Phylogeny of the Caenogastropoda (Mollusca), Based on Comparative Morphology

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of the Caenogastropoda (Mollusca), Based on Comparative Morphology TABLE OF CONTENTS Abstract .......................................................................................................................................................161 Introduction ................................................................................................................................................162 Materials and Methods ................................................................................................................................163 Discussion of Characters .............................................................................................................................175 Shell (Characters 1‑52) ..........................................................................................................................175 Head‑foot (Characters 73‑147) ..............................................................................................................177 Operculum (Characters 53‑72) ..............................................................................................................180 Pallial organs (Characters 148‑228) .......................................................................................................181 Circulatory system (Characters 240‑261) ...............................................................................................185 Excretory system (Characters 262‑290)..................................................................................................185 Digestive system (Characters 291‑539) ..................................................................................................187 Foregut (Characters 291‑302) ..........................................................................................................187 Buccal mass (Characters 303‑326) ...................................................................................................190 Odontophore (Characters 327‑406) .................................................................................................190 Radula (Characters 407‑444) ...........................................................................................................197 Salivary glands (Characters 445‑461) ...............................................................................................200 Esophagus (Characters 462‑489)......................................................................................................200 Stomach (Characters 490‑516) ........................................................................................................203 Intestine (Characters 517‑539) ........................................................................................................206 Reproductive system (Characters 540‑648) ............................................................................................207 Male (Characters 540‑582) ..............................................................................................................207 Female (Characters 583‑648) ...........................................................................................................208 Central nervous system (Characters 649‑673) ........................................................................................210 Cladistic Analysis ........................................................................................................................................212 Discussion of the Cladogram .......................................................................................................................212 Extra characters, not utilized directly in the present study ......................................................................217 Analysis of the obtained cladogram and the taxonomy ...........................................................................219 Paleontology ..........................................................................................................................................225 Comparison with molecular studies .......................................................................................................226 Conclusions ................................................................................................................................................227 Resumo .......................................................................................................................................................227 Acknowledgments .......................................................................................................................................228 References ...................................................................................................................................................228 Appendix 1. .................................................................................................................................................238 Appendix 2 ..................................................................................................................................................267 Appendix 3 ..................................................................................................................................................309 Appendix 4 ..................................................................................................................................................318 Volume 42(4):161‑323, 2011 PHYLOGENY OF THE CAENOGASTROPODA (MOLLUSCA), BASED ON COMPARATIVE MORPHOLOGY 1 LUIZ RICARDO L. SIMONE ABSTRACT The systematics, classification and phylogeny of the Caenogastropoda are revised based on an analysis of the morphology of representatives of all branches. The basis of this work is the de- tailed examination of the morphology of 305 species, most of which are reported on in detail elsewhere. Representatives of most caenogastropod families were included (comprising 270 spe- cies), and 35 outgroup taxa. A phylogenetic analysis based upon 676 morphological characters, with 2291 states (1915 of which are apomorphic states), is presented. The characters comprise every organ system and many are discussed in detail. The polarization is based on a pool of non-caenogastropods, comprising 27 representatives of Heterobranchia, Neritimorpha, Vetigas- tropoda, Cocculiniformia and Patellogastropoda. Additionally, eight representatives of other classes are also included. The root is based on the representative of Polyplacophora. A few char- acters were included in order to organize the outgroups, to find the position of Caenogastropoda among them, and to find the synapomorphies of Caenogastropoda. A strict consensus cladogram of the 48 most parsimonious trees (Fig. 20; length of 3036, CI = 51 and RI = 94) is presented, a synopsis of which is: ((((((Cyclophoroidea2 (Ampullarioidea5 (Viviparoidea15 (Cerithioidea19 (Rissooidea41 (Stromboidea47 (Calyptraeoidea67 (Naticoidea97 (Cypraeoidea118 (Tonnoidea149 (Conoidea179 (Cancellarioidea222 – Muricoidea212)))))))))))) HeterobranchiaV) Neritimor- phaU) VetigastropodaL) CocculiniformiaJ) Patellogastropoda) (superscripts indicating the nodes at Fig. 20). The monophyly of the Caenogastropoda is supported by 60 synapomorphies. Based on this cladogram, the systematics, evolution and paleontology of the group are discussed, as along with comparisons with other phylogenetic studies involving Caenogastropoda, includ- ing those obtained from molecular data. The list of characters is included in Appendix 1; the matrix of characters in Appendix 2; and the list of synapomorphies of each node are presented in Appendix 3 in form of symbols. As the phylogeny obtained in this analysis has a high degree of concordance with other recent phylogenetic studies, a number of new supra-superfamiliar taxa are introduced: Siphonogastropoda (Cypraeoidea + Peogastropoda); Adenogastropoda (Naticoidea + Siphonogastropoda); Rhynchogastropoda (Calyptraeoidea + Adenogastropoda); Strombogastropoda (Stromboidea + Rhynchogastropoda); Peogastropoda (Tonnoidea + Neo- gastropoda); Epiathroidea (Viviparoidea + Sorbeoconcha); Hydrogastropoda (Ampullarioidea + Epiathroidea); Adenogonogastropoda (Neritimorpha + Apogastropoda) (Appendix 4). Key‑Words: Gastropoda; Caenogastropoda; Phylogeny; Morphology; Anatomy; Systematics. 1. Museu de Zoologia, Universidade de São Paulo. Caixa Postal 42.494, 04218‑970, São Paulo, SP, Brasil. E‑mails: [email protected], [email protected] 162 Simone, L.R.L.: Morphological Phylogeny of Caenogastropoda INTRODUCTION (as pectinibranchés), and Latinized by Goldfuss (1820) (Cox, 1960b; Bouchet, personal communication). Pec‑ “Caenogastropoda – the field of success” (Haszprunar, tinibranchia has been also called Monotocardia in 1988a: 415) some classifications (e.g., in Encyclopaedia Britannica; Marcus, 1958; Golikov & Starobogatov, 1987, 1988). Despite some initial inconsistencies (e.g., the Probably because of above mentioned confu‑ inclusion of trochoids) when introduced by Cuvier sion and due to the informal tendency for erecting (1814), the name Pectinibranchia generally encom‑ supra‑familial taxa with the suffix – gastropoda (as the passed most of the Meso‑ and all Neogastropoda as case of the Stenoglossa replaced for Neogastropoda), later defined by Thiele (1929) (the latter taxon was Cox (1960a) introduced the epithet Caenogastropoda called Stenoglossa by that author). As the name sug‑ for replacing the previous Pectinibranchia. The ap‑ gests, the taxon is an assemblage of monopectinate parent objective of the author was
Recommended publications
  • Environment for Development Improving Utilization of the Queen
    Environment for Development Discussion Paper Series December 2020 ◼ EfD DP 20-39 Improving Utilization of the Queen Conch (Aliger Gigas) Resource in the Colombian Caribbean A Bioeconomic Model of Rotational Harvesting Jorge Marco, Diego Valderrama, Mario Rueda, and Maykol R o dr i g ue z - P r i et o Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review. Central America Chile China Research Program in Economics and Research Nucleus on Environmental and Environmental Economics Program in China Environment for Development in Central Natural Resource Economics (NENRE) (EEPC) America Tropical Agricultural Research and Universidad de Concepción Peking University Higher Education Center (CATIE) Colombia Ghana The Research Group on Environmental, Ethiopia The Environment and Natural Resource Natural Resource and Applied Economics Environment and Climate Research Center Research Unit, Institute of Statistical, Social Studies (REES-CEDE), Universidad de los (ECRC), Policy Studies Institute, Addis and Economic Research, University of Andes, Colombia Ababa, Ethiopia Ghana, Accra India Kenya Nigeria Centre for Research on the Economics of School of Economics Resource and Environmental Policy Climate, Food, Energy, and Environment, University of Nairobi Research Centre, University of Nigeria, (CECFEE), at Indian Statistical Institute, Nsukka New Delhi, India South Africa Tanzania Sweden Environmental Economics Policy Research Environment
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Type Material of Adelomelon Indigestus Von Ihering, 1908 (Gastropoda, Volutidae)
    Short communication Type material of Adelomelon indigestus von Ihering, 1908 (Gastropoda, Volutidae) Fabio Wiggers1* Inga Ludmila Veitenheimer-Mendes2 Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91501-970 Rio Grande do Sul, Brazil *Autor para correspondência [email protected] 2 [email protected] Submetido em 21/02/2005 Aceito para publicação em 28/04/2005 Resumo Material tipo de Adelomelon indigestus von Ihering, 1908 (Gastropoda, Volutidae). Adelomelon indigestus von Ihering, 1908 é considerado um sinônimo de Adelomelon beckii (Broderip, 1836), entretanto a categoria taxonômica de seu material tipo não estava claro. Após a localização e exame dos dois exemplares citados na descrição original de A. indigestus os mesmos foram reconhecidos como síntipos. De acordo com o Código Internacional de Nomenclatura Zoológica, não havendo designação de lectótipo, a localidade-tipo deve incluir tanto Guaratiba, Rio de Janeiro quanto São Sebastião, São Paulo, ambos localizados no litoral sudeste do Brasil. Unitermos: Taxonomia, material tipo, Volutidae, Adelomelon indigestus, Oeste do Atlântico Sul Biotemas, 18 (2): 227 - 231, 2005 F. Wiggers e I. L. Veitenheimer-Mendes Abstract Adelomelon indigestus von Ihering, 1908 is known to be a synonym of Adelomelon beckii (Broderip, 1836) but the taxonomic status of its type material was not previously clear. The specimens cited in the original description of A. indigestus were located and recognized as syntypes. Under the rule of the International Code of Zoological Nomenclature, the type locality is proposed to include Guaratiba (Rio de Janeiro) and São Sebastião (São Paulo) both on the southeastern littoral of Brazil.
    [Show full text]
  • Impact of the the COVID-19 Pandemic on a Queen Conch (Aliger Gigas) Fishery in the Bahamas
    Impact of the the COVID-19 pandemic on a queen conch (Aliger gigas) fishery in The Bahamas Nicholas D. Higgs Cape Eleuthera Institute, Rock Sound, Eleuthera, Bahamas ABSTRACT The onset of the coronavirus (COVID-19) pandemic in early 2020 led to a dramatic rise in unemployment and fears about food-security throughout the Caribbean region. Subsistence fisheries were one of the few activities permitted during emergency lockdown in The Bahamas, leading many to turn to the sea for food. Detailed monitoring of a small-scale subsistence fishery for queen conch was undertaken during the implementation of coronavirus emergency control measures over a period of twelve weeks. Weekly landings data showed a surge in fishing during the first three weeks where landings were 3.4 times higher than subsequent weeks. Overall 90% of the catch was below the minimum legal-size threshold and individual yield declined by 22% during the lockdown period. This study highlights the role of small-scale fisheries as a `natural insurance' against socio-economic shocks and a source of resilience for small island communities at times of crisis. It also underscores the risks to food security and long- term sustainability of fishery stocks posed by overexploitation of natural resources. Subjects Aquaculture, Fisheries and Fish Science, Conservation Biology, Marine Biology, Coupled Natural and Human Systems, Natural Resource Management Keywords Fisheries, Coronavirus, COVID-19, IUU, SIDS, SDG14, Food security, Caribbean, Resiliance, Small-scale fisheries Submitted 2 December 2020 INTRODUCTION Accepted 16 July 2021 Published 3 August 2021 Subsistence fishing has played an integral role in sustaining island communities for Corresponding author thousands of years, especially small islands with limited terrestrial resources (Keegan et Nicholas D.
    [Show full text]
  • Spinucella a New Genus of Miocene to Pleistocene , Muricid Gastropods from the Eastern Atlantic
    Contr. Tert. Quatern. Geol. 30(1-2) 19-27 1 tab., 1 pi. Leiden, June 1993 Spinucella a new genus of Miocene to Pleistocene , muricid gastropods from the eastern Atlantic Geerat J. Vermeij University of California Davis, U.S.A. — new of Miocene Pleistocene muricid from the Atlantic. Contr. Tert. Vermeij, GeeratJ. Spinucella, a genus to gastropods eastern Quatern. Geol., 30(1-2): 19-27, 1 tab., 1 pi. Leiden, June 1993. The muricid is for de C. 1825 from the Pliocene of the new gastropod genus Spinucella proposed Purpura tetragonaJ. Sowerby, (type species), North Sea Basin, and for several other early Miocene to late Pleistocene species from southern Europe, North Africa, and southern Africa. The is characterised the of labral on the of the shell and reticulate of genus by presence a spine outer lip by sculpture. Species and Acanthinucella Cooke, 1918. The Spinucella closely resemble members ofNucella Röding, 1798, Acanthina Fischer von Waldheim, 1807, ofthat in the eastern Pacific Acanthina andAcanthinucella. Withthe removal of labral spine of Spinucellawas probably evolved independendy from where authors have the the time of arrival of Nucella in the North Atlantic from the S. tetragona Nucella, many recent placed species, North Pacific was late Pliocene, rather than middle Pliocene. — words Key Spinucella, new genus, Acanthina, Nucella, Neogene, biogeography. Prof. Dr G.J. Vermeij, Department of Geology, University of California, Davis, CA 95616, U.S.A. Contents 1956; Glibert, 1959, 1963). In fact, Glibert (1959) considered N. tetragona to be ancestral to N. lapillus, Introduction 19 p. the two species being linked by the late Pliocene 20 Systematics p.
    [Show full text]
  • MOLLUSCA Nudibranchs, Pteropods, Gastropods, Bivalves, Chitons, Octopus
    UNDERWATER FIELD GUIDE TO ROSS ISLAND & MCMURDO SOUND, ANTARCTICA: MOLLUSCA nudibranchs, pteropods, gastropods, bivalves, chitons, octopus Peter Brueggeman Photographs: Steve Alexander, Rod Budd/Antarctica New Zealand, Peter Brueggeman, Kirsten Carlson/National Science Foundation, Canadian Museum of Nature (Kathleen Conlan), Shawn Harper, Luke Hunt, Henry Kaiser, Mike Lucibella/National Science Foundation, Adam G Marsh, Jim Mastro, Bruce A Miller, Eva Philipp, Rob Robbins, Steve Rupp/National Science Foundation, Dirk Schories, M Dale Stokes, and Norbert Wu The National Science Foundation's Office of Polar Programs sponsored Norbert Wu on an Artist's and Writer's Grant project, in which Peter Brueggeman participated. One outcome from Wu's endeavor is this Field Guide, which builds upon principal photography by Norbert Wu, with photos from other photographers, who are credited on their photographs and above. This Field Guide is intended to facilitate underwater/topside field identification from visual characters. Organisms were identified from photographs with no specimen collection, and there can be some uncertainty in identifications solely from photographs. © 1998+; text © Peter Brueggeman; photographs © Steve Alexander, Rod Budd/Antarctica New Zealand Pictorial Collection 159687 & 159713, 2001-2002, Peter Brueggeman, Kirsten Carlson/National Science Foundation, Canadian Museum of Nature (Kathleen Conlan), Shawn Harper, Luke Hunt, Henry Kaiser, Mike Lucibella/National Science Foundation, Adam G Marsh, Jim Mastro, Bruce A Miller, Eva
    [Show full text]
  • The Role of Body Size in Complex Food Webs: a Cold Case
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Ecological Research, Vol. 45 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs: A Cold Case. In Andrea Belgrano and Julia Reiss, editors: Advances in Ecological Research, Vol. 45, Amsterdam, The Netherlands, 2011, pp. 181-223. ISBN: 978-0-12-386475-8 © Copyright 2011 Elsevier Ltd. Academic press. Author's personal copy The Role of Body Size in Complex Food Webs: A Cold Case UTE JACOB,1,* AARON THIERRY,2,3 ULRICH BROSE,4 WOLF E. ARNTZ,5 SOFIA BERG,6 THOMAS BREY,5 INGO FETZER,7 TOMAS JONSSON,6 KATJA MINTENBECK,5 CHRISTIAN MO¨ LLMANN,1 OWEN L.
    [Show full text]
  • Xenophoridae, Cypraeoidea, Mitriforms and Terebridae (Caenogastropoda)
    Taxonomic study on the molluscs collected in Marion-Dufresne expedition (MD55) to SE Brazil: Xenophoridae, Cypraeoidea, mitriforms and Terebridae (Caenogastropoda) Luiz Ricardo L. SIMONE Carlo M. CUNHA Museu de Zoologia da Universidade de São Paulo, caixa postal 42494, 04218-970 São Paulo, SP (Brazil) [email protected] [email protected] Simone L. R. L. & Cunha C. M. 2012. — Taxonomic study on the molluscs collected in Marion-Dufresne expedition (MD55) to SE Brazil: Xenophoridae, Cypraeoidea, mitriforms and Terebridae (Caenogastropoda). Zoosystema 34 (4): 745-781. http://dx.doi.org/10.5252/z2012n4a6 ABSTRACT The deep-water molluscs collected during the expedition MD55 off SE Brazil have been gradually studied in some previous papers. The present one is focused on samples belonging to caenogastropod taxa Xenophoridae Troschel, 1852, Cypraeoidea Rafinesque, 1815, mitriforms and Terebridae Mörch, 1852. Regarding the Xenophoridae, Onustus aquitanus n. sp. is a new species, collected off the littoral of Espírito Santo and Rio de Janeiro, Brazil, 430-637 m depth (continental slope). The main characters of the species include the small size (c. 20 mm), the proportionally wide shell, the white colour, the short peripheral flange, the oblique riblets weakly developed and a brown multispiral protoconch. This appears to be the smallest living species of the family, resembling in this aspect fossil species. In respect to the Cypraeoidea, the following results were obtained: family Cypraeidae Rafinesque, 1815: Erosaria acicularis (Gmelin, 1791) and Luria cinerea (Gmelin, 1791) had the deepest record, respectively 607-620 m and 295-940 m, although the samples were all dead, eroded shells. Family Lamellariidae d’Orbigny, 1841: a total of three lots were collected, provisionally identified as Lamellaria spp.
    [Show full text]
  • Mollusca, Archaeogastropoda) from the Northeastern Pacific
    Zoologica Scripta, Vol. 25, No. 1, pp. 35-49, 1996 Pergamon Elsevier Science Ltd © 1996 The Norwegian Academy of Science and Letters Printed in Great Britain. All rights reserved 0300-3256(95)00015-1 0300-3256/96 $ 15.00 + 0.00 Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific GERHARD HASZPRUNAR and JAMES H. McLEAN Accepted 28 September 1995 Haszprunar, G. & McLean, J. H. 1995. Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific.—Zool. Scr. 25: 35^9. Bathyphytophilus diegensis sp. n. is described on basis of shell and radula characters. The radula of another species of Bathyphytophilus is illustrated, but the species is not described since the shell is unknown. Both species feed on detached blades of the surfgrass Phyllospadix carried by turbidity currents into continental slope depths in the San Diego Trough. The anatomy of B. diegensis was investigated by means of semithin serial sectioning and graphic reconstruction. The shell is limpet­ like; the protoconch resembles that of pseudococculinids and other lepetelloids. The radula is a distinctive, highly modified rhipidoglossate type with close similarities to the lepetellid radula. The anatomy falls well into the lepetelloid bauplan and is in general similar to that of Pseudococculini- dae and Pyropeltidae. Apomorphic features are the presence of gill-leaflets at both sides of the pallial roof (shared with certain pseudococculinids), the lack of jaws, and in particular many enigmatic pouches (bacterial chambers?) which open into the posterior oesophagus. Autapomor- phic characters of shell, radula and anatomy confirm the placement of Bathyphytophilus (with Aenigmabonus) in a distinct family, Bathyphytophilidae Moskalev, 1978.
    [Show full text]
  • The Journal of Molluscan Studies
    Downloaded from https://academic.oup.com/mollus/issue/55/1 by guest on 30 September 2021 The Journal of Molluscan Studies Edited by J. Taylor INDEX FOR VOLUME 55 1989 Downloaded from https://academic.oup.com/mollus/issue/55/1 by guest on 30 September 2021 Contents for Volume 55, 1989 Journal of Molluscan Studies VOLUME 55, 1989 Part 1, pp. 1-147 (published 3 March 1989) Part 2, pp. 149-311 (published 10 May 1989) Part 3, pp. 313-^*29 (published 10 August 1989) Part 4, pp. 431-553 (published 1 November 1989) CONTENTS page AGUIRRE, A., see VICARIO et al. ALLANSON, B.R., see VILLIERS & ALLANSON Downloaded from https://academic.oup.com/mollus/issue/55/1 by guest on 30 September 2021 BAILEY, S.E.R. Foraging behaviour of terrestrial gastropods: integrating field and labora- tory studies 263 BARKAI, A. & BRANCH, G.M. Growth and mortality of the mussels Choromytilus meridionalis (Krauss) and Aulacomya ater (Molina) as indicators of biotic conditions 329 BAUR, B. Growth and reproduction of the minute land snail Punctum pygmaeum (Drapamaud) 383 BERNARD, R.T.F., see HODGSON & BERNARD BERRY, A.J. Spawning season and egg production in Forth estuary Retusa obtusa (Opisthobranchia: Retusidae) 455 BODE, A. Production of the intertidal chiton Acanlhochitona crinita within a community of CoraUina tlongato (Rhodophyta) 37 BOUCHET, P. A review of poecilogony in gastropods 67 BOUKRAA, A., see GOMOT et al. BRANCH, G.M., see BARKAI & BRANCH BRONMARK, C. Interactions between epiphytes, macrophytes and freshwater snails: a review 299 BROWN, A.C., see TRUEMAN & BROWN BROWN, A.C., see VAN W1JK et al.
    [Show full text]
  • Zootaxa, Mollusca, Anabathridae
    Zootaxa 723: 1–6 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 723 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) First record of the genus Pisinna Monterosato, 1878 (Mollusca, Gastropoda, Anabathridae) from the southwest Atlantic, with description of a new species FRANKLIN NOEL SANTOS 1 & RICARDO SILVA ABSALÃO 1,2 1- Departamento de Zoologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro. Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro, RJ, Brazil, CEP 20550-900. E-mail: [email protected] 2- Departamento de Zoologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro. Ilha do Fundão, Rio de Janeiro, RJ, Brazil, CEP: 21941-570. Abstract The genus Pisinna Monterosato, 1878 (Anabathridae Ponder, 1988) is reported from the Brazilian coast for the first time. Pisinna bicincta n. sp. is found off Espírito Santo State (65–67 m depth) on the Brazilian continental shelf. It is diagnosed by its pupiform shell, with subsutural depression, two spiral bands (one white and one orange), dome-shaped paucispiral protoconch sculptured with about 17 spiral rows of minute flat pits, teleoconch with about 22 oblique axial cordlets, and aper- ture with columellar tooth. Key words: Mollusca, Gastropoda, Anabathridae, Pisinna bicincta, new species, Brazil Introduction Mollusks of the family Anabathridae Ponder, 1988 are minute gastropods about three mil- limeters long. They inhabit the continental shelf and slope, mainly in warm and temperate waters, and are most abundant in the intertidal and sublittoral zones (Ponder 1983; 1998). Most of the anabathrid species were described from Australia and New Zealand, where about 60 species of the genus Pisinna are known (Ponder 1998); however, Pisinna punctu- lum (Philippi, 1836), the type species of the genus, is from the Mediterranean Sea.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]