bioRxiv preprint doi: https://doi.org/10.1101/207910; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Mapping of the Fondaparinux Binding Site of JR-FL gp120 by High Resolution Hydroxyl Radical Protein Footprinting and Computational Docking Sandeep K. Misra1, Amika Sood2, Paulo A. Soares3, Vitor H. Pomin3, Robert J. Woods2 and Joshua S. Sharp1* 1Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 2Complex Carbohydrate Research Center, University of Georgia, Athens, GA 3Institute of Medical Biochemistry Leopoldo de Meis, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil *
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/207910; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The adhesion of HIV gp120 antigen to human cells is modulated in part by interactions with heparan sulfate. The HXB2 strain of gp120 has been shown to interact with heparin primarily through the V3 loop, although other domains including the C-terminal domain were also implicated. However, the JR-FL strain (representative of CCR5-interacting strains that make up newest infections) was shown to have a drastically lowered affinity to heparin due to the loss of several basic residues in the V3 loop, and deletion of the V3 loop in JR-FL gp120 was shown to abrogate some, but not all, heparin binding.