The Messenger

Total Page:16

File Type:pdf, Size:1020Kb

The Messenger Testing adaptive optics for ALMA The Messenger The outburst of V1647 Orionis FLAMES survey of massive stars ESO users feedback campaign No. 131 – March 2008 –March 131 No. Telescopes and Instrumentation Advanced Calibration Techniques for Astronomical Spectrographs Paul Bristow1 One way to ensure that the engineering Most of the computations involve rotation Florian Kerber1 data propagates from instrument build ing matrices to represent the change of ori- Michael R. Rosa 2,3 to operations is to capture all the engi- entation of the optical ray at the surfaces neering information in a physical model- of the components. For example, the based description of the instrument. matrix representation of the order m 1 ESO This model accompanies the instrument transformation performed by an echelle 2 Space Telescope European throughout its life cycle and is used to grating with constant sE at off-blaze Coordinating Facility, ESO drive the science data reduction pipeline. angle q, operates on a 4D vector with 3 Affiliated to the Science Operations and In our concept the model is combined components (l, x, y, z) representing a ray Data Systems Division, Science Depart- with validated physical data of the instru- of wavelength l. Here q and sE are ment, European Space Agency mental components and calibration refer- amongst the physical model parameters ence data. for this instrument. ESO’s Calibration and Model Support Hence there is a complete set of param- Group is involved in a variety of activi- Implementation and application of an eters that describe the passage of a ties related to the calibration and physi- instrument physical model photon through the spectrograph. These cal description of instruments, with the pa rameters are physical quantities (an- objective of supporting the reduction Our approach comprises an instrument- gles, distances, temperatures, etc.) and of science data and facilitating opera- specific model kernel and associated describe the actual status of compo- tions. Here we describe the construc- software to optimise the model parame- nents. They can always be adjusted to tion, optimisation and application to sci- ters and to apply the model’s predictive match the observed behaviour of the entific data reduction of physical in- power to the calibration of science data. instrument or to predict the effects of tilt- strument models. Such models have ing/modifying a component. For exam - been implemented for the HST STIS ple, adjusting the camera focal length will spectrograph and form an integral part Model kernel change the scale on the detector. of the data reduction pipelines for CRIRES and X-shooter. These models First of all a streamlined model of the dis- are supported by validated physical persive optics, that enables a rapid eval- Optimisation data of the instrumental components uation of where any photon entering the and calibration reference data. instrument arrives on the detector array, The model parameter set can be opti- is constructed. Though based upon the mised to reflect the performance of opti cal design, it is no substitute for the the operational instrument with suitable The life cycle of an instrument can be fully-fledged optical (e.g. Zemax/Code V) calibration data, in a similar way that a described as follows: models developed by the designers. polynomial dispersion solution would be Clearly this model kernel is specific to fit. The difference is that the parameters 1. Science Requirements each instrument, but the following optimised here have physical meaning 2. Optical Design (Code V/Zemax) sub-components and associated param- and represent the actual configuration of 3. Engineering Expertise eters are typical: the instrument. There are essentially two – Entrance slit and collimator scenarios in which one needs to perform 4. Testing and Commissioning – Relative position and orientation of the optimisation. 5. Operation and Data Flow the slit 6. Calibration of Instrument – Focal length of collimator Before the instrument is actually built, the 7. Scientific Data and Archive – Pre-disperser (e.g. Prism) only parameters available are those from – Orientation of entrance surface the instrument design. Inevitably, once Experience shows that it is difficult to – Orientation of exit surface the instrument has been built, it will differ ensure that the know-how and expertise – Temperature from the design predictions, so it is nec- that went into designing and building – Refractive index as a function of essary to establish the true values. This the instrument (steps 1–3) is brought to wavelength and temperature may also be the case after a major main- full use in the instrument calibration and – Main disperser (e.g. reflection grating) tenance intervention, upgrade to the scientific operations (steps 6 and 7). – Orientation instrument or even an earthquake, result- – Grating constant ing in a physical change in the instru- A case in point is the wavelength calibra- – Camera and detector array ment. In this situation a comprehensive tion, in which well-understood physics is – Focal length of focusing optics and uniform set of robustly identified employed to design a spectrograph with – Orientation of detectors calibration features from dedicated cali- an optimal format while during operations – Relative positions of detectors bration exposures is required. The core the dispersion solution is then derived – Dimensions of pixel grid model function is then iteratively called over and over again in a purely empirical for the identified calibration wavelengths manner by, for example, fitting polynomi- We follow the prescription of Ballester and and the results of each iteration are com- als to a sparse calibration line spectrum. Rosa (1997) in constructing this model. pared with the centroids for these wave- 2 The Messenger 131 – March 2008 lengths as measured in the calibration Optical materials data Initial ‘first guess’ data. We employ the Taygeta (Carter 2001) e.g. prism refractive configuration file implementation of the Simulated Anneal- index (T, λ) ing technique to continually adjust, in a statistically sound manner, all of the mod - el parameters until the best match be - Simulated annealing tween predicted and measured centroids Spectral atlas for is found. Figure 1 is a schematic repre- calibration source, Physical model sentation of this procedure. e.g. high quality Th-Ar kernel hollow cathode data In the case of an instrument such as CRIRES which has multiple modes de - Output fined by the orientations of optical com- Matched ponents (and therefore by parameters Predicted centroids in the physical model), we are able to Measured feature of spectral features optimise the parameter set for multiple centroids in detector in detector pixel modes simultaneously by assigning a pixel coordinates coordinates unique value to each of the changing from calibration parameters on the basis of all data col- source exposure lected for the corresponding mode. We can then characterise the parameters associated with the moving components Compare lists and that determine the mode. compute metric that describes how well Most spectrographs have some moving they match components that allow selection of a given wavelength range. Since there are physical limits to the repeatability and accuracy of these mechanisms, it is use- ful to be able to fine tune the model to Satisfactory No Change configuration match the performance of the instrument match? at the time of a given observation. More- over, even without human intervention, instruments develop malfunctions such Yes Simulated annealing as a drift in wavelength zero points that are not well understood initially. Other affects such as thermal or gravitational flexure occur at some level during rou- Optimised tine operations and also subtly affect the parameter exact details of the instrument optics. In configuration such cases it is clear that there must be some deviation from the initial param- can choose to optimise more parameters Figure 1: Schematic representation of the optimi- eter calibration that was done with data when more data points are available. sation process for instrument physical models. acquired in the absence of these effects (or in the presence of another alignment We have recently achieved the full auto- (see “Optimising Calibration Systems” of these effects). mation of this process for CRIRES. The below) in order to avoid the possibility of procedure is illustrated by Figure 2. First false matches. The significant offset For these reasons we have developed the the model is used to trace the locus on between the red crosses and the corre- capability to re-optimise specific parame- the detector of a given entrance slit posi- sponding features identified in the data ters, using either automatically identified tion. A 1D spectrum is then extracted (magenta circles) is due to a shift in spec- wavelength features in contemporaneous from a Th-Ar hollow cathode lamp (HCL) tral format that has occurred in CRIRES calibration exposures or wavelength full slit exposure along this locus and between the acquisition of the calibration standards specified by users (e.g. known bright features are identified. Using the data used to determine the baseline sky lines seen in science exposures). baseline physical model parameter con- model parameter configuration and the These are used in a similar way to that figuration, we predict the positions of epoch of this data. Hence known wave- depicted in Figure 1, except that only the wavelength features along
Recommended publications
  • Copyright by Robert Michael Quimby 2006 the Dissertation Committee for Robert Michael Quimby Certifies That This Is the Approved Version of the Following Dissertation
    Copyright by Robert Michael Quimby 2006 The Dissertation Committee for Robert Michael Quimby certifies that this is the approved version of the following dissertation: The Texas Supernova Search Committee: J. Craig Wheeler, Supervisor Peter H¨oflich Carl Akerlof Gary Hill Pawan Kumar Edward L. Robinson The Texas Supernova Search by Robert Michael Quimby, A.B., M.A. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN December 2006 Acknowledgments I would like to thank J. Craig Wheeler, Pawan Kumar, Gary Hill, Peter H¨oflich, Rob Robinson and Christopher Gerardy for their support and advice that led to the realization of this project and greatly improved its quality. Carl Akerlof, Don Smith, and Eli Rykoff labored to install and maintain the ROTSE-IIIb telescope with help from David Doss, making this project possi- ble. Finally, I thank Greg Aldering, Saul Perlmutter, Robert Knop, Michael Wood-Vasey, and the Supernova Cosmology Project for lending me their image subtraction code and assisting me with its installation. iv The Texas Supernova Search Publication No. Robert Michael Quimby, Ph.D. The University of Texas at Austin, 2006 Supervisor: J. Craig Wheeler Supernovae (SNe) are popular tools to explore the cosmological expan- sion of the Universe owing to their bright peak magnitudes and reasonably high rates; however, even the relatively homogeneous Type Ia supernovae are not intrinsically perfect standard candles. Their absolute peak brightness must be established by corrections that have been largely empirical.
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • Sky April 2011
    EDITORIAL ................. 2 ONE TO ONE WITH TONY MARSH 3 watcher CAPTION COMPETITION 7 April 2011 Sky OUTREACH EVENT AT CHANDLER SCHOOL .... 8 MOON AND SATURN WATCH 9 MY TELESCOPE BUILDING PROJECT 10 CONSTELLATION OF THE MONTH - VIRGO 15 OUTREACH AT BENTLEY COPSE 21 THE NIGHT SKY IN APRIL 22 Open-Air Planisphere taken by Adrian Lilly Page 1 © copyright 2011 guildford astronomical society www.guildfordas.org From the Editor Welcome to this, the April issue of Skywatcher. With the clocks going forward a hour the night sky has undergone a radical shift, the winter constellations are rapidly disappearing into the evening twilight, and the galaxy-filled reaches of Virgo are high up in the south and well-placed for observation. But I digress, whatever telescope you own or have stashed away at the back of the garage, the thought of making your own has probably crossed your mind at some point. I‟m delighted to have an article from Jonathan Shinn describing how he built a 6-inch Dobsonian – including grinding the mirror! Our lead-off article this issue is the interview from Brian Gordon-States with Tony Marsh. Tony has been a Committee member for many years, and much like previous interviews the story behind how he became fascinated with Astronomy is a compelling one. If there is a theme to this issue it‟s probably one of Outreach as I have two reports to share with you all. These events give youngsters the chance to look through a telescope at the wonders of the universe, and our closer celestial neighbours with someone on-hand to explain what they are looking at.
    [Show full text]
  • Pos(BASH 2013)009 † ∗ [email protected] Speaker
    The Progenitor Systems and Explosion Mechanisms of Supernovae PoS(BASH 2013)009 Dan Milisavljevic∗ † Harvard University E-mail: [email protected] Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants. Frank N. Bash Symposium 2013: New Horizons in Astronomy October 6-8, 2013 Austin, Texas ∗Speaker. †Many thanks to R. Fesen, A. Soderberg, R. Margutti, J. Parrent, and L. Mason for helpful discussions and support during the preparation of this manuscript. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Supernova Progenitor Systems and Explosion Mechanisms Dan Milisavljevic PoS(BASH 2013)009 Figure 1: Left: Hubble Space Telescope image of the Crab Nebula as observed in the optical. This is the remnant of the original explosion of SN 1054. Credit: NASA/ESA/J.Hester/A.Loll. Right: Multi- wavelength composite image of Tycho’s supernova remnant. This is associated with the explosion of SN 1572. Credit NASA/CXC/SAO (X-ray); NASA/JPL-Caltech (Infrared); MPIA/Calar Alto/Krause et al.
    [Show full text]
  • Arxiv:1402.6337V1 [Astro-Ph.HE] 25 Feb 2014 Novae (SN Ia) Prevent Studies from Conclusively Singling Et Al
    A review of type Ia supernova spectra J. Parrent1,2, B. Friesen3, and M. Parthasarathy4 Abstract SN 2011fe was the nearest and best-observed fairly certain that the progenitor system of SN Ia com- type Ia supernova in a generation, and brought previ- prises at least one compact C+O white dwarf (Chan- ous incomplete datasets into sharp contrast with the drasekhar 1957; Nugent et al. 2011; Bloom et al. 2012). detailed new data. In retrospect, documenting spectro- However, how the state of this primary star reaches scopic behaviors of type Ia supernovae has been more a critical point of disruption continues to elude as- often limited by sparse and incomplete temporal sam- tronomers. This is particularly so given that less than pling than by consequences of signal-to-noise ratios, ∼ 15% of locally observed white dwarfs have a mass a telluric features, or small sample sizes. As a result, few 0.1M greater than a solar mass; very few systems 5 type Ia supernovae have been primarily studied insofar near the formal Chandrasekhar-mass limit ,MCh ≈ as parameters discretized by relative epochs and incom- 1.38 M (Vennes 1999; Liebert et al. 2005; Napiwotzki plete temporal snapshots near maximum light. Here we et al. 2005; Parthasarathy et al. 2007; Napiwotzki et al. discuss a necessary next step toward consistently mod- 2007). eling and directly measuring spectroscopic observables Thus far observational constraints of SN Ia have of type Ia supernova spectra. In addition, we analyze been inconclusive in distinguishing between the follow- current spectroscopic data in the parameter space de- ing three separate theoretical considerations about pos- fined by empirical metrics, which will be relevant even sible progenitor scenarios.
    [Show full text]
  • On the Progenitors of Type Ia Supernovae
    Physics & Astronomy Faculty Publications Physics and Astronomy 2-21-2018 On the Progenitors of Type Ia Supernovae Mario Livio University of Nevada, Las Vegas; The Weizmann Institute of Science, [email protected] Paolo Mazzali The Weizmann Institute of Science; Liverpool John Moores University Follow this and additional works at: https://digitalscholarship.unlv.edu/physastr_fac_articles Part of the Astrophysics and Astronomy Commons Repository Citation Livio, M., Mazzali, P. (2018). On the Progenitors of Type Ia Supernovae. Physics Reports, 736 1-23. http://dx.doi.org/10.1016/j.physrep.2018.02.002 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Article in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Article has been accepted for inclusion in Physics & Astronomy Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. On the Progenitors of Type Ia SupernovaeI Mario Livio1,2, Paolo Mazzali2,3 Abstract We review all the models proposed for the progenitor systems of Type Ia super- novae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious difficulties, if taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia).
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Ioptron CEM40 Center-Balanced Equatorial Mount
    iOptron®CEM40 Center-Balanced Equatorial Mount Instruction Manual Product CEM40 (#7400A series) and CEM40EC (#7400ECA series, as shown) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. 2 Table of Contents Table of Contents ........................................................................................................................................ 3 1. CEM40 Introduction ............................................................................................................................... 5 2. CEM40 Overview ................................................................................................................................... 6 2.1. Parts List .........................................................................................................................................
    [Show full text]
  • Luminous Blue Variables: an Imaging Perspective on Their Binarity and Near Environment?,??
    A&A 587, A115 (2016) Astronomy DOI: 10.1051/0004-6361/201526578 & c ESO 2016 Astrophysics Luminous blue variables: An imaging perspective on their binarity and near environment?;?? Christophe Martayan1, Alex Lobel2, Dietrich Baade3, Andrea Mehner1, Thomas Rivinius1, Henri M. J. Boffin1, Julien Girard1, Dimitri Mawet4, Guillaume Montagnier5, Ronny Blomme2, Pierre Kervella7;6, Hugues Sana8, Stanislav Štefl???;9, Juan Zorec10, Sylvestre Lacour6, Jean-Baptiste Le Bouquin11, Fabrice Martins12, Antoine Mérand1, Fabien Patru11, Fernando Selman1, and Yves Frémat2 1 European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Córdova 3107, Vitacura, 19001 Casilla, Santiago de Chile, Chile e-mail: [email protected] 2 Royal Observatory of Belgium, 3 avenue Circulaire, 1180 Brussels, Belgium 3 European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 4 Department of Astronomy, California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 Saint-Michel-l’Observatoire, France 6 LESIA (UMR 8109), Observatoire de Paris, PSL, CNRS, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France 7 Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 8 ESA/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218,
    [Show full text]
  • A DEEP SEARCH for PROMPT RADIO EMISSION from THERMONUCLEAR SUPERNOVAE with the VERY LARGE ARRAY Laura Chomiuk1,11, Alicia M
    Draft version July 1, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 A DEEP SEARCH FOR PROMPT RADIO EMISSION FROM THERMONUCLEAR SUPERNOVAE WITH THE VERY LARGE ARRAY Laura Chomiuk1;11, Alicia M. Soderberg2, Roger A. Chevalier3, Seth Bruzewski1, Ryan J. Foley4,5, Jerod Parrent2, Jay Strader1, Carles Badenes6 Claes Fransson7 Atish Kamble2, Raffaella Margutti8, Michael P. Rupen9, & Joshua D. Simon10 Draft version July 1, 2018 ABSTRACT Searches for circumstellar material around Type Ia supernovae (SNe Ia) are one of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here we report radio observations for SNe Ia and their lower-luminosity thermonu- clear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt (∆t . 1 yr) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as a SN Ia with remarkably deep radio limits and excellent temporal −1 _ −9 M yr coverage (six epochs, spanning 5{216 days after explosion, yielding M=vw . 5 × 10 100 km s−1 , assuming B = 0:1 and e = 0:1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal and spectral evolution of prompt radio emission from thermonuclear SNe as expected from interaction with either wind-stratified or uniform density media. These models allow us to constrain the progenitor mass loss rates, with limits ranging _ −9 −4 −1 −1 from M .
    [Show full text]
  • VLT Spectropolarimetry of the Fast Expanding Type Ia SN 2006X,
    A&A 508, 229–246 (2009) Astronomy DOI: 10.1051/0004-6361/200810651 & c ESO 2009 Astrophysics VLT spectropolarimetry of the fast expanding type Ia SN 2006X, F. Patat1,D.Baade1,P.Höflich2,J.R.Maund3,4,L.Wang5,6, and J. C. Wheeler3 1 European Organization for Astronomical Research in the Southern Hemisphere (ESO), K. Schwarzschild-str. 2, 85748 Garching b. München, Germany e-mail: [email protected] 2 Department of Physics, Florida State University, Tallahassee, Florida 32306-4350, USA 3 Department of Astronomy and McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA 4 Department of Physics, Texas A&M University, College Station, Texas 77843, USA 5 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 6 Purple Mountain Observatory, 2 West Bejing Road, Nanjing 210008, China Received 22 July 2008 / Accepted 15 September 2009 ABSTRACT Aims. The main goal of this study is to probe the ejecta geometry and to get otherwise unobtainable information about the explosion mechanism of type Ia Supernovae (SNe). Methods. Using VLT-FORS1 we performed optical spectropolarimetric observations of the type Ia SN 2006X on 7 pre-maximum epochs (day −10 to day −1) and one post-maximum epoch (+39 days). Results. The SN shows strong continuum interstellar polarization reaching about 8% at 4000 Å, characterized by a wavelength dependency that is substantially different from that of the Milky-Way dust mixture. Several SN features, like Si II 6355 Å and the Ca II IR triplet, present a marked evolution. The Ca II near-IR triplet shows a pronounced polarization (∼1.4%) already on day −10 in correspondence with a strong high-velocity feature (HVF).
    [Show full text]
  • Supernovae in Dense and Dusty Environments
    TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. A I OSA - TOM. 456 ASTRONOMICA - CHEMICA - PHYSICA - MATHEMATICA SUPERNOVAE IN DENSE AND DUSTY ENVIRONMENTS by Erkki Kankare TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2013 From Department of Physics and Astronomy University of Turku FI-20014 Turku Finland Supervised by Dr. Seppo Mattila Department of Physics and Astronomy University of Turku Finland Reviewed by Prof. Juri Poutanen Dr. Dovi Poznanski Astronomy Division School of Physics and Astronomy Department of Physics Tel Aviv University University of Oulu Israel Finland Opponent Dr. Bruno Leibundgut European Southern Observatory Germany ISBN 978-951-29-5291-5 (PRINT) ISBN 978-951-29-5292-2 (PDF) ISSN 0082-7002 Painosalama Oy - Turku, Finland 2013 Acknowledgements First of all a big thank you to my supervisor Seppo Mattila who introduced me to supernovae and relentlessly guided me through my long PhD process and never stopped listening to his student who so often walked into his office to bother him. Many thanks too to my MSc supervisor Pekka Teerikorpi who intro- duced me into making science in the first place. I would also like to thank Stuart Ryder for the very successful collaboration on the Gemini programme, and Stefano Benetti for including me in the ESO/NTT Large Programme. Similar thanks go to Rubina Kotak, Peter Lundqvist, Andrea Pastorello, Miguel Angel´ P´erez-Torres, Cristina Romero-Ca˜nizales, Jason Spyromilio, Stefano Valenti, Petri V¨ais¨anen and all the other colleagues with whom I have had the honour to work, but who are unfortunately far too many to name here.
    [Show full text]