Coal Geology by Larry Thomas

Total Page:16

File Type:pdf, Size:1020Kb

Coal Geology by Larry Thomas Coal Geology Coal Geology Second Edition Larry Thomas Dargo Associates Ltd A John Wiley & Sons, Ltd., Publication This edition first published 2013 © 2013 by John Wiley & Sons, Ltd Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered office: John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting a specific method, diagnosis, or treatment by physicians for any particular patient. The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. Readers should consult with a specialist where appropriate. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom. Library of Congress Cataloging-in-Publication Data Thomas, Larry (Larry P.) Coal geology / Larry Thomas. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-1-119-99044-4 (cloth) 1. Coal – Geology. I. Title. TN802.T47 2002 553.24–dc23 2012025908 A catalogue record for this book is available from the British Library. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Typeset in 9.25/11.5pt Minion by Laserwords Private Limited, Chennai, India First Impression 2013 Contents Preface To First Edition, ix Preface, xi 1 Preview, 1 1.1 Scope, 1 1.2 Coal geology, 1 1.3 Coal use, 1 1.4 Background, 2 2 Origin of Coal, 3 2.1 Introduction, 3 2.2 Sedimentation of coal and coal-bearing sequences, 3 2.3 Structural effects on coal, 33 3 Age and Occurrence of Coal, 53 3.1 Introduction, 53 3.2 Plate tectonics, 53 3.3 Stratigraphy, 54 3.4 Age and geographical distribution of coal, 58 4 Coal as a Substance, 87 4.1 Physical description of coal, 87 4.2 Coalification (rank), 103 4.3 Coal quality, 111 4.4 Classification of coals, 125 5 Coal Sampling and Analysis, 137 5.1 Coal sampling, 137 5.2 In situ sampling, 137 5.3 Ex situ sampling, 142 5.4 Coal analysis, 145 6 Coal Exploration and Data Collection, 151 6.1 Introduction, 151 6.2 Field techniques, 151 6.3 Drilling, 165 6.4 Geotechnical properties, 173 6.5 Computer applications, 178 7 Coal Resources and Reserves, 185 7.1 Introduction, 185 7.2 Classification of coal resources and reserves, 185 7.3 Reporting of resources and reserves, 198 7.4 World coal reserves and production, 205 v vi Contents 8 Geophysics of Coal, 211 8.1 Introduction, 211 8.2 Physical properties of coal-bearing sequences, 211 8.3 Surface geophysical methods, 213 8.4 Underground geophysical methods, 231 8.5 Geophysical borehole logging, 233 9 Hydrogeology of Coal, 253 9.1 Introduction, 253 9.2 The nature of groundwater and surface flow, 253 9.3 Hydrogeological characteristics of coals and coal-bearing sequences, 255 9.4 Collection and handling of hydrogeological data, 258 9.5 Groundwater inflows in mines, 259 9.6 Groundwater rebound, 269 10 Geology and Coal Mining, 271 10.1 Introduction, 271 10.2 Underground mining, 271 10.3 Surface mining, 287 11 Coal as an Alternative Energy Source, 303 11.1 Introduction, 303 11.2 Gas in coal, 303 11.3 Underground coal gasification (UCG), 322 11.4 Coal as a liquid fuel, 330 11.5 Coal as an oil-prone source rock, 332 12 Coal Use and the Environment, 339 12.1 Introduction, 339 12.2 Coal mining, 339 12.3 Coal use, 354 12.4 Health, 362 12.5 Carbon capture and storage (CCS), 363 12.6 Environmental regulations, 364 12.7 Future implications, 368 13 Coal Marketing, 369 13.1 Introduction, 369 13.2 Coal quality, 369 13.3 Transportation, 371 13.4 Coal contracts, 379 13.5 Coal price and indexing, 381 References, 385 Appendix 1 List of International and National Standards used in Coal and Coke Analysis and Evaluation, 399 Appendix 2 Tables of True and Apparent Dip, Slope Angles, Gradients and Per Cent Slope, 415 Appendix 3 Calorific Values Expressed in Different Units, 417 Contents vii Appendix 4 Units of measurement, 421 Appendix 5 Methane Units Converter, 423 Glossary, 425 Index, 431 Preface The first edition of Coal Geology has provided the coal Appendix 1, have been updated and expanded to include geologist and those associated with the coal industry P. R. China, India and Russia. with the background to the origins and characteristics I would like to thank all those colleagues and friends of coal together with exploration techniques including who have helped and encouraged me with the second geophysics and hydrogeology. Details of coal mining edition. In particular, special thanks are due to Steve techniques, resource calculations, alternative uses of coal Frankland of Dargo Associates Ltd, Rob Evans for his and environmental issues were also described. invaluable help with coal geophysics, Paul Ahner in the Although broadly following the layout of the first USA for providing data on underground coal gasification, edition, additional information has been added to coal and to the following for their contributions and support: origins, geographical distribution of coal and coal explo- Professor Vladimir Pavlovic of Belgrade University, Mike ration. The chapter on coal resources and reserves has Coultas, Dave Pearson of Pearson Coal Petrography, been brought up to date with current resource classifi- Oracle Coalfields plc and Robertson Geologging, as well cations together with recent world reserves/production as the staff at John Wiley & Sons, Ltd. figures. The chapter on geophysics of coal has been I also thank those authors and organisations whose enlarged and the alternative uses of coal, in particular, permission to reproduce their work is gratefully acknowl- methane extraction and underground coal gasification edged. have been expanded to reflect the increase in activity Finally I would like to thank my wife Sue for her in these areas. Developments in environmental require- support, forbearance and assistance with the manuscript. ments have also been updated. Again, numerous sources of information have been Larry Thomas consulted, the majority of which are listed in the bibliog- Dargo Associates Ltd raphy. International Standards relating to coal, listed in ix Preface To First Edition The Handbook of Practical Coal Geology (Thomas 1992) Also covered is the development of computer tech- was intended as a basic guide for coal geologists to use nology in the geological and mining fields, and the final in their everyday duties, whether on site, in the office or chapter is a condensed account of the marketing of coal, instructing others. It was not intended as a definitive work its uses, transportation and price. on all or any particular aspect of coal geology, rather as Many sources of information have been consulted, the a handbook to use as a precursor to, or in conjunction majority of which are listed in the reference section. A set with, more specific and detailed works.
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • Update on Lignite Firing
    Update on lignite firing Qian Zhu CCC/201 ISBN 978-92-9029-521-1 June 2012 copyright © IEA Clean Coal Centre Abstract Low rank coals have gained increasing importance in recent years and the long-term future of coal -derived energy supplies will have to include the greater use of low rank coal. However, the relatively low economic value due to the high moisture content and low calorific value, and other undesirable properties of lignite coals limited their use mainly to power generation at, or, close to, the mining site. Another important issue regarding the use of lignite is its environmental impact. A range of advanced combustion technologies has been developed to improve the efficiency of lignite-fired power generation. With modern technologies it is now possible to produce electricity economically from lignite while addressing environmental concerns. This report reviews the advanced technologies used in modern lignite-fired power plants with a focus on pulverised lignite combustion technologies. CFBC combustion processes are also reviewed in brief and they are compared with pulverised lignite combustion technologies. Acronyms and abbreviations CFB circulating fluidised bed CFBC circulating fluidised bed combustion CFD computational fluid dynamics CV calorific value EHE external heat exchanger GRE Great River Energy GWe gigawatts electric kJ/kg kilojoules per kilogram kWh kilowatts hour Gt billion tonnes FBC fluidised bed combustion FBHE fluidised bed heat exchanger FEGT furnace exit gas temperature FGD flue gas desulphurisation GJ
    [Show full text]
  • 278 Subpart B—Coal Preparation Plants and Coal Preparation Plant
    § 434.20 40 CFR Ch. I (7–1–16 Edition) treat coal rine drainage, coal prepara- ration plants and coal preparation tion plant process wastewater, or plant association areas, as indicated, drainage from coal preparation plant including discharges which are associated areas, which remove pollut- pumped, siphoned, or drained from the ants regulated by this part from such coal preparation plant water circuit waters. This includes all pipes, chan- and coal storage, refuse storage, and nels, ponds, basins, tanks and all other ancillary areas related to the cleaning equipment serving such structures. or beneficiation of coal of any rank in- (p) The term ‘‘coal refuse disposal cluding, but not limited to, bitu- pile’’ means any coal refuse deposited minous, lignite, and anthracite. on the earth and intended as perma- nent dispoal or long-term storage § 434.21 [Reserved] (greater than 180 days) of such mate- rial, but does not include coal refuse § 434.22 Effluent limitation guidelines deposited within the active mining representing the degree of effluent area or coal refuse never removed from reduction attainable by the applica- tion of the best practicable control the active mining area. technology currently available (q) The term ‘‘controlled surface (BPT). mine drainage’’ means any surface mine drainage that is pumped or si- (a) Except as provided in 40 CFR phoned from the active mining area. 125.30–125.32, 40 CFR 401.17, and §§ 434.61, (r) The term ‘‘abandoned mine’’ 434.62 and 434.63 of this part, the fol- means a mine where mining operations
    [Show full text]
  • 'Retrofitting CCS to Coal: Enhancing Australia's Energy
    RETROFITTING CCS TO COAL: ENHANCING AUSTRALIA’S ENERGY SECURITY RETROFITTING CCS TO COAL: ENHANCING AUSTRALIA’S ENERGY SECURITY any representation about the content and suitability Disclaimer of this information for any particular purpose. The document is not intended to comprise advice, and is This report was completed on 2 March 2017 and provided “as is” without express or implied therefore the Report does not take into account warranty. Readers should form their own conclusion events or circumstances arising after that time. The as to its applicability and suitability. The authors Report’s authors take no responsibility to update the reserve the right to alter or amend this document Report. without prior notice. The Report’s modelling considers only a single set of Authors: Geoff Bongers, Gamma Energy Technology input assumptions which should not be considered Stephanie Byrom, Gamma Energy Technology entirely exhaustive. Modelling inherently requires Tania Constable, CO2CRC Limited assumptions about future behaviours and market interactions, which may result in forecasts that deviate from actual events. There will usually be About CO2CRC Limited: differences between estimated and actual results, CO2CRC Limited is Australia’s leading CCS research because events and circumstances frequently do not organisation, having invested $100m in CCS research occur as expected, and those differences may be over the past decade. CO2CRC is the first organisation material. The authors of the Report take no in Australia to have demonstrated CCS end-to-end, responsibility for the modelling presented to be and has successfully stored more than 80,000 tonnes considered as a definitive account. of CO2 at its renowned Otway Research Facility in The authors of the Report highlight that the Report, Victoria.
    [Show full text]
  • Effect of Water Quality on Coal Thermoplasticity Feng Zhang
    Effect of water quality on coal thermoplasticity Feng Zhang A thesis in fulfilment of the requirements for the degree of Master of Philosophy in Engineering School of Minerals and Energy Resources Engineering Faculty of Engineering June 2018 II III Acknowledgements I would like to thank my supervisors Associate Professor Seher Ata and Dr. Ghislain Bournival for their support, guidance and encouragement throughout my research study. I am especially grateful to Seher, who was the supervisor of my undergraduate thesis, for trusting my ability to complete this research degree. Special thanks to Professor Alan Buckley for his help with my understanding on coal surface chemistry and surface analysis. Also, many thanks to Mr. Noel Lambert, for providing valuable information related to this research topic, as well as preparing and transporting the coal and process water samples. I appreciate Dr. Bin Gong, Dr. Yin Yao for their help with the XPS analysis and SEM analysis. I would like to thank Australian Coal Association Research Program (ACARP) for funding this research project and providing the coal and process water samples. Lastly, thanks to my family and friends, especially to my girlfriend, Hongni Yin, for their endless support throughout these two years. IV Abstract Process water reuse is a common practice in Australian coal preparation plants. It is an effective solution to on-site water scarcity and to minimize environmental impacts. This study investigates the effect of inorganic mineral salts in the process water on the thermoplastic properties of metallurgical coals after a short period of mild oxidation. Two different Australian metallurgical coals were treated with the process water received from a coal preparation plant based in Queensland, AU, and exposed to air at ambient temperature.
    [Show full text]
  • Solutions for Energy Crisis in Pakistan I
    Solutions for Energy Crisis in Pakistan i ii Solutions for Energy Crisis in Pakistan Solutions for Energy Crisis in Pakistan iii ACKNOWLEDGEMENTS This volume is based on papers presented at the two-day national conference on the topical and vital theme of Solutions for Energy Crisis in Pakistan held on May 15-16, 2013 at Islamabad Hotel, Islamabad. The Conference was jointly organised by the Islamabad Policy Research Institute (IPRI) and the Hanns Seidel Foundation, (HSF) Islamabad. The organisers of the Conference are especially thankful to Mr. Kristof W. Duwaerts, Country Representative, HSF, Islamabad, for his co-operation and sharing the financial expense of the Conference. For the papers presented in this volume, we are grateful to all participants, as well as the chairpersons of the different sessions, who took time out from their busy schedules to preside over the proceedings. We are also thankful to the scholars, students and professionals who accepted our invitation to participate in the Conference. All members of IPRI staff — Amjad Saleem, Shazad Ahmad, Noreen Hameed, Shazia Khurshid, and Muhammad Iqbal — worked as a team to make this Conference a success. Saira Rehman, Assistant Editor, IPRI did well as stage secretary. All efforts were made to make the Conference as productive and result oriented as possible. However, if there were areas left wanting in some respect the Conference management owns responsibility for that. iv Solutions for Energy Crisis in Pakistan ACRONYMS ADB Asian Development Bank Bcf Billion Cubic Feet BCMA
    [Show full text]
  • The Dirty Secrets of Coal Cleaning: Pollution and Enforcement Options At
    The Dirty Secrets of Coal Cleaning: Pollution and Enforcement Options at Pennsylvania Coal Preparation Plants October 14, 2014 The Environmental Integrity Project • Lisa Widawsky Hallowell Grant funding was made possible through the Foundation for Pennsylvania Watersheds (FPW), and is intended to support Clear Water Conservancy’s work in advancing the quality of our environment. FPW is a nonprofit, grant-making organization supporting water quality needs throughout Pennsylvania. Table of Contents I. EXECUTIVE SUMMARY .................................................................................................... 2 II. OVERVIEW OF COAL PREP PLANT PERMITS ............................................................... 4 III. ANALYSIS: WATER POLLUTION .................................................................................. 5 A. Summary of Laws Related to Releases to Water and Land ............................................. 6 1. The Clean Water Act .................................................................................................... 6 2. Other Laws Requiring Disclosure of Chemicals and Releases .................................... 9 B. Storage of Large Volumes of Chemicals at Coal Preparation Plants ............................. 10 C. Incomplete Permit Applications that Fail to Disclose Metals and other Coal Pollutants in Permit Applications .............................................................................................................. 12 D. No Limits for Metals or Coal Cleaning Pollutants Commonly
    [Show full text]
  • 2008 Abstract Booklet
    TWENTY - FIFTH ANNUAL INTERNATIONAL PITTSBURGH COAL CONFERENCE COAL - ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT ABSTRACTS BOOKLET September 29 - October 2, 2008 The Westin Convention Center Pittsburgh, PA USA The Westin Hotel and Convention Center Hosted By: University of Pittsburgh Swanson School of Engineering A NOTE TO THE READER This Abstracts Booklet is prepared solely as a convenient reference for the Conference participants. Abstracts are arranged in a numerical order of the oral and poster sessions as published in the Final Conference Program. In order to facilitate the task for the reader to locate a specific abstract in a given session, each paper is given two numbers: the first designates the session number and the second represents the paper number in that session. For example, Paper No. 25-1 is the first paper to be presented in the Oral Session #25. Similarly, Paper No. P3-1 is the first paper to appear in the Poster Session #3. It should be cautioned that this Abstracts Booklet is prepared based on the original abstract that was submitted, unless the author noted an abstract change. The contents of the Booklet do not reflect late changes made by the authors for their presentations at the Conference. The reader should consult the Final Conference Program for any such changes. Furthermore, updated and detailed full manuscripts are published in the CD-ROM Conference Proceedings will be sent to all registered participants following the Conference. On behalf of the Twenty-Fifth Annual International Pittsburgh Coal Conference, we wish to express our sincere appreciation to Ms. Heidi M. Aufdenkamp, Mr.
    [Show full text]
  • Carbon Footprint for Mercury Capture from Coal-Fired Boiler Flue Gas
    energies Article Carbon Footprint for Mercury Capture from Coal-Fired Boiler Flue Gas Magdalena Gazda-Grzywacz 1,* , Łukasz Winconek 2 and Piotr Burmistrz 1 1 Faculty of Energy & Fuels, AGH University of Science and Technology, Mickiewicz Avenue 30, 30-059 Krakow, Poland; [email protected] 2 Grand Activated Sp. z o.o., Białostocka 1, 17-200 Hajnówka, Poland; [email protected] * Correspondence: [email protected] Abstract: Power production from coal combustion is one of two major anthropogenic sources of mercury emission to the atmosphere. The aim of this study is the analysis of the carbon footprint of mercury removal technologies through sorbents injection related to the removal of 1 kg of mercury from flue gases. Two sorbents, i.e., powdered activated carbon and the coke dust, were analysed. The assessment included both direct and indirect emissions related to various energy and material needs life cycle including coal mining and transport, sorbents production, transport of sorbents to the power plants, and injection into flue gases. The results show that at the average mercury concentration in processed flue gasses accounting to 28.0 µg Hg/Nm3, removal of 1 kg of mercury from flue gases required 14.925 Mg of powdered activated carbon and 33.594 Mg of coke dust, respec- tively. However, the whole life cycle carbon footprint for powdered activated carbon amounted to −1 89.548 Mg CO2-e·kg Hg, whereas for coke dust this value was around three times lower and −1 amounted to 24.452 Mg CO2-e·kg Hg. Considering the relatively low price of coke dust and its lower impact on GHG emissions, it can be found as a promising alternative to commercial powdered Citation: Gazda-Grzywacz, M.; activated carbon.
    [Show full text]
  • Appendix A: Calculation of Flue Gas Composition
    Appendix A: Calculation of Flue Gas Composition Consider 100 kg of biomass (pine wood) with an Ultimate Analysis on a dry ash free basis given in Table A.1. This calculation assumes that all the carbon is burned i.e. there is no carbon in the ash or carbon monoxide formed. If there is the unburned carbon has to be sub- tracted from the value of carbon in the above table. Also that the S, N and Cl are negligible and there is no ingress of N2 in the flue or sampling system. Moisture content given in the Proximate Analysis has to be allowed for in the calculation as well. Assume the combustion reactions are C + O2 = CO2 2H2 + O2 = 2H2O Oxygen required for stoichiometric combustion = 4.33 + 1.6 − 1.3 = 4.63kg-mol Air requirement = [4.63 × 100 × 22.41 ]/[ 21]=494.1 m3 at NTP Composition of the dry flue gas from the stoichiometric combustion of 1 kg of biomass: 3 N2 from theoretical air 4.94 0.79 3.90 m . = × = 3 N2 from biomass 0.001 0.224 0.0002 m . = × = 3 CO2 from biomass 4.33 0.224 0.97 m . Total amount of dry= flue gas× per 1 kg= wood 4.872 m3. = If the concentration in the wet flue gas is required then the water content has to be included in the above calculation. © The Author(s) 2014 105 J.M. Jones et al., Pollutants Generated by the Combustion of Solid Biomass Fuels, SpringerBriefs in Applied Sciences and Technology, DOI 10.1007/978-1-4471-6437-1 106 Appendix A: Calculation of Flue Gas Composition Table A.1 Calculation of Element Molecular weight Mols O2 required flue gas composition C, 52.00 12 4.33 H, 6.20 2 1.6 O, 41.60 32 1.3 − N, 0.2 28 Therefore % CO 0.97/4.872 19.91 assuming stoichiometric combustion (0 % 2 = = O2).
    [Show full text]
  • Maceral Types and Quality of Coal in the Tuli Coalfield: a Case
    applied sciences Article Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa Elelwani Denge * and Christopher Baiyegunhi Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; [email protected] * Correspondence: [email protected] Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The Madzaringwe Formation in the Vele colliery is one of the coal-bearing Late Palaeozoic units of the Karoo Supergroup, consisting of shale with thin coal seams and sandstones. Maceral group analysis was conducted on seven representative coal samples collected from three existing boreholes—OV125149, OV125156, and OV125160—in the Vele colliery to determine the coal rank and other intrinsic characteristics of the coal. The petrographic characterization revealed that vitrinite is the dominant maceral group in the coals, representing up to 81–92 vol.% (mmf) of the total sample. Collotellinite is the dominant vitrinite maceral, with a total count varying between 52.4 vol.% (mmf) and 74.9 vol.% (mmf), followed by corpogelinite, collodetrinite, tellinite, and pseudovitrinite with a Citation: Denge, E.; Baiyegunhi, C. count ranging between 0.8 and 19.4 vol.% (mmf), 1.5 and 17.5 vol.% (mmf), 0.8 and 6.5 vol.% (mmf) Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of and 0.3 and 5.9 vol.% (mmf), respectively. The dominance of collotellinite gives a clear indication Coal in the Madzaringwe Formation that the coals are derived from the parenchymatous and woody tissues of roots, stems, and leaves.
    [Show full text]
  • Explosibility of Coal Dust
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEOKGE OTIS SMITH, DIRECTOR BULLETIN 425 THE EXPLOSIBILITY OF COAL DUST BY GEORGE S. RICE WITH CHAPTERS BX J. C. W. FRAZER, AXEL LARSEN, FRANK HAAS, AND CARL SCHOLZ WASHINGTON GOVERN M E N T P K I N T IN G OFFICE 1910 CONTENTS. Page. Introd uctory statement...................................... ............ 9 The coal-dust, problem................................................ 9 i Acknowledgments.................................................... 10 Historical review of the coal-dust question in Europe ....................... 11 Observations in England prior to 1850................................. 11 Observations by French engineers prior to 1890........................ 12 Experiments in England between 1850 and 1885........................ 12 Experiments in Prussia............................,.............:..... 14 Experiments in Austria between 1885 and 1891......................... 16 Views of English authorities between 1886 and 1908.................... 17 German, French, and Belgian stations for testing explosives............ 19 Altofts gallery, England, 1908......................................... 21 Second report of Royal Commission on Mines, 1909...................... 21 Recent Austrian experiments.......................................... 22 Historical review of the coal-dust question in the United States.............. 23 Grahamite explosions in West Virginia, 1871 and 1873.................. 23 Flour-mill explosion at Minneapolis, 1878.............................
    [Show full text]