2 Parité.............................................9 1.2.3 Moyens financiers......................................9 1.2.4 Locaux occupés........................................ 10 1.2.5 Ressources documentaires.................................. 10 1.3 Politique scientifique......................................... 10 1.3.1 Missions et objectifs scientifiques.............................. 10 1.3.2 Structuration......................................... 11 1.3.3 Recrutements......................................... 12 1.3.4 Illustration de la mise en œuvre de la stratégie scientifique adoptée en 2012 en direction des applications........................................ 14 1.3.5 Programmes de soutien à la recherche du Ceremade déployés par la Fondation Dauphine, PSL, la FSMP et la Région Ile-de-France.........................
    [Show full text]
  • 2Majors and Minors.Qxd.KA
    APPLIED MATHEMATICS AND STATISTICSSpring 2006: updates since Spring 2005 are in red Applied Mathematics and Statistics (AMS) Major and Minor in Applied Mathematics and Statistics Department of Applied Mathematics and Statistics, College of Engineering and Applied Sciences CHAIRPERSON: James Glimm UNDERGRADUATE PROGRAM DIRECTOR: Alan C. Tucker UNDERGRADUATE SECRETARY: Christine Rota OFFICE: P-139B Math Tower PHONE: (631) 632-8370 E-MAIL: [email protected] WEB ADDRESS: http://naples.cc.sunysb.edu/CEAS/amsweb.nsf Students majoring in Applied Mathematics and Statistics often double major in one of the following: Computer Science (CSE), Economics (ECO), Information Systems (ISE) Faculty Robert Rizzo, Assistant Professor, Ph.D., Yale he undergraduate program in University: Bioinformatics; drug design. Hongshik Ahn, Associate Professor, Ph.D., Applied Mathematics and Statistics University of Wisconsin: Biostatistics; survival David Sharp, Adjunct Professor, Ph.D., Taims to give mathematically ori- analysis. California Institute of Technology: Mathematical ented students a liberal education in quan- physics. Esther Arkin, Professor, Ph.D., Stanford titative problem solving. The courses in University: Computational geometry; combina- Ram P. Srivastav, Professor, D.Sc., University of this program survey a wide variety of torial optimization. Glasgow; Ph.D., University of Lucknow: Integral mathematical theories and techniques equations; numerical solutions. Edward J. Beltrami, Professor Emeritus, Ph.D., that are currently used by analysts and Adelphi University: Optimization; stochastic Michael Taksar, Professor Emeritus, Ph.D., researchers in government, industry, and models. Cornell University: Stochastic processes. science. Many of the applied mathematics Yung Ming Chen, Professor Emeritus, Ph.D., Reginald P. Tewarson, Professor Emeritus, courses give students the opportunity to New York University: Partial differential equa- Ph.D., Boston University: Numerical analysis; develop problem-solving techniques using biomathematics.
    [Show full text]
  • A Formula for the Value of a Stochastic Game
    A formula for the value of a stochastic game Luc Attiaa,1 and Miquel Oliu-Bartonb,1,2 aCentre de Mathematiques´ Appliquees,´ Ecole´ Polytechnique, 91128 Palaiseau, France; and bCentre de Recherches en Mathematiques´ de la Decision,´ Universite´ Paris-Dauphine, Paris Sciences et Lettres, 75016 Paris, France Edited by Robert J. Aumann, The Hebrew University, Jerusalem, Israel, and approved November 12, 2019 (received for review May 21, 2019) In 1953, Lloyd Shapley defined the model of stochastic games, a formula for the value (proved in Section 4). Section 5 describes which were the first general dynamic model of a game to be the algorithmic implications and tractability of these 2 formulas. defined, and proved that competitive stochastic games have a Section 6 concludes with remarks and extensions. discounted value. In 1982, Jean-Franc¸ois Mertens and Abraham Neyman proved that competitive stochastic games admit a robust 2. Context and Main Results solution concept, the value, which is equal to the limit of the To state our results precisely, we recall some definitions and well- discounted values as the discount rate goes to 0. Both contribu- known results about 2-player zero-sum games (Section 2A) and tions were published in PNAS. In the present paper, we provide a about finite competitive stochastic games (Section 2B). In Sec- tractable formula for the value of competitive stochastic games. tion 2C we give a brief overview of the relevant literature on finite competitive stochastic games. Our results are described in stochastic games j repeated games j dynamic programming Section 2D. Notation. Throughout this paper, N denotes the set of positive 1.
    [Show full text]
  • Algorithmica (2006) 46: 193–221 DOI: 10.1007/S00453-006-1206-1 Algorithmica © 2006 Springer Science+Business Media, Inc
    Algorithmica (2006) 46: 193–221 DOI: 10.1007/s00453-006-1206-1 Algorithmica © 2006 Springer Science+Business Media, Inc. The Freeze-Tag Problem: How to Wake Up a Swarm of Robots1 Esther M. Arkin,2 Michael A. Bender,3 Sandor´ P. Fekete,4 Joseph S. B. Mitchell,2 and Martin Skutella5 Abstract. An optimization problem that naturally arises in the study of swarm robotics is the Freeze-Tag Problem (FTP) of how to awaken a set of “asleep” robots, by having an awakened robot move to their locations. Once a robot is awake, it can assist in awakening other slumbering robots. The objective is to have all robots awake as early as possible. While the FTP bears some resemblance to problems from areas in combinato- rial optimization such as routing, broadcasting, scheduling, and covering, its algorithmic characteristics are surprisingly different. We consider both scenarios on graphs and in geometric environments. In graphs, robots sleep at vertices and there is a length function on the edges. Awake robots travel along edges, with time depending on edge length. For most scenarios, we consider the offline version of the problem, in which each awake robot knows the position of all other robots. We prove that the problem is NP-hard, even for the special case of star graphs. We also establish hardness of approximation, showing that it is NP-hard to obtain an approximation factor 5 better than 3 , even for graphs of bounded degree. These lower bounds are complemented with several positive algorithmic results, including: We show that the natural greedy strategy on star graphs has a tight worst-case performance of 7 and give • 3 a polynomial-time approximation scheme (PTAS) for star graphs.
    [Show full text]
  • The Freeze-Tag Problem: How to Wake up a Swarm of Robots
    The Freeze-Tag Problem: How to Wake Up a Swarm of Robots∗ Esther M. Arkin† Michael A. Bender‡ S´andor P. Fekete§ Joseph S. B. Mitchell† Martin Skutella¶ Abstract An optimization problem that naturally arises in the study of swarm robotics is the Freeze-Tag Problem (FTP) of how to awaken a set of “asleep” robots, by having an awakened robot move to their locations. Once a robot is awake, it can assist in awakening other slumbering robots. The objective is to have all robots awake as early as possible. While the FTP bears some resemblance to problems from areas in combinatorial optimization such as routing, broadcasting, scheduling, and covering, its algorithmic characteristics are surprisingly different. We consider both scenarios on graphs and in geometric environments. In graphs, robots sleep at vertices and there is a length function on the edges. Awake robots travel along edges, with time depending on edge length. For most scenarios, we consider the offline version of the problem, in which each awake robot knows the position of all other robots. We prove that the problem is NP-hard, even for the special case of star graphs. We also establish hardness of approximation, showing that it is NP-hard to obtain an approximation factor better than 5/3, even for graphs of bounded degree. These lower bounds are complemented with several positive algorithmic results, including: We show that the natural greedy strategy on star graphs has a tight worst-case performance of 7/3 • and give a polynomial-time approximation scheme (PTAS) for star graphs. We give a simple O(log ∆)-competitive online algorithm for graphs with maximum degree ∆ and • locally bounded edge weights.
    [Show full text]
  • Special Issue in Honor of Abraham Neyman
    Int J Game Theory (2016) 45:3–9 DOI 10.1007/s00182-015-0518-2 PREFACE Special issue in honor of Abraham Neyman Olivier Gossner1 · Ori Haimanko2 · Eilon Solan3 Published online: 16 March 2016 © Springer-Verlag Berlin Heidelberg 2016 Preface The International Journal of Game Theory is proud to publish a special issue in honor of the contributions of Prof. Abraham Neyman to Game Theory. Abraham Neyman graduated from the Hebrew University of Jerusalem in 1977. His dissertaton, titled “Values of Games with a Continuum of Players”, was completed under the supervi- sion of Robert Aumann and was awarded the Aharon Katzir Prize for an Excellent Ph.D. thesis. After graduation he obtained a visiting position at Cornell University, from where he continued on to Berkeley. In 1982 Abraham Neyman joined the Hebrew University of Jerusalem, where he participated in the founding of the Center for the Study of Rationality in 1991. In 1985 he became one of the founders of the Center for Game Theory at Stony Brook University, where he worked for 16 years, in 1989 he was elected as a Fellow of the Econometric Society, and in 1999 he was selected a Charter Member of the Game Theory Society. Abraham Neyman was the advisor of 12 Ph.D. students. He has thus far published 67 articles and co-edited three books. He has also been the co-organizer of numer- ous conferences and workshops. He served as the Area Editor for Game Theory in B Eilon Solan [email protected] Olivier Gossner [email protected] Ori Haimanko [email protected] 1 École Polytechnique - CNRS, France, and London School of Economics, Paris, France, UK 2 Department of Economics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel 3 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997800, Israel 123 4 O.
    [Show full text]