Schemes: the Beginnings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1108.5351V3 [Math.AG] 26 Oct 2012 ..Rslso D-Mod( on Results Introduction the to 0.2
ON SOME FINITENESS QUESTIONS FOR ALGEBRAIC STACKS VLADIMIR DRINFELD AND DENNIS GAITSGORY Abstract. We prove that under a certain mild hypothesis, the DG category of D-modules on a quasi-compact algebraic stack is compactly generated. We also show that under the same hypothesis, the functor of global sections on the DG category of quasi-coherent sheaves is continuous. Contents Introduction 3 0.1. Introduction to the introduction 3 0.2. Results on D-mod(Y) 4 0.3. Results on QCoh(Y) 4 0.4. Ind-coherent sheaves 5 0.5. Contents of the paper 7 0.6. Conventions, notation and terminology 10 0.7. Acknowledgments 14 1. Results on QCoh(Y) 14 1.1. Assumptions on stacks 14 1.2. Quasi-coherent sheaves 15 1.3. Direct images for quasi-coherent sheaves 18 1.4. Statements of the results on QCoh(Y) 21 2. Proof of Theorems 1.4.2 and 1.4.10 23 2.1. Reducing the statement to a key lemma 23 2.2. Easy reduction steps 24 2.3. Devissage 24 2.4. Quotients of schemes by algebraic groups 26 2.5. Proof of Proposition 2.3.4 26 2.6. Proof of Theorem 1.4.10 29 arXiv:1108.5351v3 [math.AG] 26 Oct 2012 3. Implications for ind-coherent sheaves 30 3.1. The “locally almost of finite type” condition 30 3.2. The category IndCoh 32 3.3. The coherent subcategory 39 3.4. Description of compact objects of IndCoh(Y) 39 3.5. The category Coh(Y) generates IndCoh(Y) 42 3.6. -
MAPPING STACKS and CATEGORICAL NOTIONS of PROPERNESS Contents 1. Introduction 2 1.1. Introduction to the Introduction 2 1.2
MAPPING STACKS AND CATEGORICAL NOTIONS OF PROPERNESS DANIEL HALPERN-LEISTNER AND ANATOLY PREYGEL Abstract. One fundamental consequence of a scheme being proper is that there is an algebraic space classifying maps from it to any other finite type scheme, and this result has been extended to proper stacks. We observe, however, that it also holds for many examples where the source is a geometric stack, such as a global quotient. In our investigation, we are lead naturally to certain properties of the derived category of a stack which guarantee that the mapping stack from it to any geometric finite type stack is algebraic. We develop methods for establishing these properties in a large class of examples. Along the way, we introduce a notion of projective morphism of algebraic stacks, and prove strong h-descent results which hold in the setting of derived algebraic geometry but not in classical algebraic geometry. Contents 1. Introduction 2 1.1. Introduction to the introduction2 1.2. Mapping out of stacks which are \proper enough"3 1.3. Techniques for establishing (GE) and (L)5 1.4. A long list of examples6 1.5. Comparison with previous results7 1.6. Notation and conventions8 1.7. Author's note 9 2. Artin's criteria for mapping stacks 10 2.1. Weil restriction of affine stacks 11 2.2. Deformation theory of the mapping stack 12 2.3. Integrability via the Tannakian formalism 16 2.4. Derived representability from classical representability 19 2.5. Application: (pGE) and the moduli of perfect complexes 21 3. Perfect Grothendieck existence 23 3.1. -
Intersection Theory on Regular Schemes Via Alterations and Deformation to the Normal Cone Dissertation
Intersection Theory on Regular Schemes via Alterations and Deformation to the Normal Cone Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultat¨ fur¨ Mathematik der Universitat¨ Regensburg vorgelegt von Andreas Weber aus Regensburg im Jahr 2015 Promotionsgesuch eingereicht am 13. April 2015. Die Arbeit wurde angeleitet von Prof. Dr. Klaus K¨unnemann. Pr¨ufungsausschuss: Vorsitzender: Prof. Dr. Harald Garcke 1. Gutachter: Prof. Dr. Klaus K¨unnemann 2. Gutachter: Prof. Dr. Walter Gubler weiterer Pr¨ufer: Prof. Dr. Uwe Jannsen Contents Contents 3 1 Introduction 5 2 Chow Groups of S-schemes 11 2.1 The S-Dimension . 11 2.2 Chow Groups . 14 3 Resolution of Singularities and Alterations 17 3.1 Assumption on Alterations . 17 3.2 State of the Art . 18 4 Intersection Theory with Supports on Regular Schemes 21 4.1 Bivariant Classes and Orientations . 21 4.2 Alterations and BQ-Orientations . 37 4.3 Intersection Theory with Supports on BQ-orienting Schemes . 39 5 Comparison to other Approaches to Intersection Theory 47 5.1 Intersection with Divisors . 47 5.2 Smooth Schemes over a Dedekind scheme . 49 A Fulton's Theory for S-schemes 53 A.1 Proper push-forward and flat pull-back . 53 A.2 Intersection with Divisors . 56 A.3 Cones, Chern and Segre classes . 56 A.4 Deformation to the Normal bundle . 63 A.5 Refined Gysin homomorphisms . 65 A.6 Intersection theory for smooth schemes over a one-dimensional base . 69 Bibliography 71 Chapter 1 Introduction k For a Noetherian separated regular scheme X, the Chow group CHY (X) of algebraic cycles of codimension k with supports in a closed subset Y of X is given as k k k CHY (X) := ZY (X) = RatY (X); k i.e. -
4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module. -
Waring-Type Problems for Polynomials Algebra Meets Geometry Alessandro Oneto
Waring-type problems for polynomials Algebra meets Geometry Alessandro Oneto Waring-type problems for polynomials Algebra meets Geometry Alessandro Oneto ©Alessandro Oneto, Stockholm University 2016 e-mail: [email protected] ISBN: 978-91-7649-424-0 Printed by Holmbergs, Malmö 2016 Distributor: Department of Mathematics, Stockholm University CONTENTS 1 INTRODUCTION 3 1.1 ADDITIVE DECOMPOSITIONS OF INTEGERS ............ 3 1.2 ADDITIVE DECOMPOSITIONS OF POLYNOMIALS .......... 4 1.2.1 CLASSICAL WARING DECOMPOSITIONS .......... 5 1.2.2 d-TH WARING DECOMPOSITIONS .............. 7 1.2.3 WARING-LIKE DECOMPOSITIONS .............. 8 1.2.4 REAL WARING DECOMPOSITIONS ............. 9 1.3 GEOMETRIC INTERPRETATION ................... 10 1.3.1 SECANT VARIETIES ..................... 10 1.3.2 CLASSICAL WARING PROBLEM:VERONESE VARIETIES . 12 1.3.3 d-TH WARING PROBLEM: VARIETIES OF POWERS . 14 1.3.4 WARING-LIKE PROBLEMS: VARIETIES OF µ-POWERS . 17 1.3.5 TERRACINI’S LEMMA .................... 18 2 APOLARITY THEORY AND POINTS CONFIGURATIONS 23 2.1 APOLARITY THEORY ......................... 23 2.2 HILBERT FUNCTIONS OF CONFIGURATIONS OF REDUCED POINTS 27 2.3 WARING LOCI OF HOMOGENEOUS POLYNOMIALS . 29 2.3.1 QUADRICS .......................... 31 2.3.2 MONOMIALS ......................... 32 2.3.3 BINARY FORMS ....................... 34 2.3.4 PLANE CUBICS ....................... 37 2.4 WARING LOCI AND THE STRASSEN CONJECTURE . 43 2.5 APOLARITY LEMMA: POWER IDEALS AND FAT POINTS . 49 2.5.1 IDEALS OF FAT POINTS ................... 49 2.5.2 INVERSE SYSTEMS OF IDEALS FAT POINTS. 51 2.6 HILBERT FUNCTIONS OF CONFIGURATIONS OF FAT POINTS . 53 2.6.1 DOUBLE POINTS: THE ALEXANDER–HIRSCHOWITZ THEO- REM ............................. 55 2.7 SPECIAL CONFIGURATIONS OF FAT POINTS . -
D-Modules on Infinite Dimensional Varieties
D-MODULES ON INFINITE DIMENSIONAL VARIETIES SAM RASKIN Contents 1. Introduction 1 2. D-modules on prestacks 4 3. D-modules on schemes 7 4. Placidity 19 5. Holonomic D-modules 30 6. D-modules on indschemes 33 References 44 1. Introduction 1.1. The goal of this foundational note is to develop the D-module formalism on indschemes of ind-infinite type. 1.2. The basic feature that we struggle against is that there are two types of infinite dimensionality at play: pro-infinite dimensionality and ind-infinite dimensionality. That is, we could have an infinite dimensional variety S that is the union S “YiSi “ colimiSi of finite dimensional varieties, or T that is the projective limit T “ limj Tj of finite dimensional varieties, e.g., a scheme of infinite type. Any reasonable theory of D-modules will produce produce some kinds of de Rham homology and cohomology groups. We postulate as a basic principle that these groups should take values in discrete vector spaces, that is, we wish to avoid projective limits. Then, in the ind-infinite dimensional case, the natural theory is the homology of S: H˚pSq :“ colim H˚pSiq i while in the pro-infinite dimensional case, the natural theory is the cohomology of T : ˚ ˚ H pT q :“ colim H pTjq: j For indschemes that are infinite dimensional in both the ind and the pro directions, one requires a semi-infinite homology theory that is homology in the ind direction and cohomology in the pro direction. Remark 1.2.1. Of course, such a theory requires some extra choices, as is immediately seen by considering the finite dimensional case. -
Relative Affine Schemes
Relative Affine Schemes Daniel Murfet October 5, 2006 The fundamental Spec(−) construction associates an affine scheme to any ring. In this note we study the relative version of this construction, which associates a scheme to any sheaf of algebras. The contents of this note are roughly EGA II §1.2, §1.3. Contents 1 Affine Morphisms 1 2 The Spec Construction 4 3 The Sheaf Associated to a Module 8 1 Affine Morphisms Definition 1. Let f : X −→ Y be a morphism of schemes. Then we say f is an affine morphism or that X is affine over Y , if there is a nonempty open cover {Vα}α∈Λ of Y by open affine subsets −1 Vα such that for every α, f Vα is also affine. If X is empty (in particular if Y is empty) then f is affine. Any morphism of affine schemes is affine. Any isomorphism is affine, and the affine property is stable under composition with isomorphisms on either end. Example 1. Any closed immersion X −→ Y is an affine morphism by our solution to (Ex 4.3). Remark 1. A scheme X affine over S is not necessarily affine (for example X = S) and if an affine scheme X is an S-scheme, it is not necessarily affine over S. However, if S is separated then an S-scheme X which is affine is affine over S. Lemma 1. An affine morphism is quasi-compact and separated. Any finite morphism is affine. Proof. Let f : X −→ Y be affine. Then f is separated since any morphism of affine schemes is separated, and the separatedness condition is local. -
An Estimate of Canonical Dimension of Groups Based on Schubert Calculus
An estimate of canonical dimension of groups based on Schubert calculus Rostislav Devyatov∗ November 3, 2020 Abstract We sketch the proof of a connection between the canonical (0-)dimension of semisimple split simply connected groups and cohomology of their full flag varieties. Using this connection, we get a new estimate of the canonical (0-)dimension of simply connected split exceptional groups of type E understood as a group. A full proof will be published later. 1 Introduction To define the canonical (0-)dimension of an algebraic group understood as a group, we first need to define the canonical (0-)dimension of a scheme understood as a scheme (which is a different definition). Roughly speaking, the canonical (0-)dimension of a scheme is a number indicating how hard it is to get a rational point in the scheme. The canonical (0-)dimension of an algebraic group shows how hard it is to get rational points in torsors related to the group. To be more precise, let us fix some conventions and give some definitions. We speak of algebraic schemes and use stacks project as the source of basic definitions. All schemes in the present text are of finite type over a field and separated. The base field is arbitrary. Speaking of canonical dimension of schemes, there are two closely related notions in the literature: the canonical 0-dimension of a scheme defined in [14] and the canonical dimension of a scheme defined in [9]. These two definitions are not known to be always equivalent, but they are equivalent for two particular classes of schemes: for smooth complete schemes and for torsors of split reductive groups (see [13, Theorem 1.16, Remark 1.17, and Example 1.18]). -
Intersection Theory
APPENDIX A Intersection Theory In this appendix we will outline the generalization of intersection theory and the Riemann-Roch theorem to nonsingular projective varieties of any dimension. To motivate the discussion, let us look at the case of curves and surfaces, and then see what needs to be generalized. For a divisor D on a curve X, leaving out the contribution of Serre duality, we can write the Riemann-Roch theorem (IV, 1.3) as x(.!Z'(D)) = deg D + 1 - g, where xis the Euler characteristic (III, Ex. 5.1). On a surface, we can write the Riemann-Roch theorem (V, 1.6) as 1 x(!l'(D)) = 2 D.(D - K) + 1 + Pa· In each case, on the left-hand side we have something involving cohomol ogy groups of the sheaf !l'(D), while on the right-hand side we have some numerical data involving the divisor D, the canonical divisor K, and some invariants of the variety X. Of course the ultimate aim of a Riemann-Roch type theorem is to compute the dimension of the linear system IDI or of lnDI for large n (II, Ex. 7.6). This is achieved by combining a formula for x(!l'(D)) with some vanishing theorems for Hi(X,!l'(D)) fori > 0, such as the theorems of Serre (III, 5.2) or Kodaira (III, 7.15). We will now generalize these results so as to give an expression for x(!l'(D)) on a nonsingular projective variety X of any dimension. And while we are at it, with no extra effort we get a formula for x(t&"), where @" is any coherent locally free sheaf. -
18.726 Algebraic Geometry Spring 2009
MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry (K.S. Kedlaya, MIT, Spring 2009) More properties of schemes (updated 9 Mar 09) I’ve now spent a fair bit of time discussing properties of morphisms of schemes. How ever, there are a few properties of individual schemes themselves that merit some discussion (especially for those of you interested in arithmetic applications); here are some of them. 1 Reduced schemes I already mentioned the notion of a reduced scheme. An affine scheme X = Spec(A) is reduced if A is a reduced ring (i.e., A has no nonzero nilpotent elements). This occurs if and only if each stalk Ap is reduced. We say X is reduced if it is covered by reduced affine schemes. Lemma. Let X be a scheme. The following are equivalent. (a) X is reduced. (b) For every open affine subsheme U = Spec(R) of X, R is reduced. (c) For each x 2 X, OX;x is reduced. Proof. A previous exercise. Recall that any closed subset Z of a scheme X supports a unique reduced closed sub- scheme, defined by the ideal sheaf I which on an open affine U = Spec(A) is defined by the intersection of the prime ideals p 2 Z \ U. See Hartshorne, Example 3.2.6. 2 Connected schemes A nonempty scheme is connected if its underlying topological space is connected, i.e., cannot be written as a disjoint union of two open sets. -
Differentials and Smoothness
Differentials and Smoothness February 17, 2017 We present a supplement, and in some cases alternative, to Hartshorne's Chapter II,x8 and Chapter II,x10. These notes are not meant to be self- contained, and will required reading Hartshorne for some definitions, some statements, and many important examples. We often do not include detailed proofs. 1 Derivations and deformations Definition 1 Let n be a natural number. An \nth order thickening" is a closed immersion i: S ! T which is defined by an ideal I such that In+1 = 0. A \nilpotent thickening" is a closed immersion which is an nth order thickening for some n > 0. If Y is a scheme, a thickening in the category of Y -schemes means a thickening i: S ! T of Y -schemes. Sometimes to emphasize this we may want to write i: S=Y ! T=Y . The underlying map of topological spaces of a nilpotent thickening is a homeomorphism, and we will sometimes identify the underlying spaces of S and T . First order thickening are especially convenient to work with. If I is the ideal of a first order thickening i: S ! T , then I2 = 0, and this means that if a is a local section of OT and x of I, then the product ax depends only on the image of a in OS. Thus I has a natural structure of an OS-module: ∗ the natural map I! i∗i (I) is an isomorphism. We will sometimes ourselves to identify I with i∗(I). Example 2 If M is a quasi-coherent sheaf of OS-modules, there is a scheme D(M) whose underlying topological space is S and whose structure sheaf 1 is OS ⊕ M, with the obvious OS-module structure and with multiplication defined by (a; x)(b; y) := (ab; ay+bx). -
Weil Restriction for Schemes and Beyond
WEIL RESTRICTION FOR SCHEMES AND BEYOND LENA JI, SHIZHANG LI, PATRICK MCFADDIN, DREW MOORE, & MATTHEW STEVENSON Abstract. This note was produced as part of the Stacks Project workshop in August 2017, under the guidance of Brian Conrad. Briefly, the process of Weil restriction is the algebro-geometric analogue of viewing a complex- analytic manifold as a real-analytic manifold of twice the dimension. The aim of this note is to discuss the Weil restriction of schemes and algebraic spaces, highlighting pathological phenoma that appear in the theory and are not widely-known. 1. Weil Restriction of Schemes Definition 1.1. Let S0 ! S be a morphism of schemes. Given an S0-scheme X0, 0 opp consider the contravariant functor RS0=S(X ): (Sch=S) ! (Sets) given by 0 0 T 7! X (T ×S S ): 0 If the functor RS0=S(X ) is representable by an S-scheme X, then we say that X is 0 0 0 the Weil restriction of X along S ! S, and we denote it by RS0=S(X ). Remark 1.2. Given any morphism of schemes f : S0 ! S and any contravari- ant functor F : (Sch=S0)opp ! (Sets), one can define the pushforward functor opp 0 f∗F : (Sch=S) ! (Sets) given on objects by T 7! F (T ×S S ). If F is repre- 0 0 0 sentable by an S -scheme X , then f∗F = RS0=S(X ). This approach is later used to define the Weil restriction of algebraic spaces. Theorem 1.3. Let S0 ! S be a finite and locally free morphism.