Exam 2 Review Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Exam 2 Review Sheet EART 65 Spring 2008 EXAM 2 REVIEW SHEET To prepare for the upcoming exam in EART 65 you should: What to bring? 1. A scantron test form (#F1712: ‘big pink one’) and a Number 2 pencil 2. One 8.5x11” sheet on which you can use one side to write notes. Other Issues 1. Review your lecture notes. The test will cover material from the lecture on 4/24/08 up to and including the material on Ornithopods on 05/13/08. 2. Review the relevant text chapters (including figures and cladograms). 3. Review the section assignments and quizzes for these weeks. The test will include bone identification questions that flow from your work over the last two weeks in section. 4. Make sure you can read and manipulate cladograms. There will be questions on this subject, just like on the last exam. 5. Look over the review sheet and make sure you can answer questions and know the importance of different terms. 6. Don’t forget the geologic time scale!! 7. Do not bring electronics to the exam. No iPods, cellphones, etc. If you are spotted using such a device during the exam, your exam will be confiscated. 8. There will be no makeup exams. Show up and take the exam, or give me the name of your doctor who will vouch for your absence. 9. The test will be one hour long. Class will continue after the exam, though we’ll only be checking out a video on Cretaceous animals. 10. Don’t forget the geologic time scale!! 11. The test will have ~50 questions. ***Note: There will be diagrams and cladograms on the exam so don’t forget to review visuals. BASIC ANATOMY There will be a figure on the exam, with lines pointing to bones. You will need to pull the name for those bones from a list (matching exercise). I will also expect you to know the major anatomical direction (anterior, posterior, dorsal, ventral, etc.) Below, SDC means Shared Derived Characters. GC means General characters that relate to the ecology of the animals. 1 SAUROPODOMORPHA Sauropodomorpha: SDC: Small head, long neck, elongate peg-like teeth, large thumb with claw, long femur, large foramen in pubis; GC: all are herbivores Prosauropoda: SDC: whopping big thumb claw, elongate neck vertebrae GC: gastroliths, quadrupeds, and facultative bipeds, these are the earliest diverse and abundant group of plant-eating dinosaurs, which presumably evolved from bipedal meat eaters. Late Triassic through Early Jurassic, Global distribution (Pangean) Sauropoda: SDC: (accumulate along base of cladogram) up to Neosauropoda Shortened skulls, rounded snout, lower temporal opening beneath the orbit, 12+ cervical vertebrae, pleurocoels, uniformly large, massive and solid limb bones long tails, five fingers/toes on each appendage GC: Include the largest land animals of all time (7 – 45 m) Camarasauromorpha: SDC: Large external nares, relatively long forelimbs GC: some with bifurcate neural spines (horizontal neck posture) Brachiosaurids: SDC: very long front legs, 13 elongate cervical vertebrae (non- bifurcate neural spines), neck joint vertically oriented, distinctive snouts, vaulted brows Titanosauria: SDC: osteoderms, very robust radius and ulna, long, broad snouts, nostrils high on head, pencil-like teeth at the very front of the jaws, very long necks Diplodocoidea: SDC: Peg-like teeth, 12+ cervical vertebrae with bifurcate neural spines (neck horizontally oriented), at least 80 caudal vertebrae, odd chevron in mid-tail region, elongate sub-rectangular snout, external nares fully retracted to top of the head When did prosauropods and sauropods first appear in the fossil record? When was each group most common? What was the geographic range of these two major groups? Did the ranges change dramatically through time? What are some lines of evidence for and against the idea that sauropods used their tails to generate sound? Are sauropods found in bone beds? Are they typically found as complete skeletons? What evidence type of evidence has disproved the old idea that sauropods were obligated to inhabit aquatic habitats so water could support their great bulk? Did sauropods and prosauropods feed close to the ground or high above it or both? If high, how did they reach up into the tree? How did sauropods process their food? Gastroliths? Gut fermentation? Oral processing? What are some of the challenges of being large, like a huge sauropod dinosaur? What are some of the advantages? What kind of evidence suggests that sauropods were gregarious, and may have traveled in herds? Are nests known for sauropod dinosaurs? Is there evidence for parental care? Did sauropods have a high or a low EQ? 2 ORNITHISCHIAN INTRO Ornithischia: GC: all are herbivores Many SDC: 1. back-prong on pubis, 2. long, thin forward process on ilium, 3. at least five sacral vertebrae, 4. ossified tendons around sacrum, 5. predentary = unpaired, scoop-shaped bone at front of lower jaw, 6. toothless tip of snout with "beak", 7. small, triangular teeth, 8. jaw joint set below level of the upper tooth row Fabrosaurids: GC: small bipedal, primitive ornithischians, includes Pisanosaurus: upper Triassic and Lesothosaurus: lower Jurassic: least derived, well known ornithischian Genasauria: SDC: reduced mandibular foramen, muscular cheeks Cerapoda: SDC: diastema between premaxilla and maxilla, 5 or fewer teeth on premaxilla, finger-like projection (trochanter) on the femur Ornithopoda: see notes below Marginocephalia: see notes below Two main groups - Pachycephalosaurs and Ceratopsians Thyreophora: SDC: Dermal armor (keeled scutes on dorsal surface) Scutellosaurus: primitive thyreophoran, small biped Scelidosaurus: primitive thyreophoran, larger quadruped Eurypoda: SDC: enlarged anterior ilium, short ilium behind hip socket, stocky foot/hand bonesk new bones around the eye Two main groups - Stegosauria and Ankylosauria STEGOSAURIA Stegosauria: SDC: Rows of osteoderms over the body that developed into spines and plates, Parascapular spines over shoulder blade, spikes on tail, loss of ossified tendon, body sloped forwards due to short front legs, very tall neural arches on thoracic vertebrae, feet with broad hooves, solid box-like skulls GC: 3-9 meters long, 300-6500 kg (to over 7 tons) What did stegosaurs appear and disappear from the fossil record? When were they most common? What was the geographic range of stegosaurs? Did it change dramatically through time? Are stegosaur specimens commonly well preserved? If not, what are some ideas about why they are poorly preserved. What kind of habitats did stegosaurs frequent? What are some ideas about the function(s) of the plates and spines of stegosaurs? What is some evidence in support of these different ideas? Are the ideas mutually exclusive? What factor makes it difficult to imagine that stegosaurs could move fast? How might they have overcome this limitation when moving slowly? Did stegosaurs feed close to the ground or high above it or both? How might they have reached high? How did stegosaurs process their food? Gastroliths? Gut fermentation? Oral processing? How do we obtain information on brain size in dinosaurs? How large were stegosaur brains (absolutely and relatively, i.e., in ounces and EQ)? What part of the stegosaur brain was largest? How did stegosaurs manage with such small brains? Did they have a “hind” brain (evidence for and against)? 3 ANKYLOSAURIA, WAYS TO BE AN HERBIVORE, HOW TO WEIGH A DINOSAUUR Ankylosauria: SDC: low skull, loss of antorbital and upper temporal fenestrae, body armor fused to lower jaw, long sacrum, flaring blades on the ilium, broadly arched ribs (wide gut cavity), closed hip socket, reduced pelvis (extreme reduction of pubis), dense dorsal shield of osteoderms, some modified to spines and/or tail clubs. GC: Encased in shell-like bony armor made of interlocking osteoderms, bodies beneath the armor were flat and broad, housing large gutsm, triangular-shaped teeth strong cheeks, some evidence of chewing (oral processors), rarely over 5 m long ad 3-4 tons, fore limbs relatively short with hindlimbs 2x the length of forelimbs Nodosauridae: SDC: Narrow skulls, Skull osteoderms large, few, and symmetrical, more rigid armor and tails than ankylosaurids, spines in shoulder/neck region, no tail clubs or 'horns' on skull Ankylosauridae: SDC: very wide skulls covered with small, asymmetrical osteoderms, yes extremely posterior, ‘horns’ at back of skull, tail club, tails had light armor for maximum flexibility, bony secondary palate What did these two groups of ankylosaurs appear and disappear from the fossil record? When were they most common? What was the geographic range of these two groups of ankylosaurs? What kind of habitats are ankylosaurs found in? What is bloat and float preservation? How fast were ankylosaurs? Did ankylosaurs have erect or sprawling limb posture? Did ankylosaurs feed close to the ground or high above it or both? How did ankylosaurs pluck vegetation off plants? How did nodosaurid and ankylosaurid feeding differ? How did ankylosaurs process their food? Gastroliths? Gut fermentation? Oral processing? How did ankylosaurs thermoregulate? What are turbinates? How did ankylosaurs defend themselves? How did they engage in offense? How large were ankylosaur brains (in EQ)? Understand the different ways that animals may convert from carnivore to herbivore. What is the key problem facing herbivores? How do animals over come this? How are small picky animals different than large, indiscriminant animals? Be able to supply examples of both. Understand the different ways that we estimate the weight of dinosaurs (scale replica approach and relationships between leg area and mass). Why does the cross-sectional area of the leg increase in dimensions faster than the length of the leg, or length of the dinosaur? I.e., why is it getting larger “stressful”. What is stress and what is strength, and how do both increase with size of the animal? How do animals get large without breaking their legs? 4 MARGINOCEPHALIANS: PACHYCEPHALOSAURS AND CERATOPSIANS Reminder: Marginocephalians are ornithischians and genasaurians, but on a different evolutionary branch (cerapoda) than stegosaurs and ankylosaurs (thyreophoran eurypods).
Recommended publications
  • A Neoceratopsian Dinosaur from the Early Cretaceous of Mongolia And
    ARTICLE https://doi.org/10.1038/s42003-020-01222-7 OPEN A neoceratopsian dinosaur from the early Cretaceous of Mongolia and the early evolution of ceratopsia ✉ Congyu Yu 1 , Albert Prieto-Marquez2, Tsogtbaatar Chinzorig 3,4, Zorigt Badamkhatan4,5 & Mark Norell1 1234567890():,; Ceratopsia is a diverse dinosaur clade from the Middle Jurassic to Late Cretaceous with early diversification in East Asia. However, the phylogeny of basal ceratopsians remains unclear. Here we report a new basal neoceratopsian dinosaur Beg tse based on a partial skull from Baruunbayan, Ömnögovi aimag, Mongolia. Beg is diagnosed by a unique combination of primitive and derived characters including a primitively deep premaxilla with four pre- maxillary teeth, a trapezoidal antorbital fossa with a poorly delineated anterior margin, very short dentary with an expanded and shallow groove on lateral surface, the derived presence of a robust jugal having a foramen on its anteromedial surface, and five equally spaced tubercles on the lateral ridge of the surangular. This is to our knowledge the earliest known occurrence of basal neoceratopsian in Mongolia, where this group was previously only known from Late Cretaceous strata. Phylogenetic analysis indicates that it is sister to all other neoceratopsian dinosaurs. 1 Division of Vertebrate Paleontology, American Museum of Natural History, New York 10024, USA. 2 Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, c/de les Columnes s/n Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Sabadell, Barcelona, Spain. 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA. 4 Institute of Paleontology, Mongolian Academy of Sciences, ✉ Ulaanbaatar 15160, Mongolia.
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Histology and Ontogeny of Pachyrhinosaurus Nasal Bosses By
    Histology and Ontogeny of Pachyrhinosaurus Nasal Bosses by Elizabeth Kruk A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Department of Biological Sciences University of Alberta © Elizabeth Kruk, 2015 Abstract Pachyrhinosaurus is a peculiar ceratopsian known only from Upper Cretaceous strata of Alberta and the North Slope of Alaska. The genus consists of three described species Pachyrhinosaurus canadensis, Pachyrhinosaurus lakustai, and Pachyrhinosaurus perotorum that are distinguishable by cranial characteristics, including parietal horn shape and orientation, absence/presence of a rostral comb, median parietal bar horns, and profile of the nasal boss. A fourth species of Pachyrhinosaurus is described herein and placed into its phylogenetic context within Centrosaurinae. This new species forms a polytomy at the crown with Pachyrhinosaurus canadensis and Pachyrhinosaurus perotorum, with Pachyrhinosaurus lakustai falling basal to that polytomy. The diagnostic features of this new species are an apomorphic, laterally curved Process 3 horns and a thick longitudinal ridge separating the supraorbital bosses. Another focus is investigating the ontogeny of Pachyrhinosaurus nasal bosses in a histological context. Previously, little work has been done on cranial histology in ceratopsians, focusing instead on potential integumentary structures, the parietals of Triceratops, and how surface texture relates to underlying histological structures. An ontogenetic series is established for the nasal bosses of Pachyrhinosaurus at both relative (subadult versus adult) and fine scale (Stages 1-5). It was demonstrated that histology alone can indicate relative ontogenetic level, but not stages of a finer scale. Through Pachyrhinosaurus ontogeny the nasal boss undergoes increased vascularity and secondary remodeling with a reduction in osteocyte lacunar density.
    [Show full text]
  • Body-Size Evolution in the Dinosauria
    8 Body-Size Evolution in the Dinosauria Matthew T. Carrano Introduction The evolution of body size and its influence on organismal biology have received scientific attention since the earliest decades of evolutionary study (e.g., Cope, 1887, 1896; Thompson, 1917). Both paleontologists and neontologists have attempted to determine correlations between body size and numerous aspects of life history, with the ultimate goal of docu- menting both the predictive and causal connections involved (LaBarbera, 1986, 1989). These studies have generated an appreciation for the thor- oughgoing interrelationships between body size and nearly every sig- nificant facet of organismal biology, including metabolism (Lindstedt & Calder, 1981; Schmidt-Nielsen, 1984; McNab, 1989), population ecology (Damuth, 1981; Juanes, 1986; Gittleman & Purvis, 1998), locomotion (Mc- Mahon, 1975; Biewener, 1989; Alexander, 1996), and reproduction (Alex- ander, 1996). An enduring focus of these studies has been Cope’s Rule, the notion that body size tends to increase over time within lineages (Kurtén, 1953; Stanley, 1973; Polly, 1998). Such an observation has been made regarding many different clades but has been examined specifically in only a few (MacFadden, 1986; Arnold et al., 1995; Jablonski, 1996, 1997; Trammer & Kaim, 1997, 1999; Alroy, 1998). The discordant results of such analyses have underscored two points: (1) Cope’s Rule does not apply universally to all groups; and (2) even when present, size increases in different clades may reflect very different underlying processes. Thus, the question, “does Cope’s Rule exist?” is better parsed into two questions: “to which groups does Cope’s Rule apply?” and “what process is responsible for it in each?” Several recent works (McShea, 1994, 2000; Jablonski, 1997; Alroy, 1998, 2000a, 2000b) have begun to address these more specific questions, attempting to quantify patterns of body-size evolution in a phylogenetic (rather than strictly temporal) context, as well as developing methods for interpreting the resultant patterns.
    [Show full text]
  • From the Late Inner Mongolia
    bulletin de l'institut royal des sciences naturelles de belgique sciences de la terre, 71-supp.: 5-28, 2001 bulletin van het koninklijk belgisch instituut voor natuurwetenschappen aardwetenschappen, 71-supp.: 5-28, 2001 A new Species of Protoceratops (Dinosauria, Neoceratopsia) from the Late Cretaceous of Inner Mongolia (P. R. China)1 Olivier LAMBERT, Pascal GODEFROIT, Hong LI, Chang-Young SHANG & Zhi-Ming DONG Lambert, O., Godefroit, P., Li, H., Shang, C.-Y, & Dong, Mots-clefs: Neoceratopsia, Protoceratops, Crétacé supérieur, Z.-M., 2001. - A new Species of Protoceratops (Dinosauria, Mongolie intérieure, phylogénie. Neoceratopsia) from the Late Cretaceous of Inner Mongolia (P. R. China). Bulletin de l'Institut royal des Sciences naturelles de Belgique, Introduction Sciences de la Terre, Supplement 71: 05-28, 4 pis., 13 fïgs., 2 tables; Bruxelles - Brussel, December 15, 2001. - ISSN 0374-6291. Protoceratops is probably the most emblematic dinosaur from the Gobi Desert. The first specimen was discovered Abstract in the Djadokhta Formation (Campanian) at the legendary Flaming Cliffs (Bayn Dzak, P. R. Mongolia) by the Third The basai neoceratopsian dinosaur Protoceratops hellenikorhinus nov. Central Asiatic Expédition of the AMNH on September sp. is described on the basis of material discovered by the Sino-Belgian 2, 1922 (Andrews, 1932). This skull (AMNH 6251) of a Expéditions in Inner Mongolia, in Campanian (Upper Cretaceous) deposits at Bayan Mandahu (Inner Mongolia, P.R. China). This new juvénile individual, lacking the front of the face and the species is characterised by its large size and by a series of cranial frill, was described as Protoceratops andrewsi Granger autapomorphies linked to the important development of the mandibu- & Gregory, 1923.
    [Show full text]
  • Link to Unformatted Pre-Print
    1 Farke, A. A. In press. Evaluating combat in ornithischian dinosaurs. Journal of Zoology. doi: 10.1111/jzo.12111 ©Andrew A. Farke, 2014 ACCEPTED AND UNFORMATTED MANUSCRIPT NOTICE: This is the peer reviewed version of the following article: Farke, A. A. In press. Evaluating combat in ornithischian dinosaurs. Journal of Zoology. doi: 10.1111/jzo.12111, which has been published in final form at http://dx.doi.org/10.1111/jzo.12111. Changes introduced by the publisher (e.g., minor copyedits, journal style corrections, etc.) may not be incorporated here. The official version of record was published in Journal of Zoology. 2 Evaluating Combat in Ornithischian Dinosaurs Andrew A. Farke Raymond M. Alf Museum of Paleontology, 1175 West Baseline Road, Claremont, CA 91711 email: [email protected] ABSTRACT Ornithischia, a diverse clade of herbivorous dinosaurs, has numerous members with structures hypothesized to function in combat. These include the horned ceratopsids, dome- headed pachycephalosaurs, spike-thumbed iguanodonts, tail-clubbed ankylosaurs, and spiked stegosaurs, among others. Three main lines of evidence support such inferences: 1) analogy with modern animals; 2) biomechanical analysis and simulation; and 3) paleopathology. The most solid inferences utilize multiple pieces of evidence, although this is hampered by a limited understanding of combat in modern animals. Keywords: Ornithischia, Dinosauria, functional morphology, combat, modeling, paleopathology INTRODUCTION Ornithischians are a remarkably morphologically disparate group of non-avian dinosaurs, displaying a panoply of body shapes, sizes, and bony ornaments (Figures 1, 2). This clade includes the three-horned Triceratops, the plated Stegosaurus, the bone-headed Pachycephalosaurus, the tail-clubbed Ankylosaurus, and the crested Corythosaurus, to name just a few.
    [Show full text]
  • Weishampel Chap 22
    TWENTY-TWO Basal Ceratopsia YOU HAILU PETER DODSON Ceratopsia consists of Psittacosauridae and Neoceratopsia, the Skull and Mandible latter formed by numerous basal taxa and Ceratopsidae. Con- sequently, this chapter on basal ceratopsians includes psittaco- The skull of basal ceratopsians (figs. 22.3–22.5) is pentangular in saurids and nonceratopsid neoceratopsians. Psittacosauridae is dorsal view, with a narrow beak, a strong laterally flaring jugal, a monogeneric (Psittacosaurus) clade consisting of 10 species, and a caudally extended frill. The beak is round in psittaco- while basal Neoceratopsia is formed by 11 genera, with 12 species saurids and pointed in basal neoceratopsians. The jugal horn of basal Neoceratopsia being recognized (table 22.1). Psittaco- is more pronounced in psittacosaurids than in basal neocera- saurids are known from the Early Cretaceous of Asia, whereas topsians. The frill is incipient in psittacosaurids and small but basal neoceratopsians come from the latest Jurassic (Chaoyang- variably developed in basal neoceratopsians. The preorbital saurus youngi, Zhao et al. 1999; Swisher et al. 2002) to the latest portion of the skull is dorsoventrally deep, especially in psit- Cretaceous in Asia and North America. Basal ceratopsians are tacosaurids, and rostrocaudally short in both psittacosaurids small (1–3 m long), bipedal or quadrupedal herbivores (figs. and the most basal members of neoceratopsians such as Ar- 22.1, 22.2). Several taxa are extremely abundant and are repre- chaeoceratops. sented by growth series from hatchlings to adults. Sexual di- The external naris is highly positioned, especially in psitta- morphism in Protoceratops is well supported (Dodson 1976; cosaurids, bounded by the premaxilla ventrally and the nasal Lambert et al.
    [Show full text]
  • Evolutionary Transitions Among Dinosaurs: Examples from the Jurassic of China
    Evo Edu Outreach (2009) 2:236–247 DOI 10.1007/s12052-009-0137-0 ORIGINAL SCIENTIFIC ARTICLE Evolutionary Transitions Among Dinosaurs: Examples from the Jurassic of China James M. Clark & Xing Xu Published online: 9 May 2009 # Springer Science + Business Media, LLC 2009 Abstract Dinosaurs have captured the popular imagination relationships and transitions. Familiar highly specialized more than any other extinct group of organisms and are animals such as Triceratops, Pachycephalosaurus, Stego- therefore a powerful tool in teaching evolutionary biology. saurus, Ankylosaurus, Tyrannosaurus, Brachiosaurus, and Most students are familiar with a wide variety of dinosaurs Parasaurolophus are joined in the fossil record by hundreds and the relative suddenness of their extinction, but few are of their relatives with less-specialized features (Weishampel aware of the tremendous longevity of their time on Earth et al. 2004). Together, they comprise a many-branched and the richness of their fossil record. We first review some evolutionary tree that flourished for over 160 million years. of the best-known groups of dinosaurs and discuss how Dinosaurs are found almost exclusively in sedimentary their less-specialized relatives elucidate the path through rocks formed in terrestrial, rather than marine, environ- which each evolved. We then discuss our recent discovery ments, indicating that they rarely ventured out into the sea. of Yinlong downsi, a distant relative of Triceratops, and These river and lake deposits formed layers, or strata, that other fossils from Jurassic deposits in China to exemplify are overlain by younger rocks and underlain by older ones. how the continuing discovery of fossils is filling out the By studying how these and other layers of rocks and their dinosaur family tree.
    [Show full text]
  • Scannellaj0515.Pdf (12.45Mb)
    ONTOGENETIC AND STRATIGRAPHIC CRANIAL VARIATION IN THE CERATOPSID DINOSAUR TRICERATOPS FROM THE HELL CREEK FORMATION, MONTANA by John Benedetto Scannella A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April 2015 ©COPYRIGHT by John Benedetto Scannella 2015 All Rights Reserved ii ACKNOWLEDGEMENTS Funding for this research was provided by grants from the Doris O. and Samuel P. Welles Research Fund of the University of California Museum of Paleontology, the Theodore Roosevelt Memorial Fund of the American Museum of Natural History, the Fritz Travel Grant of the Royal Ontario Museum, the Jurassic Foundation, and the Evolving Earth Foundation. Funding for travel to conferences was provided by the North American Paleontological Convention Student Travel Grant, the Society of Vertebrate Paleontology Jackson School of Geosciences Student Member Travel Grant, and the MSU Letters and Science Student Travel Grant. Many thanks also to Dr. Jack Horner, the Museum of the Rockies, the Sands Brothers, and Gerry Ohrstrom for graduate student funding and support. I thank my committee members Dr. Jack Horner, Dr. David Varricchio, Dr. David Roberts, Dr. Mark Goodwin and my graduate representative, Dr. Brendan Mumey, for their support and guidance. Thanks to all the curators, collections managers, graduate students, and volunteers who have permitted me to access their museum collections and displays. I thank my fellow MSU students, the staff and volunteers at the MOR, the MSU Earth Sciences Department, and the many friends I have made through SVP for exciting discussions and help along the way.
    [Show full text]
  • Chapter 1 Defining Dinosaurs FIGURE 1.1 Differences in Postures
    ITT_Caption 29/12/2005 10:18 Page 1 1 Chapter 1 Defining Dinosaurs FIGURE 1.1 Differences in postures of a dinosaur and a large modern reptile. (A) Skeleton of the Late Cretaceous ornithopod Edmontosaurus annectus from Alberta, Canada. Posterior view of the rear limbs leaving a trackway, showing the typical dinosaurian trait of legs held underneath its body (erect posture). Specimen in the Royal Ontario Museum of Toronto, Ontario. (B) American crocodile, Crocodylus acutus, in Costa Rica, showing a sprawling posture and also leaving a trackway. This same typical reptilian posture can change to a semi-erect posture by the crocodile standing up or walking. Photo by Nada Pecnik, from Visuals Unlimited. FIGURE 1.2 Geologic time scale used as a standard by geologists and paleontologists worldwide. Largest units of geologic time are eons, followed (in order of most inclusive to least inclusive) by subdivisions eras, periods, and epochs. Figure is not scaled according to amounts of time. FIGURE 1.3 Cladogram of the major dinosaur clades covered in this text, using Saurischia and Ornithischia hip structures as a basis for dinosaur classification. FIGURE 1.4 Triassic and Jurassic formations of Canyonlands National Park, eastern Utah, an area well known for both dinosaur body fossils and trace fossils. Notice the lack of convenience stores and coffee shops in the field area. FIGURE 1.5 Photograph from the film The Valley of the Gwangi (1969), set in the early twentieth century western USA, with cowboys attempting to capture a large theropod. From Horner and Lessem (1993), The Complete T. Rex, Simon & Schuster, NY, p.
    [Show full text]
  • A Survey of Dinosaur Diversity by Clade, Age, Place of Discovery and Year
    TAYLOR — DINOSAUR DIVERSITY BY CLADE, AGE, PLACE AND YEAR. 1 Asurveyofdinosaur diversity by clade, age, place of discovery and year of description MICHAEL P.TAYLOR Dinosaur diversity is analyzed in terms of the number of valid genera within each major clade, Mesozoic age, place of discovery and year of description. Av es(Archaeopteryx +Neornithes) is excluded. Nomina nuda and nomina s t dubia are not counted. The results show451 valid dinosaurian genera at the n i end of 2001, of which 282 are saurischian (112 sauropodomorphs and 170 r theropods, including 93 coelurosaurs) and 169 ornithischian, including 11 P pachycephalosaurs, 26 ceratopsians, 60 ornithopods, 12 stegosaurs, and 38 e r ankylosaurs. Thirty-eight genera arose in the Triassic, 124 in the Jurassic, and 289 in the Cretaceous, of which a disproportionately high number — 85 P and 47 — are from the Campanian and Maastrichtian. The Kimmeridgian wasthe most productive age, with an average of 11.18 newgenera per million years. The Kimmeridgian sawanunparalleled boom in sauropod diversity,with 20 newsauropod genera arising in its 3.4 million years, an av erage of one newsauropod every 170,000 years. Asia was the most productive continent with 149 genera, followed by North America (135), Europe (66), South America (52), Africa (39), Australasia (9), and finally Antarctica (1). Just three countries account for more than half of all dinosaur diversity,with 231 genera between them: the U.S.A (105), China (73), and Mongolia (53). The top six countries also include Argentina (44), England (30), and Canada (30), and together provide 335 dinosaur genera, nearly three quarters of the total.
    [Show full text]