Fda's Rocket Docket

Total Page:16

File Type:pdf, Size:1020Kb

Fda's Rocket Docket WEEK OF APRIL 20, 2015 8 STRATEGY: METAMORPHOSES OF OVID Newco Ovid is working with patients and families to develop failed drugs for rare and Orphan brain diseases, starting with Angelman syndrome FDA’S ROCKET DOCKET 11 EMERGING COMPANY PROFILE: EAST BY SOUTH BY STEVE USDIN, WASHINGTON EDITOR China’s Nuance hopes to draw in-licensing partners by using South Africa to add patient diversity FDA is approving more cancer drugs, more rapidly than and speed to global development programs. ever, and the trend is likely to continue, according to Richard Pazdur, director of the Office of Hematology and Oncology Drug Products at FDA’s Center for Drug Evaluation and Research. 12 REGULATION: GETTING PERSONAL IN BREAST CANCER In an interview with BioCentury TV, Pazdur said Breast cancer patients tell FDA they want unprecedented efficacy in early stage trials is prompting a more personalized approach to collecting the agency to review cancer drug applications as and applying risk-benefit data. quickly as possible, to approve cancer drugs based on single-arm and early stage trials, and to streamline review procedures for supplemental indications. Pazdur’s comments, and the reality on the ground, 15 REGULATION: JAPAN EMBARKS ON SAKIGAKE represent a complete reversal of the messages he and Japan is rolling out its sakigake early access pathway, which FDA were sending drug sponsors five and 10 years could cut approval times for innovative therapies in half. ago. Pazdur attributes the turnaround to advances in the scientific understanding of cancer that have made the development of drugs targeting molecular and immunological pathways possible. In addition to scientific advances, Pazdur highlighted 17 EBB & FLOW: LIKING JAPAN’S RETAIL EXODUS the role of patients in helping to shape cancer drug development. Beyond the bull run in Japan. Plus: Why Biocartis picked Euronext; X is for Atlas; and He also pointed to areas where he feels FDA should Sofinnova Ventures’ diagnostic play. improve its policies, such as creating regulations to compel sponsors to start Phase I trials in pediatric indications of targeted cancer therapies when companies start a Phase II trial in an adult indication. Pazdur also noted that broad dissemination of early data “touted as major breakthroughs” is fueling demand for access to experimental drugs. As a result, he said FDA and drug sponsors should make it easier for patients to understand whether and how they can get access to unapproved cancer drugs outside of clinical trials. Biosimilars are another area where FDA needs to focus attention, Pazdur said. EMERGING STRATEGY REGULATION FINANCE COMPANIES “WHAT IT REPRESENTS IS THE FRUITION OF A LOT OF INVESTIGATION AND BASIC SCIENCE THAT HAS OCCURRED OVER THE PAST 20 YEARS.” RICHARD PAZDUR, FDA GETTING BETTER ALL THE TIME seeing is -- with targeted drugs and the new molecules that are targeting Pazdur told BioCentury there is a simple explanation for his shift from the immunological pathways -- response rates of sometimes 50%.” skepticism to enthusiasm about new cancer drugs: “Drugs got better.” MEDIAN NOT THE MESSAGE Unambiguous efficacy signals make it easier, and quicker, for FDA to A strong efficacy signal led FDA to push for a very rapid review of BMS’s approve new cancer drugs, he said. FDA is consistently beating PDUFA Opdivo nivolumab to treat patients with metastatic squamous non-small goals by 50 days or more (see “Beating the Clock,” page 6). cell lung cancer (NSCLC) who have progressed on or after platinum- “We’re not seeing drugs and arguing with sponsors about whether the based chemotherapy, Pazdur told BioCentury TV in a program on the drug should be approved or not,” Pazdur said. “What we’re asking our future of lung cancer therapies. reviewers and the sponsor is how rapidly we can approve these drugs. “I remember very well sitting down at my desk at home and opening up We’re not dealing with drugs that have a response rate of 7%. We’re my computer and putting in the password, because the survival curves dealing with drugs that have response rates of 50, 60, 70%, so it’s a much were protected in an encrypted email, and seeing those survival curves, easier regulatory decision whether the drug should be approved or not and I was very impressed by them,” Pazdur said. approved.” The data showed a 3.2-month survival advantage for patients who Improvements in efficacy, which Pazdur noted are often accompanied by received Opdivo compared with those who received docetaxel. improved safety, are likely to continue because they are based on broad scientific advances, he said. Pazdur immediately began calling reviewers and the division director, Patricia Keegan, to talk about how to approach the review, because he “I really see this as a major foundation change, and it really has to do with thought it was important to get the drug to patients. “It really represented a better understanding of both the drug and the disease,” Pazdur said. a paradigm shift in how we treat squamous cell lung cancer, especially in a “Really what it represents is the fruition of a lot of investigation and basic second-line setting,” he said. science that has occurred over the past 20 years.” But Gideon Blumenthal added, “When we’re looking at these Efficacy and safety readouts from early studies are leading FDA to approve immunotherapy agents, the median is not the message.” Blumenthal is a cancer drugs based on Phase II, and even in some cases Phase I trials, clinical team leader in the Office of Hematology and Oncology Products, Pazdur said. told BioCentury TV “When drugs have very profound activity in a particular disease, what “We learned this also in melanoma with ipilimumab and other PD-1 we’re doing is basically expanding Phase I studies into cohorts of patients inhibitors,” Blumenthal said. “There are certain patients, and we don’t that could be entered into a registration schema,” Pazdur noted. know exactly who those patients are as of yet, who derive a great deal of Merck & Co. Inc.’s Keytruda pembrolizumab is an example. FDA benefit, and even may have five-year survival. If you look at the melanoma approved the drug in September 2014 based on a 24% response rate literature, maybe 20% of patients can live five years out.” among 173 patients with advanced melanoma in a Phase Ib trial that was FDA approved Opdivo on March 4, more than three months ahead of the ongoing. The agency approved the drug for patients previously treated PDUFA goal (see “Opdivo Urgency,” page 3). with Bristol-Myers Squibb Co.’s Yervoy ipilimumab. Pazdur decided Opdivo needed to be approved quickly both because “The traditional response rate for a Phase I study in oncology, for patients who had run out of options were waiting, and because the conventional cytotoxic drugs in the ’80s, ’90s, and the early part of this approval could affect ongoing lung cancer trials, such as the Lung-MAP century was basically about 5%, or less than 5%,” Pazdur said. “What we’re trial, a master protocol trial designed to evaluate several compounds simultaneously to treat squamous cell lung cancer. 2 WEEK OF APRIL 20, 2015 BIOCENTURY TOC EMERGING STRATEGY REGULATION FINANCE COMPANIES OPDIVO URGENCY MOVING UP IN BLOOD CANCERS FDA pulled out all the stops to approve Bristol-Myers Squibb Co.’s Opdivo nivolumab to treat patients with metastatic squamous non- small cell lung cancer who have progressed on or after platinum- Hematologic cancer drug development has been so successful that based chemotherapy. The agency began reviewing trial data before FDA views it as a paradigm for the development of therapies for it was available to the company, and completed the review in March, other kinds of cancer, Richard Pazdur, director of FDA’s Office of more than three months ahead of the PDUFA goal. Hematology and Oncology Products, told BioCentury TV. Opdivo is the first PD-1 modulator to be approved for NSCLC. He cited early successes in developing drugs for Hodgkin’s disease, Three other PD-1 or PD-L1 modulators are in Phase III NSCLC trials: acute lymphoblastic leukemia (ALL) and childhood leukemia, as well MEDI4736 from AstraZeneca plc, Keytruda pembrolizumab from as large cell and B cell lymphomas. Merck & Co. Inc. and RG7446 from Genentech Inc. For some hematologic cancers, numerous drugs with different Full approval of Opdivo based on a survival advantage over docetaxel mechanisms of action have been approved, so there is a pressing does not raise the bar for approval of other PD-1 modulators for need to study how they should be combined and sequenced, NSCLC, FDA’s Gideon Blumenthal told BioCentury TV. Blumenthal Pazdur said. Chronic lymphocytic leukemia (CLL) — for which nine is a clinical team leader in the Office of Hematology and Oncology treatments are approved — is an example. Products at the Center for Drug Evaluation and Research. Nicole Gormley, a medical officer in the Division of Hematology “It doesn’t change our sense of urgency,” Blumenthal said. He noted Products, noted two anti-CD20 mAbs have been approved for the other modulators may have different toxicity profiles, and he added indication: Arzerra ofatumumab from Genmab A/S and Novartis that they are being tested using different clinical design strategies. AG, and Gazyva obinutuzumab from Biogen Inc. and Genentech Inc. Genentech and Biogen also market Rituxan rituximab, an anti- “They’re looking at various stages, different histologies, CD20 mAb that is used in combination with several of the newer CLL adenocarcinoma versus squamous. Some are looking at earlier therapies. stages, even adjuvant curative setting. So there’s still a strong all- hands-on-deck mentality for some of these other agents,” he said.
Recommended publications
  • 2017 ANNUAL REPORT | Translating SCIENCE • Transforming LIVES OUR COMMITMENT Make Every Day Count at PTC, Patients Are at the Center of Everything We Do
    20 YEARS OF COMMITMENT 2017 ANNUAL REPORT | Translating SCIENCE • Transforming LIVES OUR COMMITMENT Make every day count At PTC, patients are at the center of everything we do. We have the opportunity to support patients and families living with rare disorders through their journey. We know that every day matters and we are committed to making a difference. OUR SCIENCE Our scientists are finding new ways to regulate biology to control disease We have several scientific research platforms focused on modulating protein expression within the cell that we believe have the potential to address many rare genetic disorders. OUR PEOPLE Care for each other, our community, and for the needs of our patients At PTC, we are looking at drug discovery and development in a whole new light, bringing new technologies and approaches to developing medicines for patients living with rare disorders and cancer. We strive every day to be better than we were the day before. At PTC Therapeutics, it is our mission to provide access to best-in-class treatments for patients who have an unmet need. We are a science-led, global biopharmaceutical company focused on the discovery, development and commercialization of clinically-differentiated medicines that provide benefits to patients with rare disorders. Founded 20 years ago, PTC Therapeutics has successfully launched two rare disorder products and has a global commercial footprint. This success is the foundation that drives investment in a robust pipeline of transformative medicines and our mission to provide access to best-in-class treatments for patients who have an unmet medical need. As we celebrate our 20th year of bringing innovative therapies to patients affected by rare disorders, we reflect on our unwavering commitment to our patients, our science and our employees.
    [Show full text]
  • Duchenne Muscular Dystrophy (DMD) Agents
    Therapeutic Class Overview Duchenne muscular dystrophy (DMD) Agents INTRODUCTION • Duchenne muscular dystrophy (DMD) is 1 of 4 conditions known as dystrophinopathies, which are inherited, X-linked myopathic disorders due to a defect in the dystrophin gene that results in the primary pathologic process of muscle fiber degradation. The hallmark symptom is progressive weakness (Darras 2018[a], Darras 2018[b], Muscular Dystrophy Association [MDA] 2019). The other 3 conditions include: Becker muscular dystrophy (BMD), which is a mild form of DMD; an intermediate presentation between BMD and DMD; and DMD-associated dilated cardiomyopathy, which has little or no clinical ○ skeletal or muscle disease (MDA 2019). • DMD symptom onset is in early childhood, usually between the ages of 2 and 3 years old. The proximal muscles are affected first, followed by the distal limb muscles. Generally, the lower external muscles will be affected before the upper. The affected child may have difficulties jumping, walking, and running (MDA 2019). • The prevalence of DMD ranges from 1 to 2 per 10,000 live male births; female-manifesting carriers are rarer, but can present with a range of symptoms that vary in their severities (Birnkrant et al 2018, Darras 2018[a], Emflaza Food and Drug Administration [FDA] Medical Review 2017). • The clinical course and lifespan of patients with DMD is relatively short. Individuals are usually confined to a wheelchair by age 13, and many die in their late teens or twenties from respiratory insufficiency or cardiomyopathy. Although survival until adulthood is more common now, very few patients survive past the 3rd decade (Darras 2018[a]).
    [Show full text]
  • Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New
    biomolecules Review Circulating Biomarkers in Neuromuscular Disorders: What Is Known, What Is New Andrea Barp 1,* , Amanda Ferrero 1, Silvia Casagrande 1,2 , Roberta Morini 1 and Riccardo Zuccarino 1 1 NeuroMuscular Omnicentre (NeMO) Trento, Villa Rosa Hospital, Via Spolverine 84, 38057 Pergine Valsugana, Italy; [email protected] (A.F.); [email protected] (S.C.); [email protected] (R.M.); [email protected] (R.Z.) 2 Department of Neurosciences, Drug and Child Health, University of Florence, Largo Brambilla 3, 50134 Florence, Italy * Correspondence: [email protected] Abstract: The urgent need for new therapies for some devastating neuromuscular diseases (NMDs), such as Duchenne muscular dystrophy or amyotrophic lateral sclerosis, has led to an intense search for new potential biomarkers. Biomarkers can be classified based on their clinical value into different categories: diagnostic biomarkers confirm the presence of a specific disease, prognostic biomarkers provide information about disease course, and therapeutic biomarkers are designed to predict or measure treatment response. Circulating biomarkers, as opposed to instrumental/invasive ones (e.g., muscle MRI or nerve ultrasound, muscle or nerve biopsy), are generally easier to access and less “time-consuming”. In addition to well-known creatine kinase, other promising molecules seem to be candidate biomarkers to improve the diagnosis, prognosis and prediction of therapeutic response, such as antibodies, neurofilaments, and microRNAs. However, there are some criticalities that can complicate their application: variability during the day, stability, and reliable performance metrics Citation: Barp, A.; Ferrero, A.; (e.g., accuracy, precision and reproducibility) across laboratories. In the present review, we discuss Casagrande, S.; Morini, R.; Zuccarino, the application of biochemical biomarkers (both validated and emerging) in the most common NMDs R.
    [Show full text]
  • The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy
    Review Neuromuscular Diseases Early Diagnosis and Treatment – The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy Eugenio Mercuri,1 Ros Quinlivan2 and Sylvie Tuffery-Giraud3 1. Catholic University, Rome, Italy; 2. Great Ormond Street Hospital and National Hospital for Neurology and Neurosurgery, London, UK; 3. Laboratory of Genetics of Rare Diseases (LGMR), University of Montpellier, Montpellier, France DOI: https://doi.org/10.17925/ENR.2018.13.1.31 he understanding of the natural history of Duchenne muscular dystrophy (DMD) is increasing rapidly and new treatments are emerging that have the potential to substantially improve the prognosis for patients with this disabling and life-shortening disease. For many, Thowever, there is a long delay between the appearance of symptoms and DMD diagnosis, which reduces the possibility of successful treatment. DMD results from mutations in the large dystrophin gene of which one-third are de novo mutations and two-thirds are inherited from a female carrier. Roughly 75% of mutations are large rearrangements and 25% are point mutations. Certain deletions and nonsense mutations can be treated whereas many other mutations cannot currently be treated. This emphasises the need for early genetic testing to identify the mutation, guide treatment and inform genetic counselling. Treatments for DMD include corticosteroids and more recently, ataluren has been approved in Europe, the first disease-modifying therapy for treating DMD caused by nonsense mutations. The use of ataluren in DMD is supported by positive results from phase IIb and phase III studies in which the treatment produced marked improvements in the 6-minute walk test, timed function tests such as the 10 m walk/run test and the 4-stair ascent/descent test compared with placebo.
    [Show full text]
  • Mechanisms of Action of Antiepileptic Drugs
    Review Mechanisms of action of antiepileptic drugs Epilepsy affects up to 1% of the general population and causes substantial disability. The management of seizures in patients with epilepsy relies heavily on antiepileptic drugs (AEDs). Phenobarbital, phenytoin, carbamazepine and valproic acid have been the primary medications used to treat epilepsy for several decades. Since 1993 several AEDs have been approved by the US FDA for use in epilepsy. The choice of the AED is based primarily on the seizure type, spectrum of clinical activity, side effect profile and patient characteristics such as age, comorbidities and concurrent medical treatments. Those AEDs with broad- spectrum activity are often found to exert an action at more than one molecular target. This article will review the proposed mechanisms of action of marketed AEDs in the US and discuss the future of AEDs in development. 1 KEYWORDS: AEDs anticonvulsant drugs antiepileptic drugs epilepsy Aaron M Cook mechanism of action seizures & Meriem K Bensalem-Owen† The therapeutic armamentarium for the treat- patients with refractory seizures. The aim of this 1UK HealthCare, 800 Rose St. H-109, ment of seizures has broadened significantly article is to discuss the past, present and future of Lexington, KY 40536-0293, USA †Author for correspondence: over the past decade [1]. Many of the newer AED pharmacology and mechanisms of action. College of Medicine, Department of anti epileptic drugs (AEDs) have clinical advan- Neurology, University of Kentucky, 800 Rose Street, Room L-455, tages over older, so-called ‘first-generation’ First-generation AEDs Lexington, KY 40536, USA AEDs in that they are more predictable in their Broadly, the mechanisms of action of AEDs can Tel.: +1 859 323 0229 Fax: +1 859 323 5943 dose–response profile and typically are associ- be categorized by their effects on the neuronal [email protected] ated with less drug–drug interactions.
    [Show full text]
  • Horizon Scanning Status Report June 2019
    Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI Institute under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG- 2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions. A representative from PCORI served as a contracting officer’s technical representative and provided input during the implementation of the horizon scanning system. PCORI does not directly participate in horizon scanning or assessing leads or topics and did not provide opinions regarding potential impact of interventions. Financial Disclosure Statement None of the individuals compiling this information have any affiliations or financial involvement that conflicts with the material presented in this report. Public Domain Notice This document is in the public domain and may be used and reprinted without special permission. Citation of the source is appreciated. All statements, findings, and conclusions in this publication are solely those of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI) or its Board of Governors.
    [Show full text]
  • 8Th European Congress on Epileptology, Berlin, Germany, 21 – 25 September 2008
    Epilepsia, 50(Suppl. 4): 2–262, 2009 doi: 10.1111/j.1528-1167.2009.02063.x 8th ECE PROCEEDINGS 8th European Congress on Epileptology, Berlin, Germany, 21 – 25 September 2008 Sunday 21 September 2008 KV7 channels (KV7.1-5) are encoded by five genes (KCNQ1-5). They have been identified in the last 10–15 years by discovering the caus- 14:30 – 16:00 ative genes for three autosomal dominant diseases: cardiac arrhythmia Hall 1 (long QT syndrome, KCNQ1), congenital deafness (KCNQ1 and KCNQ4), benign familial neonatal seizures (BFNS, KCNQ2 and VALEANT PHARMACEUTICALS SATELLITE SYM- KCNQ3), and peripheral nerve hyperexcitability (PNH, KCNQ2). The fifth member of this gene family (KCNQ5) is not affected in a disease so POSIUM – NEURON-SPECIFIC M-CURRENT K+ CHAN- far. The phenotypic spectrum associated with KCNQ2 mutations is prob- NELS: A NEW TARGET IN MANAGING EPILEPSY ably broader than initially thought (i.e. not only BFNS), as patients with E. Perucca severe epilepsies and developmental delay, or with Rolando epilepsy University of Pavia, Italy have been described. With regard to the underlying molecular pathophys- iology, it has been shown that mutations in KCNQ2 and KCNQ3 Innovations in protein biology, coupled with genetic manipulations, have decrease the resulting K+ current thereby explaining the occurrence of defined the structure and function of many of the voltage- and ligand- epileptic seizures by membrane depolarization and increased neuronal gated ion channels, channel subunits, and receptors that are the underpin- firing. Very subtle changes restricted to subthreshold voltages are suffi- nings of neuronal hyperexcitability and epilepsy. Of the currently cient to cause BFNS which proves in a human disease model that this is available antiepileptic drugs (AEDs), no two act in the same way, but all the relevant voltage range for these channels to modulate the firing rate.
    [Show full text]
  • For Cystic Fibrosis (Review)
    Cochrane Database of Systematic Reviews Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis (Review) Aslam AA, Higgins C, Sinha IP, Southern KW Aslam AA, Higgins C, Sinha IP, Southern KW. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis. Cochrane Database of Systematic Reviews 2017, Issue 1. Art. No.: CD012040. DOI: 10.1002/14651858.CD012040.pub2. www.cochranelibrary.com Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis (Review) Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 4 BACKGROUND .................................... 7 OBJECTIVES ..................................... 8 METHODS ...................................... 8 RESULTS....................................... 12 Figure1. ..................................... 13 Figure2. ..................................... 16 DISCUSSION ..................................... 20 AUTHORS’CONCLUSIONS . 22 ACKNOWLEDGEMENTS . 22 REFERENCES ..................................... 23 CHARACTERISTICSOFSTUDIES . 26 DATAANDANALYSES. 33 Analysis 1.1. Comparison 1 Ataluren versus placebo, Outcome 1 FEV - mean relative change from baseline. 35 Analysis 1.2. Comparison 1
    [Show full text]
  • Ataluren Stimulates Ribosomal Selection of Near-Cognate Trnas to Promote Nonsense Suppression
    Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression Bijoyita Roya,b,1, Westley J. Friesenb,1, Yuki Tomizawab, John D. Leszykc, Jin Zhuob, Briana Johnsonb, Jumana Dakkab, Christopher R. Trottab, Xiaojiao Xueb,d,e, Venkateshwar Mutyame,f, Kim M. Keelingd,e, James A. Mobleyg, Steven M. Rowee,f, David M. Bedwelld,e, Ellen M. Welchb, and Allan Jacobsona,2 aDepartment of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655-0122; bPTC Therapeutics Inc., South Plainfield, NJ 07080; cDepartment of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655-0122; dDepartment of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294; eGregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294; fDepartment of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and gDepartment of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294 Edited by Rachel Green, Johns Hopkins University, Baltimore, MD, and approved September 6, 2016 (received for review April 1, 2016) A premature termination codon (PTC) in the ORF of an mRNA promote therapeutic nonsense suppression (1, 3). To date, ataluren generally leads to production of a truncated polypeptide, accelerated has been shown to restore function to more than 20 different degradation of the mRNA, and depression of overall mRNA ex- disease-specific or reporter nonsense alleles in systems ranging in pression. Accordingly, nonsense mutations cause some of the most complexity from in vitro translation to cell culture to mouse models severe forms of inherited disorders. The small-molecule drug ataluren and human patients (1, 3–14).
    [Show full text]
  • Ganaxolone (Epilepsy) – Forecast and Market Analysis to 2022
    Ganaxolone (Epilepsy) – Forecast and Market Analysis to 2022 Reference Code: GDHC1071DFR Publication Date: February 2013 Executive Summary Epilepsy: Key Metrics in the Epilepsy Markets The below figure illustrates ganaxolone sales for the US 2022 Market Sales and 5EU during the forecast period. US $43.17m Sales for Ganaxolone by Region, 2022 5EU $4.64m Total $47.81m 10% 2012 Total: $47.81m Key Events (2012–2022) Level of Impact Launch of ganaxolone in the US in 2019 ↑↑↑ US Launch of ganaxolone in the 5EU in 2019 ↑↑↑ 5EU Source: GlobalData Sales for Ganaxolone in the Epilepsy Market GlobalData expects Marinus Pharmaceuticals to launch 90% ganaxolone in the US and EU in 2019. We estimate that 2022 sales of ganaxolone will reach $47.81m across Source: GlobalData these markets. Key factors affecting the uptake of ganaxolone will include: What Do the Physicians Think? Novel mechanism of action and good tolerability Overall physicians expressed a need for more AEDs profile and favorable opinions of those in pipeline Efficacy profile is not significantly different from that development. of other marketed anti-epileptic drugs (AEDs) “Among intractable epilepsy patients, any drug that helps Ganaxolone is still in early development; possible treat an additional segment of them will be used, and lack of funding to conduct Phase III trials necessary because we don’t have a basis for using one or another, for commercialization if it’s attractive, it will be used more.” [US] key opinion leader, November 2012 Heavy competition in the market “Brivaracetam is an interesting concept because it’s supposed to be “Super Keppra,” the follow-on from Keppra.
    [Show full text]
  • Molecular Mechanisms of Antiseizure Drug Activity at GABAA Receptors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure 22 (2013) 589–600 Contents lists available at SciVerse ScienceDirect Seizure jou rnal homepage: www.elsevier.com/locate/yseiz Review Molecular mechanisms of antiseizure drug activity at GABAA receptors L. John Greenfield Jr.* Dept. of Neurology, University of Arkansas for Medical Sciences, 4301W. Markham St., Slot 500, Little Rock, AR 72205, United States A R T I C L E I N F O A B S T R A C T Article history: The GABAA receptor (GABAAR) is a major target of antiseizure drugs (ASDs). A variety of agents that act at Received 6 February 2013 GABAARs s are used to terminate or prevent seizures. Many act at distinct receptor sites determined by Received in revised form 16 April 2013 the subunit composition of the holoreceptor. For the benzodiazepines, barbiturates, and loreclezole, Accepted 17 April 2013 actions at the GABAAR are the primary or only known mechanism of antiseizure action. For topiramate, felbamate, retigabine, losigamone and stiripentol, GABAAR modulation is one of several possible Keywords: antiseizure mechanisms. Allopregnanolone, a progesterone metabolite that enhances GABAAR function, Inhibition led to the development of ganaxolone. Other agents modulate GABAergic ‘‘tone’’ by regulating the Epilepsy synthesis, transport or breakdown of GABA. GABAAR efficacy is also affected by the transmembrane Antiepileptic drugs chloride gradient, which changes during development and in chronic epilepsy. This may provide an GABA receptor Seizures additional target for ‘‘GABAergic’’ ASDs. GABAAR subunit changes occur both acutely during status Chloride channel epilepticus and in chronic epilepsy, which alter both intrinsic GABAAR function and the response to GABAAR-acting ASDs.
    [Show full text]
  • Effect of Ganaxolone on Seizure Frequency Across Subpopulations of Patients with CDKL5 Deficiency Disorder: Subgroup Analyses of the Marigold Study Elia M
    Effect of Ganaxolone on Seizure Frequency Across Subpopulations of Patients With CDKL5 Deficiency Disorder: Subgroup Analyses of the Marigold Study Elia M. Pestana-Knight1; Alex Aimetti2; Joseph Hulihan2 1Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; 2Marinus Pharmaceuticals, Inc., Radnor, PA, USA Table 1. Patient Baseline Demographics, Clinical Characteristics, Baseline allopregnanolone-sulfate (Allo-S) concentration Geographic region Introduction and Enrollment Location • Preliminary data from previous open-label clinical trials of GNX in genetic pediatric epilepsies • Ganaxolone performed directionally better than placebo across geographic regions analyzed suggest that lower plasma Allo-S concentrations may predict favorable antiseizure response (Figure 6) • CDKL5 deficiency disorder (CDD) is a rare, X-linked, epileptic encephalopathy with an estimated Placebo Ganaxolone a • No correlations between baseline Allo-S and response were observed in enrolled patients with − Ganaxolone demonstrated 36.7% MMSF difference in relation to placebo in the United States incidence of 1:40,000 to 1:60,000 live births1,2 (n = 51) (n = 49) CDD (Figure 3) (95% CI, 62.8%-7.2%) • Clinical phenotype of CDD is heterogenous but often includes early-onset refractory epilepsy, Age, n (%) − Future data from other clinical indications aim to provide further insights into the potential − Ganaxolone demonstrated 29.9% MMSF difference in relation to placebo in Australia, France, hypotonia, intellectual and gross motor impairment, and sleep disturbances 2-4 15 (29.4) 21 (42.9) 5-9 17 (33.3) 15 (30.6) utility of plasma Allo-S levels to predict response Israel, Italy, and the United Kingdom (95% CI, 82.2% to −12.6%) • The Marigold Study (NCT03572933) is the first phase 3, randomized, placebo-controlled trial to 10-19 19 (37.3) 13 (26.5) − Ganaxolone demonstrated 16.9% MMSF difference in relation to placebo in Russia and Poland evaluate adjunctive investigational ganaxolone (GNX) in patients with refractory epilepsy associated Gender, n (%) Figure 3.
    [Show full text]