Arumugam Preyan 2011.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Arumugam Preyan 2011.Pdf A CRITICAL ASSESSMENT OF THE DENDROCHIROTID SUBFAMILIES, SCLERODACTYLINAE AND THYONINAE, WITH THE TAXONOMIC MANAGEMENT OF THE “SUPERGENUS” THYONE (ECHINODERMATA: HOLOTHUROIDEA) by PREYAN ARUMUGAM Submitted in fulfilment of the academic requirements for the degreeof Master of Science in the School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal 2011 Supervised by Prof. Ahmed S. Thandar ABSTRACT The key character separating the dendrochirotid families Sclerodactylidae (sensu Pawson & Fell, 1965) and the Phyllophoridae (sensu Pawson & Fell, 1965), i.e. entire or undivided radial processes to the calcareous ring in the former and sub-divided processes in the latter, is unjustified since most sclerodactylid species also have sub- divided processes. It is here assumed that the basis of elevating the subfamily Sclerodactylinae Panning to family level was established on a misinterpretation or mistranslation of the original diagnosis of this subfamily or a lapsus calumni meaning “plates” instead of “processes”. Panning (1949) categorically states that the processes in the Sclerodactylinae are composed of 3–4 large pieces of calcite and only as an exception they are unbroken. Since Pawson & Fell gave no other distinction between the Sclerodactylidae and the Phyllophoridae, the former is here considered an invalid taxon and its three current subfamilies (Sclerodactylinae, Sclerothyoninae Thandar and Cladolabinae Heding & Panning) are re-assigned to the Phyllophoridae. This family now includes six subfamilies: Cladolabinae, Phyllophorinae Östergren, Sclerodactylinae, Sclerothyoninae, Semperiellinae Heding & Panning and Thyoninae Panning. The diagnosis of the Sclerodactylinae, restricted by Thandar (1989), is now modified to include also those forms whose radial and interradial plates may be slightly sub-divided but still form a short tube. Of the eleven genera placed within this subfamily subsequent to its erection, only ten of these remain. Neothyone Deichmann is a preoccupied name for which Lisacucumis is here proposed as a replacement. Thandar’s (1989) diagnosis of the Thyoninae is here accepted, however, the genus Thorsonia Heding is transferred to the Sclerodactylinae. Of the 66 nominal species which currently stand in the “supergenus” Thyone Jaeger, 10 are transferred to Havelockia Pearson within the Sclerodactylinae, while one species is regarded as a synonym of H. herdmani Pearson. In addition, six species are transferred to Stolus Selenka within the Thyoninae. Finally, three species are transferred to Sclerothyoninae, two within Sclerothyone Thandar and one within Temparena Thandar. Two species show an uncertain affinity to Thyone and are temporally removed from the genus. Furthermore, two species currently classified within Havelockia are transferred to Thyone. The now remaining 46 species are separated into seven groups based on the ii composition of their introvert deposits: tables only (8 spp.), rosettes only (5 spp.), tables and rosettes (21 spp.), tables and plates/?reduced tables (2 spp.), rosettes and plates/?reduced tables (3 spp.), plates only (2 spp.), or introvert deposits absent or unknown (5 spp.). Regrettably, no other character could be used in conjunction with the above to suggest at least sub-generic levels. Within the genus Havelockia, Cucumaria redimita Sluiter indicates an affinity with Pentamera Ayres. It is here transferred to this genus within the Thyoninae. Havelockia, now containing 17 species, is also revised. Keys, diagnoses and figures are provided for all nominal species now included in Thyone and Havelockia. Key words: Lisacucumis; Havelockia; new genus; Phyllophoridae; sea cucumbers iii PREFACE The experimental work described in this dissertation was carried out in the School of Biological & Conservation Sciences, University of KwaZulu-Natal, Durban, from January 2010 to December 2011, under the supervision of Professor Ahmed. S. Thandar. These studies represent original work by the author and have not otherwise been submitted in any form for any degree or diploma to any tertiary institution. Where use has been made of the work of others it is duly acknowledged in the text. The format and list of references of this dissertation are in accordance with the instructions to authors of the on-line journal Zootaxa, in which, it is anticipated, this investigation will be published. iv DECLARATION - PLAGIARISM I, Preyan Arumugam, declare that 1. The research reported in this dissertation, except where otherwise indicated, is my original research. 2. This dissertation has not been submitted for any degree or examination at any other university. 3. This dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This dissertation does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the References sections. Signed: ………………………………………………………… v To my fiancé, parents, and sister, Thank you for being my pillar of strength and my inspiration. I love you. “I can do all things through Christ which strengtheneth me” Philippians 4:13 vi LIST OF CONTENTS Abstract........................................................................................................................... ii Preface............................................................................................................................ iv List of Contents............................................................................................................. vii Acknowledgments......................................................................................................... xii List of Acronyms......................................................................................................... xiii List of Figures.............................................................................................................. xiv Introduction.................................................................................................................... 1 Materials and Methods.................................................................................................. 6 Systematic Account......................................................................................................... 7 PART I Order Dendrochirotida Grube, 1840................................................................................. 7 Key to the subfamilies of the Family Phyllophoridae Östergren, 1907.................... 8 Subfamily Sclerodactylinae Panning, 1949..................................................... 10 Key to the genera of the Subfamily Sclerodactylinae Panning, 1949..... 10 Genus Apentamera Deichmann, 1941............................................. 12 Genus Athyone Deichmann, 1941................................................... 13 Genus Deichmannia Cherbonnier, 1952......................................... 15 Genus Engeliella Cherbonnier, 1968............................................... 15 Genus Eupentacta Deichmann, 1938.............................................. 16 Genus Havelockia Pearson, 1903.................................................... 17 Genus Lisacucumis nom. nov. ........................................................ 21 Genus Pachythyone Deichmann, 1941............................................ 22 Genus Pseudothyone Panning, 1949............................................... 23 vii Genus Sclerodactyla Ayres, 1857................................................... 23 Genus Thorsonia Heding, 1940....................................................... 24 Subfamily Thyoninae Panning, 1949.............................................................. 25 Key to the genera of the Subfamily Thyoninae Panning, 1949............... 26 Genus Allothyone Panning, 1949..................................................... 26 Genus Pentamera Ayres, 1852........................................................ 27 Genus Stolus Selenka, 1867............................................................. 29 Genus Thyone Jaeger, 1833............................................................. 31 Genus Thyonina Thandar, 1990....................................................... 33 Subfamily Sclerothyoninae Thandar, 1989..................................................... 36 Key to the genera of the Subfamily Sclerothyoninae Thandar, 1989...... 36 Genus Neopentamera Deichmann, 1941......................................... 36 Genus Sclerothyone Thandar, 1989................................................. 37 Genus Temparena Thandar, 1989................................................... 40 PART II Subfamily Thyoninae Panning Genus Thyone Jaeger, 1833..................................................................... 43 Key to the genus Thyone Jaeger, 1833............................................ 45 T. anomala Östergren, 1898.................................................. 143 T. aurea (Quoy & Gaimard, 1834) ......................................
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Adhesion in Echinoderms
    Adhesion in echinoderms PATRICK FLAMMANG* Laboratoire de Biologie marine, Universite' de Mons-Hainaut, Mons, Belgium Final manuscript acceptance: August 1995 KEYWORDS: Adhesive properties, podia, larvae, Cuvierian tubules, Echinodermata. CONTENTS 1 Introduction 2 The podia 2.1 Diversity 2.2 Basic structure and function 2.3 Adhesivity 3 Other attachment mechanisms of echinoderms 3.1 Larval and postlarval adhesive structures 3.2 Cuvierian tubules 4 Comparison with other marine invertebrates 5 Conclusions and prospects Acknowledgements References 1 INTRODUCTION Marine organisms have developed a wide range of mechanisms allowing them to attach to or manipulate a substratum (Nachtigall 1974). Among 1 these mechanisms, one can distinguish between mechanical attachments (e.g. hooks or suckers) and chemical attachments (with adhesive sub- stances). The phylum Echinodermata is quite exceptional in that all its species, *Senior research assistant, National Fund for Scientific Research, Belgium. I whatever their life style, use attachment mechanisms. These mechanisms allow some of them to move, others to feed, and others to burrow in par- ticulate substrata. In echinoderms, adhesivity is usually the function of specialized structures, the podia or tube-feet. These podia are the exter- nal appendages of the arnbulacral system and are also probably the most advanced hydraulic structures in the animal kingdom. 2 THE PODIA From their presumed origin as simple respiratory evaginations of the am- bulacral system (Nichols 1962), podia have diversified into the wide range of specialized structures found in extant echinoderms. This mor- phological diversity of form reflects the variety of functions that podia perform (Lawrence 1987). Indeed, they take part in locomotion, burrow- ing, feeding, sensory perception and respiration.
    [Show full text]
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • Investigating the Biological and Socio-Economic Impacts of Marine
    Investigating the biological and socio-economic impacts of marine protected area network design in Europe Submitted by Kristian Metcalfe January 2013 to the Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent as a thesis for the degree of Doctor of Philosophy in Biodiversity Management SUPERVISORS Dr Robert J Smith - Durrell Institute of Conservation and Ecology (DICE) Dr Sandrine Vaz - Institut Français de Recherche pour l‟exploitation de la Mer (IFREMER) Professor Stuart R Harrop - Durrell Institute of Conservation and Ecology (DICE) ii ABSTRACT Marine ecosystems are under increasing pressure from a diverse range of threats. Many national governments have responded to these threats by establishing marine protected area (MPA) networks. One such approach for designing MPA networks is systematic conservation planning, which is now considered the most effective system for designing protected area networks. However, the main exception to this trend is Europe, where the designation of MPAs is still largely based on expert opinion, despite growing awareness that these existing methods are not the most effective. Therefore, there is a need to demonstrate how systematic conservation planning can be used to inform MPA design in European waters and show how this approach can fit within existing marine conservation policy and practice. This thesis brings together a range of biological, legal and socio-economic data to address these issues and is comprised of four main chapters: After the introductory chapter, this thesis begins with a review of how existing approaches for guiding the selection of MPAs in Europe compare to conservation planning best practice (Chapter 2).
    [Show full text]
  • SPC Beche-De-Mer Information Bulletin #39 – March 2019
    ISSN 1025-4943 Issue 39 – March 2019 BECHE-DE-MER information bulletin v Inside this issue Editorial Towards producing a standard grade identification guide for bêche-de-mer in This issue of the Beche-de-mer Information Bulletin is well supplied with Solomon Islands 15 articles that address various aspects of the biology, fisheries and S. Lee et al. p. 3 aquaculture of sea cucumbers from three major oceans. An assessment of commercial sea cu- cumber populations in French Polynesia Lee and colleagues propose a procedure for writing guidelines for just after the 2012 moratorium the standard identification of beche-de-mer in Solomon Islands. S. Andréfouët et al. p. 8 Andréfouët and colleagues assess commercial sea cucumber Size at sexual maturity of the flower populations in French Polynesia and discuss several recommendations teatfish Holothuria (Microthele) sp. in the specific to the different archipelagos and islands, in the view of new Seychelles management decisions. Cahuzac and others studied the reproductive S. Cahuzac et al. p. 19 biology of Holothuria species on the Mahé and Amirantes plateaux Contribution to the knowledge of holo- in the Seychelles during the 2018 northwest monsoon season. thurian biodiversity at Reunion Island: Two previously unrecorded dendrochi- Bourjon and Quod provide a new contribution to the knowledge of rotid sea cucumbers species (Echinoder- holothurian biodiversity on La Réunion, with observations on two mata: Holothuroidea). species that are previously undescribed. Eeckhaut and colleagues P. Bourjon and J.-P. Quod p. 27 show that skin ulcerations of sea cucumbers in Madagascar are one Skin ulcerations in Holothuria scabra can symptom of different diseases induced by various abiotic or biotic be induced by various types of food agents.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Review, the (Medical) Benefits and Disadvantage of Sea Cucumber
    IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 12, Issue 5 Ver. III (Sep. – Oct. 2017), PP 30-36 www.iosrjournals.org Review, The (medical) benefits and disadvantage of sea cucumber Leonie Sophia van den Hoek, 1) Emad K. Bayoumi 2). 1 Department of Marine Biology Science, Liberty International University, Wilmington, USA. Professional Member Marine Biological Association, UK. 2 Department of General Surgery, Medical Academy Named after S. I. Georgiesky of Crimea Federal University, Crimea, Russia Corresponding Author: Leonie Sophia van den Hoek Abstract: A remarkable feature of Holothurians is the catch collagen that forms their body wall. Catch collagen has two states, soft and stiff, that are under neurological control [1]. A study [3] provides evidence that the process of new organ formation in holothurians can be described as an intermediate process showing characteristics of both epimorphic and morphallactic phenomena. Tropical sea cucumbers, have a previously unappreciated role in the support of ecosystem resilience in the face of global change, it is an important consideration with respect to the bêche-de-mer trade to ensure sea cucumber populations are sustained in a future ocean [9]. Medical benefits of the sea cucumber are; Losing weight [19], decreasing cholesterol [10], improved calcium solubility under simulated gastrointestinal digestion and also promoted calcium absorption in Caco-2 and HT-29 cells [20], reducing arthritis pain [21], HIV therapy [21], treatment osteoarthritis [21], antifungal steroid glycoside [22], collagen protein [14], alternative to mammalian collagen [14], alternative for blood thinners [29], enhancing immunity and disease resistance [30].
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1989 Elsevier B.V. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Cameron, J. L., & Fankboner, P. V. (1989). Reproductive biology of the commercial sea cucumber Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea). II. Observations on the ecology of development, recruitment and the juvenile life stage. Journal of Experimental Marine Biology and Ecology, 127(1), 43-67.doi:10.1016/0022-0981(89)90208-6 I i'V ) J. Exp. Mar. BioI. £Col., 1989, Vol. 127, pp. 43-67 43 Elsevier JEM 01229 Reproductive biology of the commercial sea cucumber Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea). II. Observations on the ecology of development, recruitment, and the juvenile life stage J. Lane Cameron and Peter V. Fankboner Department ofBiological Sciences. Simon Fraser University. Burnaby, British Columbia, Canada (Received 17 November 1987; revision received 9 January 1989; accepted 23 January 1989) Abstract: Evidence from in vitro culture of embryos and larvae of Parastichopus califomicus (Stimpson) suggests that asynchronization of development through metamorphosis and settlement results in a variable pelagic period for larvae within a particular cohort. Additionally, considerable variation in size of 0 + yr recruits observed in situ may indicate that settlement had occurred continuously for some months within the population studied. Recruitment of at least seven species of echinoderms (including P. californicus} was observed at distinct sites that were notably free of the predatory sea stars Solaster dawsoni (Verrill), S.
    [Show full text]
  • Reproduction, Development, Processes of Feeding and Notes on the Early Life History of the Commercial Sea Cucumber Parastichopus Californicus (Stimpson)
    REPRODUCTION, DEVELOPMENT, PROCESSES OF FEEDING AND NOTES ON THE EARLY LIFE HISTORY OF THE COMMERCIAL SEA CUCUMBER PARASTICHOPUS CALIFORNICUS (STIMPSON) J. Lane Cameron B.Sc., Brigham Young University, 1978 M.Sc., Brigham Young University, 1980 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Biological Sciences @ J. Lane Cameron 1985 SIMON FRASER UNIVERSITY July 1985 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: J. Lane Cameron Degree: Doctor of Philosophy Title of Thesis: Reproduction, Development, Early Life History and Processes of Feeding in a Commercial Sea Cucumber Paras~ichopus alifornicus (Stimpson) Examining Committee: Chairman: Dr. L.M. Srivastava .. .- - - .----.---- -- . / Dr. P.V. Fankboner, Senior Supervisor , " Dr. M.J.V Smith, Public Examiner Dr. E.B. Hartwick - .. -- - f7 Dr. R.D. Burke, University of Victoria, External Examiner Dr. N.A. Sloan, Biological Station, Nanimo - - \ lit Examiner Date Approved: PARTIAL COPYRIGHT LICENSE I hereby grant to Simon Fraser University the right to lend my thesis, proJect or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Glossary for the Echinodermata
    February 2011 Christina Ball ©RBCM Phil Lambert GLOSSARY FOR THE ECHINODERMATA OVERVIEW The echinoderms are a globally distributed and morphologically diverse group of invertebrates whose history dates back 500 million years (Lambert 1997; Lambert 2000; Lambert and Austin 2007; Pearse et al. 2007). The group includes the sea stars (Asteroidea), sea cucumbers (Holothuroidea), sea lilies and feather stars (Crinoidea), the sea urchins, heart urchins and sand dollars (Echinoidea) and the brittle stars (Ophiuroidea). In some areas the group comprises up to 95% of the megafaunal biomass (Miller and Pawson 1990). Today some 13,000 species occur around the world (Pearse et al. 2007). Of those 13,000 species 194 are known to occur in British Columbia (Lambert and Boutillier, in press). The echinoderms are a group of almost exclusively marine organisms with the few exceptions living in brackish water (Brusca and Brusca 1990). Almost all of the echinoderms are benthic, meaning that they live on or in the substrate. There are a few exceptions to this rule. For example several holothuroids (sea cucumbers) are capable of swimming, sometimes hundreds of meters above the sea floor (Miller and Pawson 1990). One species of holothuroid, Rynkatorpa pawsoni, lives as a commensal with a deep-sea angler fish (Gigantactis macronema) (Martin 1969). While the echinoderms are a diverse group, they do share four unique features that define the group. These are pentaradial symmetry, an endoskeleton made up of ossicles, a water vascular system and mutable collagenous tissue. While larval echinoderms are bilaterally symmetrical the adults are pentaradially symmetrical (Brusca and Brusca 1990). All echinoderms have an endoskeleton made of calcareous ossicles (figure 1).
    [Show full text]