Visions of Computer Science Visions of Computer Science

Total Page:16

File Type:pdf, Size:1020Kb

Visions of Computer Science Visions of Computer Science VisionsVisions ofof computer computer sciencescience ImperialImperial CollegeCollege LondonLondon SeptemberSeptember 22-2422-24 20082008 The BCS is launching its first international academic conference and we are now open for bookings The conference, which will be held at Imperial College London September 22-24, will be divided up into sessions and mini-tracks each devoted to a theme or area and will include some invited presentations. The topics have been left deliberately broad to reflect the rich variety within the computer science and engineering fields. Keynote speakers for the conference Costs of attending: include Turing Award winners: 3-day Inclusive Fee Fran Allen Vint Cerf Student Rate* £235.00 (inc VAT) Tony Hoare BCS/IET Member Rate £470.00 (inc VAT) Dick Karp Robin Milner Non-Member Rate £585.00 (inc VAT) Michael Rabin Joseph Sifakis *Student Rate includes PhD students and under-graduates Fee Includes: and will also include David Delpy, CEO of EPSRC • Attendance to all 3 days of the conference • Refreshments, including lunch After the conference all the accepted • Drinks Reception on the evening of Day One papers will be published in a book by • Conference Dinner on the evening of Day Two the BCS and also put onto CD. As well • Conference proceedings on CD as this some of the best papers will be • One year subscription to The Computer Journal included in The Computer Journal, the Bursaries available BCS's research publication. For more information, including how to book: www.bcs.org/visions The British Computer Society is the industry body for IT professionals, and a Chartered Engineering Institution for Information Technology (IT). Registered charity number 292786 VisionsVisions ofof computer computer sciencescience TopicsTopics andand programmeprogramme committeecommittee The Call for Papers includes the following topics, but are not limited to: • Computer Architectures and Digital Systems • Theoretical Computer Science: Algorithms and Complexity, Logic and Semantics • Non-standard Models of Computation • Programming Methods and Languages • Software Engineering and System Design Tools • Quantitative Evaluation of Algorithms, Systems, and Networks • Artificial Intelligence, Agents and Machine Learning • Networks, Distributed and Pervasive Systems • Grid Computing and E-Science • Databases, Information Retrieval and Data Mining, Web Based Computation • Human Computer Interaction • Robotics and Computer Vision • Bioinformatics, Synthetic Biology and Synthetic Chemistry • Medical Applications • Papers related to the current UKCRC Grand Challenges are especially solicited Final programme available shortly Conference Chair: Erol Gelenbe, Imperial College Programme Co-Chairs: Samson Abramsky, Oxford University, and Vladimiro Sassone, University of Southampton Local Arrangements Chair: Moez Draief, Imperial College Programme Committee: • Christian Beckmann, Hammersmith Hospital, Machine Learning and Medical Applications • Peter Buneman, Edinburgh University, Database Theory and Systems • Muffy Calder, University of Glasgow, Automated Reasoning, Systems Biology • George Constantinides, Imperial College, Digital Systems, Architectures • Yiannis Demiris, Imperial College, Robotics, Machine Learning • Anthony Finkelstein, University College London, Software Systems Engineering • Erol Gelenbe, Imperial College (Chair), System Performance Evaluation, Computer Networks • Wendy Hall, University of Southampton, Liaison with Grand Challenge Projects • Jennifer Hallinan, University of Newcastle, Bioinformatics, Synthetic Biology • David Hutchison, University of Lancaster, Computer Networks and Communications • Maja Pantic, Univ. of Twente and Imperial College, Human Computer Interaction • Alex Rogers, University of Southampton, Agent Systems, Artificial Intelligence • Vladimiro Sassone, Formal Methods, Models of Computation • Iain Stewart, University of Durham, Algorithms and Complexity • Martyn Thomas, Martyn Thomas Associates, Software Engineering, Reliable Systems • Federico Turkheimer, Hammersmith Hospital, Medical Applications • Michael Wooldrige, University of Liverpool, Agent Technologies and Software Engineering For more information, including how to book: www.bcs.org/visions.
Recommended publications
  • Female Fellows of the Royal Society
    Female Fellows of the Royal Society Professor Jan Anderson FRS [1996] Professor Ruth Lynden-Bell FRS [2006] Professor Judith Armitage FRS [2013] Dr Mary Lyon FRS [1973] Professor Frances Ashcroft FMedSci FRS [1999] Professor Georgina Mace CBE FRS [2002] Professor Gillian Bates FMedSci FRS [2007] Professor Trudy Mackay FRS [2006] Professor Jean Beggs CBE FRS [1998] Professor Enid MacRobbie FRS [1991] Dame Jocelyn Bell Burnell DBE FRS [2003] Dr Philippa Marrack FMedSci FRS [1997] Dame Valerie Beral DBE FMedSci FRS [2006] Professor Dusa McDuff FRS [1994] Dr Mariann Bienz FMedSci FRS [2003] Professor Angela McLean FRS [2009] Professor Elizabeth Blackburn AC FRS [1992] Professor Anne Mills FMedSci FRS [2013] Professor Andrea Brand FMedSci FRS [2010] Professor Brenda Milner CC FRS [1979] Professor Eleanor Burbidge FRS [1964] Dr Anne O'Garra FMedSci FRS [2008] Professor Eleanor Campbell FRS [2010] Dame Bridget Ogilvie AC DBE FMedSci FRS [2003] Professor Doreen Cantrell FMedSci FRS [2011] Baroness Onora O'Neill * CBE FBA FMedSci FRS [2007] Professor Lorna Casselton CBE FRS [1999] Dame Linda Partridge DBE FMedSci FRS [1996] Professor Deborah Charlesworth FRS [2005] Dr Barbara Pearse FRS [1988] Professor Jennifer Clack FRS [2009] Professor Fiona Powrie FRS [2011] Professor Nicola Clayton FRS [2010] Professor Susan Rees FRS [2002] Professor Suzanne Cory AC FRS [1992] Professor Daniela Rhodes FRS [2007] Dame Kay Davies DBE FMedSci FRS [2003] Professor Elizabeth Robertson FRS [2003] Professor Caroline Dean OBE FRS [2004] Dame Carol Robinson DBE FMedSci
    [Show full text]
  • Are We Losing Our Ability to Think Critically?
    news Society | DOI:10.1145/1538788.1538796 Samuel Greengard Are We Losing Our Ability to Think Critically? Computer technology has enhanced lives in countless ways, but some experts believe it might be affecting people’s ability to think deeply. OCIETY HAS LONG cherished technology alters the way we see, hear, the ability to think beyond and assimilate our world—the act of the ordinary. In a world thinking remains decidedly human. where knowledge is revered and innovation equals Rethinking Thinking Sprogress, those able to bring forth Arriving at a clear definition for criti- greater insight and understanding are cal thinking is a bit tricky. Wikipedia destined to make their mark and blaze describes it as “purposeful and reflec- a trail to greater enlightenment. tive judgment about what to believe or “Critical thinking as an attitude is what to do in response to observations, embedded in Western culture. There experience, verbal or written expres- is a belief that argument is the way to sions, or arguments.” Overlay technolo- finding truth,” observes Adrian West, gy and that’s where things get complex. research director at the Edward de For better or worse, exposure to technology “We can do the same critical-reasoning Bono Foundation U.K., and a former fundamentally changes how people think. operations without technology as we computer science lecturer at the Uni- can with it—just at different speeds and versity of Manchester. “Developing our formation can easily overwhelm our with different ease,” West says. abilities to think more clearly, richly, reasoning abilities.” What’s more, What’s more, while it’s tempting fully—individually and collectively— it’s ironic that ever-growing piles of to view computers, video games, and is absolutely crucial [to solving world data and information do not equate the Internet in a monolithic good or problems].” to greater knowledge and better de- bad way, the reality is that they may To be sure, history is filled with tales cision-making.
    [Show full text]
  • System Design in the Era of Iot — Meeting the Autonomy Challenge (Invited Paper)
    System Design in the Era of IoT — Meeting the Autonomy Challenge (Invited paper) Joseph Sifakis University Grenoble Alpes and CNRS / Verimag Grenoble, France [email protected] The advent of IoT is a great opportunity to reinvigorate Computing by focusing on autonomous system design. This certainly raises technology questions but, more importantly, it requires building new foundation that will systematically integrate the innovative results needed to face increasing environment and mission complexity. A key idea is to compensate the lack of human intervention by adaptive control. This is instru- mental for system resilience: it allows both coping with uncertainty and managing mixed criticality services. Our proposal for knowledge-based design seeks a compromise: preserving rigorousness despite the fact that essential properties cannot be guaranteed at design time. It makes knowledge generation and application a primary concern and aims to fully and seamlessly incorporate the adap- tive control paradigm in system architecture. 1 Introduction 1.1 The IoT vision The IoT vision promises increasingly interconnected smart systems providing autonomous services for the optimal management of resources and enhanced quality of life. These are used in smart grids, smart transport systems, smart health care services, automated banking services, smart factories, etc. Their coordination should be achieved using a unified network infrastructure, in particular to collect data and send them to the cloud which in return should provide intelligent services and ensure global monitoring and control. The IoT vision raises a lot of expectations and in our opinion, some over-optimism about its short- term outcome and impact. According to analysts, the IoT consists of two segments of uneven difficulty.
    [Show full text]
  • Prof. Joseph Sifakis 2018 Turing Awardee, Computer Science @ Sahyadri Mangaluru Prof
    I CO DR NC A L Y A H V E A S SAHYADRI CONCLAVE SCIENCE • TECHNOLOGY • MANAGEMENT 6 - 10th January Prof. Joseph Sifakis 2018 Turing Awardee, Computer Science @ Sahyadri Mangaluru Prof. Joseph Sifakis - Turing Awardee, Computer Science Prof. Joseph Sifakis is Emeritus Senior CNRS Researcher at Verimag. His current research interests cover fundamental and applied aspects of embedded systems design. The main focus of his work is on the formalization of system design as a process leading from given requirements to trustworthy, optimized and correct-by-construction implementations. He has been a full time professor at Ecole Polytechnique Fédérale de Lausanne (EPFL) for the period 2011-2016. He is the founder of the Verimag laboratory in Grenoble, which he directed for 13 years. Verimag is a leading research laboratory in the area of embedded systems, internationally known for the development of the Lustre synchronous language used by the SCADE tool for the design of safety-critical avionics and space applications. In 2007, Professor Joseph Sifakis has received the Turing Award for his contribution to the theory and application of model checking, the most widely used system verification technique today. He has participated in many major industrial projects led by companies such as Airbus, EADS, France Telecom, Astrium, and STMicroelectronics. He is a member of the French Academy of Sciences, a member of the French National Academy of Engineering, a member of Academia Europea, a member of the American Academy of Arts and Sciences, and a member of the National Academy of Engineering. He is a Grand Officer of the French National Order of Merit, a Commander of the French Legion of Honor.
    [Show full text]
  • Party Time for Mathematicians in Heidelberg
    Mathematical Communities Marjorie Senechal, Editor eidelberg, one of Germany’s ancient places of Party Time HHlearning, is making a new bid for fame with the Heidelberg Laureate Forum (HLF). Each year, two hundred young researchers from all over the world—one for Mathematicians hundred mathematicians and one hundred computer scientists—are selected by application to attend the one- week event, which is usually held in September. The young in Heidelberg scientists attend lectures by preeminent scholars, all of whom are laureates of the Abel Prize (awarded by the OSMO PEKONEN Norwegian Academy of Science and Letters), the Fields Medal (awarded by the International Mathematical Union), the Nevanlinna Prize (awarded by the International Math- ematical Union and the University of Helsinki, Finland), or the Computing Prize and the Turing Prize (both awarded This column is a forum for discussion of mathematical by the Association for Computing Machinery). communities throughout the world, and through all In 2018, for instance, the following eminences appeared as lecturers at the sixth HLF, which I attended as a science time. Our definition of ‘‘mathematical community’’ is journalist: Sir Michael Atiyah and Gregory Margulis (both Abel laureates and Fields medalists); the Abel laureate the broadest: ‘‘schools’’ of mathematics, circles of Srinivasa S. R. Varadhan; the Fields medalists Caucher Bir- kar, Gerd Faltings, Alessio Figalli, Shigefumi Mori, Bào correspondence, mathematical societies, student Chaˆu Ngoˆ, Wendelin Werner, and Efim Zelmanov; Robert organizations, extracurricular educational activities Endre Tarjan and Leslie G. Valiant (who are both Nevan- linna and Turing laureates); the Nevanlinna laureate (math camps, math museums, math clubs), and more.
    [Show full text]
  • The Implementation of Open Access Oral and Written Evidence Contents 1994 Group – Written Evidence
    SCIENCE AND TECHNOLOGY SELECT COMMITTEE The implementation of open access Oral and Written evidence Contents 1994 Group – Written evidence ............................................................................................................. 5 Academy of Social Sciences – Written evidence ................................................................................. 8 Association for Learning Technology (ALT) – Written evidence ................................................. 13 Association of Learned and Professional Society Publishers (ALPSP) – Written evidence .... 19 Jeffrey Beall, Scholarly Initiatives Librarian, University of Colorado Denver – Written evidence ...................................................................................................................................................... 24 Dr Rick Bradford – Written evidence ................................................................................................ 25 British Academy – Written evidence .................................................................................................. 27 British Heart Foundation (BHF) – Written evidence ...................................................................... 32 British Medical Journal Group (BMJ) – Written evidence .............................................................. 34 British Psychological Society (BPS) – Written evidence ................................................................. 38 British Sociological Association (BSA) – Written evidence...........................................................
    [Show full text]
  • ACM 2007 Turing Award Edmund Clarke, Allen Emerson, and Joseph Sifakis Model Checking: Algorithmic Verification and Debugging
    ACM 2007 Turing Award Edmund Clarke, Allen Emerson, and Joseph Sifakis Model Checking: Algorithmic Verification and Debugging ACM Turing Award Citation precisely describe what constitutes correct behavior. This In 1981, Edmund M. Clarke and E. Allen Emerson, work- makes it possible to contemplate mathematically establish- ing in the USA, and Joseph Sifakis working independently ing that the program behavior conforms to the correctness in France, authored seminal papers that founded what has specification. In most early work, this entailed constructing become the highly successful field of Model Checking. This a formal proof of correctness. In contradistinction, Model verification technology provides an algorithmic means of de- Checking avoids proofs. termining whether an abstract model|representing, for ex- ample, a hardware or software design|satisfies a formal Hoare-style verification was the prevailing mode of formal specification expressed as a temporal logic formula. More- verification going back from the late-1960s until the 1980s. over, if the property does not hold, the method identifies This classic and elegant approach entailed manual proof con- a counterexample execution that shows the source of the struction, using axioms and inference rules in a formal de- problem. ductive system, oriented toward sequential programs. Such proof construction was tedious, difficult, and required hu- The progression of Model Checking to the point where it man ingenuity. This field was a great academic success, can be successfully used for complex systems has required spawning work on compositional or modular proof systems, the development of sophisticated means of coping with what soundness of program proof systems, and their completeness; is known as the state explosion problem.
    [Show full text]
  • A Design Studio for Modeling and Generating Systems with BIP
    DesignBIP: A Design Studio for Modeling and Generating Systems with BIP Anastasia Mavridou Joseph Sifakis Institute for Software Integrated Systems Verimag-Batimentˆ IMAG Vanderbilt University Universite` Grenoble Alpes Nashville, TN, USA 38401 St Martin d‘Heres,` France [email protected] [email protected] Janos Sztipanovits Institute for Software Integrated Systems Vanderbilt University Nashville, TN, USA [email protected] The Behavior-Interaction-Priority (BIP) framework — rooted in rigorous semantics — allows the construction of systems that are correct-by-design. BIP has been effectively used for the construction and analysis of large systems such as robot controllers and satellite on-board software. Nevertheless, the specification of BIP models is done in a purely textual manner without any code editor support. To facilitate the specification of BIP models, we present DesignBIP, a web-based, collaborative, version-controlled design studio. To promote model scaling and reusability of BIP models, we use a graphical language for modeling parameterized BIP models with rigorous semantics. We present the various services provided by the design studio, including model editors, code editors, consistency checking mechanisms, code generators, and integration with the JavaBIP tool-set. 1 Introduction Modeling languages are often used for designing complex systems. Using dedicated design studios allows increasing the understandability and usability of modeling languages, as well as decreasing de- velopment costs by eliminating errors at design time. Design studio components can be organized in the following three categories: 1) semantic integration, 2) service integration, and 3) tool integration. Semantic integration components comprise the domain of the modeling language, i.e., its metamodel that explicitly specifies the building blocks of the language and their relations.
    [Show full text]
  • A Survey on Scientific Data Management
    A Survey on Scientific Data Management References [1] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludascher,¨ and Steve Mock. Kepler: An extensible system for design and execution of scientific workflows. In Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04), pages 21– 23, 2004. [2] Alexander Ames, Nikhil Bobb, Scott A. Brandt, Adam Hiatt, Carlos Maltzahn, Ethan L. Miller, Alisa Neeman, and Deepa Tuteja. Richer file system metadata using links and attributes. In Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST’05), pages 49–60, 2005. [3] Bill Anderson. Mass storage system performance prediction using a trace-driven simulator. In MSST ’05: Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Technologies, pages 297–306, Washington, DC, USA, 2005. IEEE Computer Society. [4] Phil Andrews, Bryan Banister, Patricia Kovatch, Chris Jordan, and Roger Haskin. Scaling a global file system to the greatest possible extent, performance, capacity, and number of users. In MSST ’05: Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and Tech- nologies, pages 109–117, Washington, DC, USA, 2005. IEEE Computer Society. [5] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT Press, 2004. [6] Scott Brandt, Carlos Maltzahn, Neoklis Polyzotis, and Wang-Chiew Tan. Fusing data management services with file systems. In PDSW ’09: Proceedings of the 4th Annual Workshop on Petascale Data Storage, pages 42–46, New York, NY, USA, 2009. ACM. [7] Peter Buneman, Adriane Chapman, and James Cheney.
    [Show full text]
  • Arxiv:2106.11534V1 [Cs.DL] 22 Jun 2021 2 Nanjing University of Science and Technology, Nanjing, China 3 University of Southampton, Southampton, U.K
    Noname manuscript No. (will be inserted by the editor) Turing Award elites revisited: patterns of productivity, collaboration, authorship and impact Yinyu Jin1 · Sha Yuan1∗ · Zhou Shao2, 4 · Wendy Hall3 · Jie Tang4 Received: date / Accepted: date Abstract The Turing Award is recognized as the most influential and presti- gious award in the field of computer science(CS). With the rise of the science of science (SciSci), a large amount of bibliographic data has been analyzed in an attempt to understand the hidden mechanism of scientific evolution. These include the analysis of the Nobel Prize, including physics, chemistry, medicine, etc. In this article, we extract and analyze the data of 72 Turing Award lau- reates from the complete bibliographic data, fill the gap in the lack of Turing Award analysis, and discover the development characteristics of computer sci- ence as an independent discipline. First, we show most Turing Award laureates have long-term and high-quality educational backgrounds, and more than 61% of them have a degree in mathematics, which indicates that mathematics has played a significant role in the development of computer science. Secondly, the data shows that not all scholars have high productivity and high h-index; that is, the number of publications and h-index is not the leading indicator for evaluating the Turing Award. Third, the average age of awardees has increased from 40 to around 70 in recent years. This may be because new breakthroughs take longer, and some new technologies need time to prove their influence. Besides, we have also found that in the past ten years, international collabo- ration has experienced explosive growth, showing a new paradigm in the form of collaboration.
    [Show full text]
  • Towards a Multi-Discipline Network Perspective
    Manifesto from Dagstuhl Perspectives Workshop 12182 Towards A Multi-Discipline Network Perspective Edited by Matthias Häsel1, Thorsten Quandt2, and Gottfried Vossen3 1 Otto Group – Hamburg, DE, [email protected] 2 Universität Hohenheim, DE, [email protected] 3 Universität Münster, DE, [email protected] Abstract This is the manifesto of Dagstuhl Perspectives Workshop 12182 on a multi-discipline perspective on networks. The information society is shaped by an increasing presence of networks in various manifestations, most notably computer networks, supply-chain networks, and social networks, but also business networks, administrative networks, or political networks. Online networks nowadays connect people all around the world at day and night, and allow to communicate and to work collaboratively and efficiently. What has been a commodity in the private as well as in the enterprise sectors independently for quite some time now is currently growing together at an increasing pace. As a consequence, the time has come for the relevant sciences, including computer science, information systems, social sciences, economics, communication sciences, and others, to give up their traditional “silo-style” thinking and enter into borderless dialogue and interaction. The purpose of this Manifesto is to review where we stand today, and to outline directions in which we urgently need to move, in terms of both research and teaching, but also in terms of funding. Perspectives Workshop 02.–04. May, 2012 – www.dagstuhl.de/12182 1998 ACM Subject Classification A.0 General, A.2 Reference, H. Information Systems, J.4 So- cial and Behavioral Sciences, K.4 Computers and Society Keywords and phrases Networks, network infrastructure, network types, network effects, data in networks, social networks, social media, crowdsourcing Digital Object Identifier 10.4230/DagMan.2.1.1 Executive Summary The information society is shaped by an increasing presence of networks in various mani- festations.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk Bibliography E. J. Aarseth. Cybertext: Perspectives on Ergodic Literature. Johns Hopkins University Press, Baltimore, 1997. Annette Adler, Anuj Gujar, Beverly L. Harrison, Kenton O’Hara, and Abigail Sellen. A diary study of work-related reading: Design implications for digital reading de- vices. In Proceedings of CHI ’98 Human Factors in Computing Systems, Los Angeles, California, USA, pages 241–248, 1998. M.J. Adler and C. van Doren. How to Read a Book. Simon and Schuster, New York, NY, 1972. Janet Adshead-Lansdale, editor. Dancing texts: intertextuality in interpretation. Dance Books, London, 1999. Maristella Agosti and James Allan. Methods and tools for the construction of hypertext. Information Processing and Management, 33(2):129–271, 1997. R. Akscyn, D. McCracken, and E. Yoder. KMS: A distributed hypermedia system for managing knowledge in organizations.
    [Show full text]