An Estimate of Canonical Dimension of Groups Based on Schubert Calculus

Total Page:16

File Type:pdf, Size:1020Kb

An Estimate of Canonical Dimension of Groups Based on Schubert Calculus An estimate of canonical dimension of groups based on Schubert calculus Rostislav Devyatov∗ November 3, 2020 Abstract We sketch the proof of a connection between the canonical (0-)dimension of semisimple split simply connected groups and cohomology of their full flag varieties. Using this connection, we get a new estimate of the canonical (0-)dimension of simply connected split exceptional groups of type E understood as a group. A full proof will be published later. 1 Introduction To define the canonical (0-)dimension of an algebraic group understood as a group, we first need to define the canonical (0-)dimension of a scheme understood as a scheme (which is a different definition). Roughly speaking, the canonical (0-)dimension of a scheme is a number indicating how hard it is to get a rational point in the scheme. The canonical (0-)dimension of an algebraic group shows how hard it is to get rational points in torsors related to the group. To be more precise, let us fix some conventions and give some definitions. We speak of algebraic schemes and use stacks project as the source of basic definitions. All schemes in the present text are of finite type over a field and separated. The base field is arbitrary. Speaking of canonical dimension of schemes, there are two closely related notions in the literature: the canonical 0-dimension of a scheme defined in [14] and the canonical dimension of a scheme defined in [9]. These two definitions are not known to be always equivalent, but they are equivalent for two particular classes of schemes: for smooth complete schemes and for torsors of split reductive groups (see [13, Theorem 1.16, Remark 1.17, and Example 1.18]). The definition from [14] looks more motivated, so we are going to use it. Definition 1.1 ([14, Section 4a, first paragraph of Section 4b, and the last paragraph of Section 2a]). Given a scheme X over a field K, the canonical 0-dimension of X understood as a scheme (notation: cd0(X)) is: cd0(X)= max min trdegK L0. 0 0 arXiv:2011.00950v1 [math.AG] 2 Nov 2020 L=a field containing K L =a subfield of L, K⊆L XL has a rational point XL0 still has a rational point A bit less formally, canonical dimension can be explained as follows. Suppose we have expanded the base field K to L, and got a rational point in XL. How large can L be, compared to K? In general, it can be very large, this is unbounded. A related question with a finite answer is: how many algebraically independent generators do we have to keep, at worst (for the worst L), to still have a rational point after scalar expansion (not necessarily the same rational point that we found after expanding scalars to L)? This number of generators is the canonical dimension of X. For more properties of canonical dimension, see [14] in the case of general X and [8] in the case of smooth projective X. We have underlined above that we want to get a rational point over a field between K and L, but not necessarily the same rational point. If we demanded to get the same rational point, we would get ∗Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany. Email address: [email protected] 1 the definition of the essential 0-dimension of a scheme, which is known to coincide with the (standard in algebraic geometry) dimension, see [13, Proposition 1.2]. This can be viewed as a motivation for the word “dimension”. (But essential dimension is not only defined for schemes, and in broader generality it becomes a much more nontrivial notion.) Another motivation for canonical (0-)dimension comes from incompressible varieties, but this moti- vation is only valid for the canonical (0-)dimension of smooth complete schemes. The definition that we are going to give next, the canonical 0-dimension of an algebraic group, and that will be used in the main theorem of this text, does not involve the canonical (0-)dimension of smooth complete schemes, so this motivation will be useless for us. One can find details for this motivation in [8, Section 2]. The second object we need to define before we can define the canonical 0-dimension of a group is a torsor of a group. All algebraic groups in this text are affine. All reductive, semisimple, and simple groups in this text are smooth. Torsors of algebraic groups (over a point) are, informally speaking, homogeneous spaces that are “as large as the group itself”. This notion is mostly interesting over non algebraically closed fields. Definition 1.2 ([14, Section 3a]). Given an algebraic group G, a G-torsor over a point (or simply a G-torsor) is a scheme E with an action ϕ: G × E → E such that (ϕ, pr2): G × E → E × E, where pr2 is the projection to the second factor, is an isomorphism. It is known that all torsors of affine algebraic groups over a point are affine. Finally, the canonical 0-dimension of an algebraic group understood as a group measures how hard it is to get rational points in torsors, informally speaking, related to the group. Precisely: Definition 1.3 ([14, Section 4g]). given an algebraic group G over a field F , the canonical 0-dimension of G understood as a group (notation: cd0(G)) is cd0(G)= max max cd0(E). K=a field containing F E=a GK -torsor The definition of canonical dimension of an algebraic group understood as a group in [9, Introduction] repeats this definition almost exactly, with the only difference being that instead of cd0(E) it uses the definition of canonical dimension of E understood as a scheme from the paper [9] itself. But as we already mentioned above, it is known that these two notions are known to be equivalent for torsors of split reductive groups. So, Definition 1.3 is also equivalent to the definition of canonical dimension of a group from [9, Introduction] for split reductive groups. All groups whose canonical dimension we are going to estimate in this text are split reductive (and even simply connected semisimple), so these results also estimate the canonical dimension in the sense of [9, Introduction]. To formulate the main goal of this text precisely, we need to introduce some more notation and terminology. Given a split semisimple algebraic group G and a Borel subgroup B, the corresponding Weyl group W , and the element w0 ∈ W of maximal length, for each w ∈ W we denote the Schubert −1 variety Bw0w B/B ⊆ G/B by Zw. This Zw is a Schubert divisor if and only if w is a simple reflection, and we denote all Schubert divisors by D1,...,Dr. It is known that the classes [Zw] ∈ CH(G/B) for all w ∈ W form a free set of generators of n1 nr CH(G/B) as of an abelian group. We say that a product of classes of Schubert divisors [D1] ... [Dr] is multiplicity-free if there exists w ∈ W such that the coefficient at [Zw] in the decomposition of n1 nr [D1] ... [Dr] into a linear combination of Schubert classes equals 1. Now we can formulate the goal of this text precisely. Our goal is to sketch the proof of the following theorem. Theorem 1.4. Let G be a split semisimple simply connected algebraic group over an arbitrary field, let B be a Borel subgroup, let r be the rank of G, and let D1,...,Dr ⊂ G/B be the Schubert divisors n1 nr corresponding to the r simple roots of G. If [D1] ... [Dr] is a multiplicity-free product of Schubert divisors, then cd0(G) ≤ dim(G/B) − n1 − ... − nr. As a corollary of this theorem and [5, Theorem 11.5], we will immediately get the following: Corollary 1.5. Let G be a split semisimple simply connected algebraic group of type Er. Then cd0(G) ≤ 17, 37, or 86 for r =6, 7, or 8, respectively. 2 The canonical dimension of simply connected split groups of type Ar and Cr is known to be zero. For types Br and Dr, the canonical dimension was estimated (and computed exactly if r is a power of 2) by N. Karpenko in [10]. The paper [10] also relates cohomology of flag varieties of orthogonal groups (more precisely, orthogonal Grassmannians, not full flag varieties) to canonical dimension, and in this text, we are going to follow the ideas of several proofs from [10]. For type G2, the canonical dimension (of a split simply connected group) is known and equals 3, see [1, Example 10.7]. For type F4, no nontrivial upper bounds on the canonical dimension are known. In types Er, the most difficult part of obtaining Corollary 1.5 was to understand which products of Schubert divisors are multiplicity-free (and this was understood in [5] by the author). The part of the argument establishing relation between Schubert calculus and canonical dimension (in other words, the proof of Theorem 1.4 itself) was known to the experts (or at least they believed that the argument is doable this way). However, we were unable to find an exposition suitable for more general mathematical audience. The present paper contains such an exposition. Acknowledgments I thank Kirill Zaynoulline for bringing my attention to the problem. I thank Nikita Karpenko for useful discussions and explanations about theory of torsors and canonical dimension and about his paper [10]. I also thank Vladimir Chernousov and Alexander Merkurjev for useful discussions about torsors and theory of Galois descent.
Recommended publications
  • Intersection Theory on Regular Schemes Via Alterations and Deformation to the Normal Cone Dissertation
    Intersection Theory on Regular Schemes via Alterations and Deformation to the Normal Cone Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultat¨ fur¨ Mathematik der Universitat¨ Regensburg vorgelegt von Andreas Weber aus Regensburg im Jahr 2015 Promotionsgesuch eingereicht am 13. April 2015. Die Arbeit wurde angeleitet von Prof. Dr. Klaus K¨unnemann. Pr¨ufungsausschuss: Vorsitzender: Prof. Dr. Harald Garcke 1. Gutachter: Prof. Dr. Klaus K¨unnemann 2. Gutachter: Prof. Dr. Walter Gubler weiterer Pr¨ufer: Prof. Dr. Uwe Jannsen Contents Contents 3 1 Introduction 5 2 Chow Groups of S-schemes 11 2.1 The S-Dimension . 11 2.2 Chow Groups . 14 3 Resolution of Singularities and Alterations 17 3.1 Assumption on Alterations . 17 3.2 State of the Art . 18 4 Intersection Theory with Supports on Regular Schemes 21 4.1 Bivariant Classes and Orientations . 21 4.2 Alterations and BQ-Orientations . 37 4.3 Intersection Theory with Supports on BQ-orienting Schemes . 39 5 Comparison to other Approaches to Intersection Theory 47 5.1 Intersection with Divisors . 47 5.2 Smooth Schemes over a Dedekind scheme . 49 A Fulton's Theory for S-schemes 53 A.1 Proper push-forward and flat pull-back . 53 A.2 Intersection with Divisors . 56 A.3 Cones, Chern and Segre classes . 56 A.4 Deformation to the Normal bundle . 63 A.5 Refined Gysin homomorphisms . 65 A.6 Intersection theory for smooth schemes over a one-dimensional base . 69 Bibliography 71 Chapter 1 Introduction k For a Noetherian separated regular scheme X, the Chow group CHY (X) of algebraic cycles of codimension k with supports in a closed subset Y of X is given as k k k CHY (X) := ZY (X) = RatY (X); k i.e.
    [Show full text]
  • Waring-Type Problems for Polynomials Algebra Meets Geometry Alessandro Oneto
    Waring-type problems for polynomials Algebra meets Geometry Alessandro Oneto Waring-type problems for polynomials Algebra meets Geometry Alessandro Oneto ©Alessandro Oneto, Stockholm University 2016 e-mail: [email protected] ISBN: 978-91-7649-424-0 Printed by Holmbergs, Malmö 2016 Distributor: Department of Mathematics, Stockholm University CONTENTS 1 INTRODUCTION 3 1.1 ADDITIVE DECOMPOSITIONS OF INTEGERS ............ 3 1.2 ADDITIVE DECOMPOSITIONS OF POLYNOMIALS .......... 4 1.2.1 CLASSICAL WARING DECOMPOSITIONS .......... 5 1.2.2 d-TH WARING DECOMPOSITIONS .............. 7 1.2.3 WARING-LIKE DECOMPOSITIONS .............. 8 1.2.4 REAL WARING DECOMPOSITIONS ............. 9 1.3 GEOMETRIC INTERPRETATION ................... 10 1.3.1 SECANT VARIETIES ..................... 10 1.3.2 CLASSICAL WARING PROBLEM:VERONESE VARIETIES . 12 1.3.3 d-TH WARING PROBLEM: VARIETIES OF POWERS . 14 1.3.4 WARING-LIKE PROBLEMS: VARIETIES OF µ-POWERS . 17 1.3.5 TERRACINI’S LEMMA .................... 18 2 APOLARITY THEORY AND POINTS CONFIGURATIONS 23 2.1 APOLARITY THEORY ......................... 23 2.2 HILBERT FUNCTIONS OF CONFIGURATIONS OF REDUCED POINTS 27 2.3 WARING LOCI OF HOMOGENEOUS POLYNOMIALS . 29 2.3.1 QUADRICS .......................... 31 2.3.2 MONOMIALS ......................... 32 2.3.3 BINARY FORMS ....................... 34 2.3.4 PLANE CUBICS ....................... 37 2.4 WARING LOCI AND THE STRASSEN CONJECTURE . 43 2.5 APOLARITY LEMMA: POWER IDEALS AND FAT POINTS . 49 2.5.1 IDEALS OF FAT POINTS ................... 49 2.5.2 INVERSE SYSTEMS OF IDEALS FAT POINTS. 51 2.6 HILBERT FUNCTIONS OF CONFIGURATIONS OF FAT POINTS . 53 2.6.1 DOUBLE POINTS: THE ALEXANDER–HIRSCHOWITZ THEO- REM ............................. 55 2.7 SPECIAL CONFIGURATIONS OF FAT POINTS .
    [Show full text]
  • Intersection Theory
    APPENDIX A Intersection Theory In this appendix we will outline the generalization of intersection theory and the Riemann-Roch theorem to nonsingular projective varieties of any dimension. To motivate the discussion, let us look at the case of curves and surfaces, and then see what needs to be generalized. For a divisor D on a curve X, leaving out the contribution of Serre duality, we can write the Riemann-Roch theorem (IV, 1.3) as x(.!Z'(D)) = deg D + 1 - g, where xis the Euler characteristic (III, Ex. 5.1). On a surface, we can write the Riemann-Roch theorem (V, 1.6) as 1 x(!l'(D)) = 2 D.(D - K) + 1 + Pa· In each case, on the left-hand side we have something involving cohomol­ ogy groups of the sheaf !l'(D), while on the right-hand side we have some numerical data involving the divisor D, the canonical divisor K, and some invariants of the variety X. Of course the ultimate aim of a Riemann-Roch type theorem is to compute the dimension of the linear system IDI or of lnDI for large n (II, Ex. 7.6). This is achieved by combining a formula for x(!l'(D)) with some vanishing theorems for Hi(X,!l'(D)) fori > 0, such as the theorems of Serre (III, 5.2) or Kodaira (III, 7.15). We will now generalize these results so as to give an expression for x(!l'(D)) on a nonsingular projective variety X of any dimension. And while we are at it, with no extra effort we get a formula for x(t&"), where @" is any coherent locally free sheaf.
    [Show full text]
  • 18.726 Algebraic Geometry Spring 2009
    MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) More properties of schemes (updated 9 Mar 09) I’ve now spent a fair bit of time discussing properties of morphisms of schemes. How­ ever, there are a few properties of individual schemes themselves that merit some discussion (especially for those of you interested in arithmetic applications); here are some of them. 1 Reduced schemes I already mentioned the notion of a reduced scheme. An affine scheme X = Spec(A) is reduced if A is a reduced ring (i.e., A has no nonzero nilpotent elements). This occurs if and only if each stalk Ap is reduced. We say X is reduced if it is covered by reduced affine schemes. Lemma. Let X be a scheme. The following are equivalent. (a) X is reduced. (b) For every open affine subsheme U = Spec(R) of X, R is reduced. (c) For each x 2 X, OX;x is reduced. Proof. A previous exercise. Recall that any closed subset Z of a scheme X supports a unique reduced closed sub- scheme, defined by the ideal sheaf I which on an open affine U = Spec(A) is defined by the intersection of the prime ideals p 2 Z \ U. See Hartshorne, Example 3.2.6. 2 Connected schemes A nonempty scheme is connected if its underlying topological space is connected, i.e., cannot be written as a disjoint union of two open sets.
    [Show full text]
  • Foundations of Algebraic Geometry Class 1
    FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 1 CONTENTS 1. Welcome 1 2. Why algebraic geometry? 3 3. Preliminaries on category theory 5 3.1. Functors 5 3.2. Universal properties 6 3.3. Yoneda's Lemma 7 Today: About this course. Why algebraic geometry? Motivation and program. Crash course in category theory: universal properties, Yoneda's lemma. 1. WELCOME Welcome! This is Math 216A, Foundations of Algebraic Geometry, the first of a three- quarter sequence on the topic. I'd like to tell you a little about what I intend with this course. Algebraic geometry is a subject that somehow connects and unifies several parts of mathematics, including obviously algebra and geometry, but also number theory, and depending on your point of view many other things, including topology, string theory, etc. As a result, it can be a handy thing to know if you are in a variety of subjects, no- tably number theory, symplectic geometry, and certain kinds of topology. The power of the field arises from a point of view that was developed in the 1960's in Paris, by the group led by Alexandre Grothendieck. The power comes from rather heavy formal and technical machinery, in which it is easy to lose sight of the intuitive nature of the objects under consideration. This is one reason why it used to strike fear into the hearts of the uninitiated. The rough edges have been softened over the ensuing decades, but there is an in- escapable need to understand the subject on its own terms. This class is intended to be an experiment.
    [Show full text]
  • SUMMER 2016 ALGEBRAIC GEOMETRY SEMINAR Contents 1. Separability, Varieties and Rational Maps: 5/16/16 1 2. Proper Morphisms
    SUMMER 2016 ALGEBRAIC GEOMETRY SEMINAR ARUN DEBRAY JULY 28, 2016 Contents 1. Separability, Varieties and Rational Maps: 5/16/161 2. Proper Morphisms: 5/19/166 3. Dimension: 5/23/16 10 4. Codimension One: 5/26/16 12 5. Regularity: 5/30/16 14 6. An Algebraic Interlude: 6/1/16 15 7. More Regularity and Smoothness: 6/2/16 17 8. Quasicoherent Sheaves: 6/6/16 20 9. Coherent Sheaves: 6/9/16 23 10. Line Bundles: 6/13/16 24 11. Effective Cartier Divisors and Closed Subschemes: 6/16/16 27 12. Quasicoherent Sheaves on Projective Schemes: 6/20/16 30 13. Finite Type Quasicoherent Sheaves on Projective Schemes: 6/23/16 33 14. Pushforwards and Pullbacks of Quasicoherent Sheaves: 6/27/16 34 15. Relative Spec and Proj: 7/11/16 37 16. Nice Results About Curves: 7/14/16 41 17. Cechˇ Cohomology: 7/18/16 43 18. Cechˇ Cohomology, II: 7/21/16 46 19. Curves: 7/25/16 48 20. Elliptic and Hyperelliptic Curves: 7/28/16 51 1. Separability, Varieties and Rational Maps: 5/16/16 Today's lecture was given by Tom Oldfield, on the first half of chapter 10. This seminar has a website, located at https://www.ma.utexas.edu/users/toldfield/Seminars/Algebraicgeometryreading.html. The first half of Chapter 10 is about separated morphisms and varieties; it only took us 10 chapters! Vakil writes that he was very conflicted about leaving a proper treatment of algebraic varieties, a cornerstone of classical algebraic geometry, to so late in the notes.
    [Show full text]
  • Introduction to Stacks and Moduli
    Introduction to Stacks and Moduli Lecture notes for Math 582C, working draft University of Washington, Winter 2021 Jarod Alper [email protected] February 1, 2021 2 Abstract These notes provide the foundations of moduli theory in algebraic geometry using the language of algebraic stacks with the goal of providing a self-contained proof of the following theorem: Theorem A. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth, proper and irreducible Deligne{Mumford stack of dimension 3g − 3 which admits a projective coarse moduli space.1 Along the way we develop the foundations of algebraic spaces and stacks, and we hope to convey that this provides a convenient language to establish geometric properties of moduli spaces. Introducing these foundations requires developing several themes at the same time including: • using the functorial and groupoid perspective in algebraic geometry: we will introduce the new algebro-geometric structures of algebraic spaces and stacks; • replacing the Zariski topology on a scheme with the ´etaletopology: we will generalize the concept of a topological space to Grothendieck topologies and systematically using descent theory for ´etalemorphisms; and • relying on several advanced topics not seen in a first algebraic geometry course: properties of flat, ´etaleand smooth morphisms of schemes, algebraic groups and their actions, deformation theory, Artin approximation, existence of Hilbert schemes, and some deep results in birational geometry of surfaces. Choosing a linear order in presenting the foundations is no easy task. We attempt to mitigate this challenge by relegating much of the background to appendices. We keep the main body of the notes always focused entirely on developing moduli theory with the above goal in mind.
    [Show full text]
  • Y Be a Finite Type Morphism of Locally Noetherian Schemes. It Is Well Known ([3, IV, 7.8.6]) That the Excellent Property Ascends from Y to X
    B. Bellaccini Nagoya Math. J. Vol. 89 (1983), 109-118 PROPER MORPHISMS AND EXCELLENT SCHEMES BARBARA BELLACCINI Introduction Let /: X —> Y be a finite type morphism of locally noetherian schemes. It is well known ([3, IV, 7.8.6]) that the excellent property ascends from Y to X. On the other side there are counter-examples where X is ex- cellent and Y is not. First of all it is easy to show that the condition on chains of prime ideals does not descend (see [3, IV, 7.8.4]), even by finite morphisms. Secondly in [2] it is produced an example where X is excellent while Y is not a G-scheme (i.e. it has not the good properties of formal fibers). However in [2] it is also proved that the property con- cerning the openness of regular loci (the so called "J-2") descends by finite type surjective morphisms. Therefore we are led to the following question: When does the G-scheme property descend? I.e. what con- ditions do we need on /? A reasonable condition is conjectured (in [2]) as the following: / is proper surjective. The aim of the present paper is precisely to give an answer to such a question. What we really prove is the following. If X is a G-scheme and J-2 (quasi-excellent), then the same is true for Y, provided that / is proper surjective and moreover all the residue fields of Y have characteristic 0. We remark that the result is strongly based on Hironaka's desingularization for quasi-excellent schemes defined over a field of characteristic 0.
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cultural Organization International XA0103105 Centre
    the abdus salam united nations educational, scientific and cultural organization international XA0103105 centre international atomic energy agency for theoretical physics *»•**•• AN INTRODUCTION TO PRESHEAVES WITH TRANSFERS AND MOTIVIC COHOMOLOGY Shahram Biglari Available at: http://www.ictp.trieste.it/~pub-off IC/2001/95 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS AN INTRODUCTION TO PRESHEAVES WITH TRANSFERS AND MOTIVIC COHOMOLOGY Shahram Biglari The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. MIRAMARE - TRIESTE August 2001 Introduction The construction of motivic cohomology theories whose existence was predicated through conjec- tures by among others, A. Grothendieck [Kleim], A. Beilinson [Beil], [Bei2] and S. Lichtenbaum [Lichtl],[Licht2], has generated a lot of new research activities in algebraic geometry in the last eight years. The constructions treated in this dissertation have been largely of two types: (1). Motivic cohomology over a field defined as cohomology groups of certain complexes whose terms are given by explicit generators and relations generalizing the Milnor higher K-groups (see [BGSV],[BMS],[Gonch]). This type of construction helped V. Voevodsky in giving a proof for the so-called Milnor conjecture which is a special case of the Bloch-Kato conjecture, see {2.4}. (2). Motivic cohomology of schemes as the cohomology of a complex defined in terms of alge- braic cycles which generalizes the classical definition of Chow groups (see [Bloch], [Bloch2], [BK] and [Grayson]). This last approach, initiated by S. Bloch through his earlier definition of higher Chow groups, has also ramified into several types of motivic theories based on algebraic cycles.
    [Show full text]
  • Differentials on the Arc Space
    DIFFERENTIALS ON THE ARC SPACE TOMMASO DE FERNEX and ROI DOCAMPO Abstract We provide a description of the sheaves of Kähler differentials of the arc space and jet schemes of an arbitrary scheme where these sheaves are computed directly from the sheaf of differentials of the given scheme. Several applications on the structure of arc spaces are presented. 1. Introduction The works of Greenberg [19], Nash [37], Kolchin[30], and Denef and Loeser [11] have set the basis for our understanding of the structure of arc spaces and their con- nections to singularities and birational geometry. In these studies, most of the focus is on the reduced structure of arc spaces and the underlying topological spaces, and little is known about their scheme structure. Notable studies in this direction are those of Reguera [38], [39], which were recently continued in [34], [40]. The present article can be viewed as a continuation of these studies. In the first part we describe the sheaves of Kähler differentials of the arc space and of the jet schemes. The second part of the paper is devoted to applications of the resulting for- mulas. This approach leads to new results as well as simpler and more direct proofs of some of the theorems in the literature, and it also provides a new way of understanding some of the fundamental properties of the theory. In the first part, we work over an arbitrary base scheme S. For simplicity, in the Introduction we restrict to the case of a scheme X over a field k; the reader will not loose too much of the spirit of the paper by even assuming that X is a variety.
    [Show full text]
  • Notes for Math 282, Geometry of Algebraic Curves
    NOTES FOR MATH 282, GEOMETRY OF ALGEBRAIC CURVES AARON LANDESMAN CONTENTS 1. Introduction 4 2. 9/2/15 5 2.1. Course Mechanics and Background 5 2.2. The Basics of curves, September 2 5 3. 9/4/15 6 3.1. Outline of Course 6 4. 9/9/15 8 4.1. Riemann Hurwitz 8 4.2. Equivalent characterizations of genus 8 4.3. Consequences of Riemann Roch 9 5. 9/11/15 10 6. 9/14/15 11 6.1. Curves of low genus 12 7. 9/16/15 13 7.1. Geometric Riemann-Roch 13 7.2. Applications of Geometric Riemann-Roch 14 8. 9/18/15 15 8.1. Introduction to parameter spaces 15 8.2. Moduli Spaces 16 9. 9/21/15 18 9.1. Hyperelliptic curves 18 10. 9/23/15 20 10.1. Hyperelliptic Curves 20 10.2. Gonal Curves 21 11. 9/25/15 22 11.1. Curves of genus 5 23 12. 9/28/15 24 12.1. Canonical curves of genus 5 24 12.2. Adjoint linear series 25 13. 9/30/15 27 13.1. Program for the remainder of the semester 27 13.2. Adjoint linear series 27 14. 10/2/15 29 15. 10/5/15 32 15.1. Castelnuovo’s Theorem 33 16. 10/7/15 34 17. 10/9/15 36 18. 10/14/15 38 1 2 AARON LANDESMAN 19. 10/16/15 41 19.1. Review 41 19.2. Minimal Varieties 42 20. 10/19/15 44 21. 10/21/15 47 22.
    [Show full text]
  • Algebraic Geometry II Notes
    Algebraic Geometry II notes Harrison Chen November 23, 2019 Contents 1 Differentials 3 1.1 Affine (algebraic) definition . .3 1.2 Local complete intersections . .5 1.3 Definition by universal property . .6 1.4 Global definition by conormals . .6 2 Smoothness and differentials 8 2.1 Review of dimension . .8 2.2 Smoothness over a field . .8 2.3 Smoothness of a morphism . .9 2.4 The cotangent complex . 10 3 Euler exact sequence 12 4 Cech cohomology 14 5 Some derived formalism 16 5.1 Dg categories and triangulated categories . 16 5.2 Derived categories and localization . 18 5.3 Derived functors . 19 5.4 K-injective and K-projective complexes . 21 5.5 Generators of triangulated categories . 21 6 Derived categories in algebraic geometry 23 n 6.1 The derived category of coherent sheaves on Pk .............................. 23 6.2 Derived pushforward . 23 6.3 Derived pullback . 25 6.4 Base change and projection formula . 27 7 Serre duality, local duality 28 7.1 Statements of Serre duality . 28 7.2 Easiest non-affine: X “ Pn ......................................... 29 7.3 Formal aspects of Grothendieck duality . 33 7.4 Exceptional pullback for closed embeddings . 35 7.5 Grothendieck local duality . 36 8 Riemann-Roch 37 8.1 Some history and generalizations . 37 8.2 Riemann-Roch for regular projective curves . 38 8.3 Riemann-Roch for integral (possibly singular) curves . 39 8.4 Riemann-Roch for non-integral curves . 42 1 9 Hilbert functions 44 10 Riemann-Hurwitz 47 10.1 Ramification . 47 10.2 The ramification locus for separable morphisms .
    [Show full text]