ANABSTRACTOFTHEDISSERTATIONOF

WinifredF.Frick forthedegreeofDoctorofPhilosophy inForestScience presentedon February16,2007 . Title:InfluencesofIslandCharacteristicsonCommunityStructureandSpeciesIncidence ofDesertinaNearshoreArchipelago,Baja,Mexico. Abstractapproved:

JohnP.Hayes

Islandbiogeographyhasstronglyinfluencedthestudyofbiodiversitybecause archipelagosprovidenaturalmodelsystemsforinvestigatingpatternsofdiversityandthe processesthatshapeecologicalcommunities.Iinvestigatedtheinfluenceofareaand isolationofislands(n=32)intheGulfofCalifornia,Mexicoonpatternsofrichness, nestedness,andincidenceofdesertbatstodeterminefactorsimportantinshaping communitystructureandpatternsofoccurrenceofbatsinanaturallyinsularlandscape.

Speciesrichnessofbatswaspositivelyinfluencedbyislandsizeanddeclined withisolationfromtheBajapeninsulaintwodistinctsubarchipelagos.Southernislands, whichareassociatedwithgreaterdensityofvegetationfromsummerrainfall,supported morespeciesthandry,barrenislandsinthenorthernsubarchipelago,suggestingthatboth areaandhabitatcharacteristicscontributetospeciesrichnessofbats.

Communitycompositionofbatswasnestedbyareaandisolation,suchthat speciesfoundonsmallerandmoreisolatedislandsweresubsetsofcommunitiesfoundon

large,lessisolatedislandsthatharboredhigherrichness.Theinfluencesofareaand isolationoncommunitynestednesssuggestspeciesdifferinimmigrationandpersistence ratesonislands.communitieswerealsonestedat27sitesincoastalhabitatonthe

Bajapeninsula,indicatingthatnestednessmayoccurincontiguoushabitatsthatlack immigrationandextinctionfilters.

Probabilityofspeciesoccurrenceonislandswasinfluencedbyareaforfive speciesofinsectivorousbat( Pipistrellus hesperus, Myotis californicus , Macrotus californicus , Antrozous pallidus ,and Mormoops megalophylla ),suggestingoccupancyof islandsbythesespeciesislimitedbyresourcerequirements.Thethresholdofislandsize foroccupancyofmostspecieswasca.100ha,whichissimilartoareathresholdsof incidenceformanylandbirdsinthesamearchipelago.Isolationalsoinfluenced incidenceofinsectivorousbatspecies.

Myresearchshowsthatareaandisolationinfluencebothcommunitystructure andoccupancyofbatspeciesinanearshorearchipelago.Myresultsraiseimportant questionsaboutconnectivityandpersistenceofpopulationsofbatsinisolatedhabitats, especiallywhenpatchsizeissmall.

©CopyrightbyWinifredF.Frick February16,2007 AllRightsReserved

InfluencesofIslandCharacteristicsonCommunityStructureandSpeciesIncidenceof DesertBatsinaNearshoreArchipelago,BajaCalifornia,Mexico

by WinifredF.Frick

ADISSERTATION

submittedto

OregonStateUniversity

inpartialfulfillmentof therequirementsforthe degreeof DoctorofPhilosophy

PresentedFebruary16,2007 CommencementJune2007

DoctorofPhilosophy dissertationofWinifredF.Frick presentedonFebruary16,2007 . APPROVED: MajorProfessor,representingForestScience HeadoftheDepartmentofForestScience DeanoftheGraduateSchool Iunderstandthatmydissertationwillbecomepartofthepermanentcollectionof StateUniversitylibraries.Mysignaturebelowauthorizesreleaseofmydissertationto anyreaderuponrequest.

WinifredF.Frick,Author

ACKNOWLEDGEMENTS

MythankstoJohnP.Hayes,mymajorprofessor,arenumerous.Johntaughtme howtobeascientistandacriticalthinkerandalwaysprovidedthoughtfulcounseland soundadvice.Thisprojectistheresultofhistrusttoallowmetopursuemyownpath, evenwhenthatpathpointedmetowardworkinginanonforestedecosysteminaforeign countryIdidn’tknow.DuringthosetimeswhenIfeltoutofplaceintheDepartmentof

ForestScience,IstayedbecauseknewIwouldneverfindabetteradvisor.

IwouldliketothankmycommitteemembersDougRobinson,DaveLytle,

WilliamRainey,andPaulDoescher,whoallprovidedgreatadviceandencouragement.

DougRobinsonsharpenedmythinkingaboutislandbiogeography;DaveLytle encouragedmetothinkaboutmechanismsversuspatterns;andBillRaineyhelpedme thinklikeabatecologist.MiguelRodríguezGironéskindlyhelpedwiththenestedness analysisandprovidedspecialversionsofhisBinMatNestprogram.

HeartfeltthankstothecommunityoffolksatOSUwhohavebeenfriendsand colleaguesovertheyears,particularly:JonathanThompson,JoeFontaine,HollyOber,

DaveWaldien,EdArnett,JuliaBoland,BeccaCahall,TomManning,StephanieHart, andManuelaHuso.ExtrathankstoJoeFontaineforallowingmetobeaquasi permanenthouseguestandforallthenightsspentscratchingideasonlittlewhitesquares ofpaperonthekitchentable.ManuelaHusoprovidedvaluablestatisticalguidanceand sharpenedmythinkingaboutecology.Shedeservesspecialrecognitionforher incrediblesupportafterJohnmovedtoFlorida.

InadditiontothecommunityoffolksatOSU,Iwasfortunateenoughtosharein theUCSCEcologyandEvolutionaryBiologydepartmentgraduatecommunitywhileI wasworkingfromhomeinSantaCruz.Iamgratefulforthefriendshipsandsupport fromJacobPollock,AmmonCorl,BillHenry,KristenKusic,WalterHeady,andDan

Doak.WithoutBillHenrywewouldneverhavediscoveredBaja.ManythankstoDon

Crollandhis2003UCSCfieldcoursethatintroducedustothebeautyandecological intrigueoftheSeaofCortésbygraciouslyallowingustotagalong.ThankstoMatt

Kauffmanforteachingmeearlyonhowtodo“bigscience”aswellasbeingagreat mentorandfriend.

MuchasgraciastoConservacióndeIslasinEnsenada,Mexicoforcollaborating withus.Thisprojectwouldnothavebeenpossiblewithoutthehelpandfriendshipof

AraceliSamaniego.RobertoMartínezGallardoattheUniversidadAutonomadeBaja

CaliforniainEnsenadadeservesmanythanksforhissupportasourlocalcollaborator.

Iwouldliketothankmythreefieldassistants,JohnGilreath(2004),G.Emma

FloresRojas(2005),andWillaVeber(2006)fortheirstaminatoendurelonghoursinthe field.InadditiontobeingthebestfieldassistantIcouldaskfor,Emmawasalsomy

Spanishteacherandanincrediblefriend.¡Vivaelpalocuidado!ManythankstoAmy

Whitesides,WillaVeber,andPaulHeadyforlabelling286,994Anabatfiles.Thankyou

EliandLaurafortheBajaroadreconnaissancesafariinNovember‘04.

Heartfeltthanksanddeepappreciationgotomydearfriendandadventurousboat captain,VicenteRuízSabinofLoreto.Muchasgraciasforallthestories,fishing,beers, delicioustacos,andearlymorningsonthewater.Ialsothankthewarmthandfriendship ofConsueloandRamonandtheirfamilyfortheirhospitality.ThankstoJuanChuyofLa

Pazforhisconnections,advice,andhelpontherescuemissionattheendofthe’05field season.ManythankstothegreatpeopleofElPardito,especiallyAraceliandClarafor manyincrediblemealsandSilvestrefortakingustoIslaSantaCruzandmakingsurethe droguerosdidn’tgetus.ThankstoSammyDiazandMartínofBahíadeLosÁngelesfor takingussafelytotheislandsintheMidriff.ThankstoFranciscoofSantaRosalíafor bravingthesnakesandtakingustoIslaTortugaandtothefishermanofTortugafor showingushowtogetintothecrater.

Myloveofnatureandadventurecomesfrommyfamily.Heartfeltthanksand lovetomymomforherlove,supportandwillingnesstohelpinanywaypossible.From beingourwranglermyfirstfieldseasonintheSierratocampinginBaja,your participationinourlivesandadventureshasbeenawesome.Thankstomyfatherforhis loveandsupportandforteachingmemathwhenIwasachild.Iwouldalsoliketothank myparentsinlawforalltheirloveandunderstandingaswellasmybrotherandsisterin lawfortheirloveandfriendship.

Iowetremendousappreciationandthankstomytwowonderfulstepdaughters,

EmmaandJo,fortheirsupportandunderstandingduringmygradualstudies.They provedthemselvesoutstandingfieldassistantsinBajaandarethekindest,mostloving kidsIknow.TheyhavebeenincrediblysupportivewhenI’vehadtolivefarawayfor longperiodsorexcusemyselffromthefuntogositinfrontofthecomputerallday.

Mylifeasabatecologistandmysuccessasagraduatestudentwouldnothave happenedwithoutthelove,supportandinspirationofmyhusband,partner,andco investigator,PaulA.HeadyIII.Thankyoufortheendlesspeptalks,puttingupwithlong

periodsapart,beingaconstantsoundingboardandalwaysbelievinginme.Therearen’t enoughwordstoexpressthedepthofgratitudeandloveIfeel.

IwouldliketothankthegeneroussupportoftheNationalScienceFoundation

GraduateResearchFellowshipfrom20032006.Ialsogratefulforthefinancialsupport fromthescholarshipsIreceivedfromOregonStateUniversity,theCollegeofForestry, andtheDepartmentofForestScience,including:P.F.Yerex&NellieBuckYerex

GraduateFellowship,ShutzFamilyEducationFundFellowship,SupplementalOregon

LaurelsGraduateScholarship,andtheAlfredW.MoltkeMemorialFellowship.

CONTRIBUTIONOFAUTHORS

Dr.JohnP.Hayescontributedtostudydesign,interpretationofdata,andwritingof

Chapters24.PaulA.HeadyIIIcontributedtostudydesign,datacollection,and interpretationofdataofChapters24.

TABLEOFCONTENTS Page CONTRIBUTIONOFAUTHORS...... 11 CHAPTER1:INTRODUCTION ...... 2 CHAPTER2:ISLANDBIOGEOGRAPHYOFBATSINBAJA:PATTERNSOFBAT SPECIESRICHNESSINADESERTARCHIPELAGO ...... 9 ABSTRACT...... 9 INTRODUCTION...... 10 METHODS ...... 13 RESULTS ...... 21 DISCUSSION ...... 22 LITERATURECITED ...... 28

CHAPTER3:NESTEDNESSOFADESERTBATASSEMBLAGE:COMPOSITION PATTERNSININSULARANDCONTIGUOUSLANDSCAPES...... 41 ABSTRACT...... 41 INTRODUCTION...... 41 METHODS ...... 46 RESULTS ...... 56 DISCUSSION ...... 59 LITERATURECITED ...... 65

CHAPTER4:PATTERNSOFISLANDOCCUPANCYINBATS:INFLUENCESOF AREAANDISOLATIONONINSULARINCIDENCEOFVOLANT ...... 82 ABSTRACT...... 82 INTRODUCTION...... 83 METHODS ...... 85 RESULTS ...... 91 DISCUSSION ...... 93 LITERATURECITED ...... 98

CHAPTER5:CONCLUSIONS ...... 115 LITERATURECITED ...... 118 APPENDICES...... 132

LISTOFFIGURES Figure Page

2.1. Mapofstudyislandsinthesouthernandnorthernsubarchipelagosinthe GulfofCalifornia,Mexico...... 39

2.2. Speciesarearelationshipofbatrichnessforsouthernislandsandnorthern islandsintheGulfofCalifornia,Mexico...... 40

3.1. MapofstudyislandsintheGulfofCaliforniaandacousticsamplesiteson theBajapeninsula...... 80

3.2. Frequencyofoccurrencesacrosspeninsularsitesandislands...... 81

4.1. Hypotheticaldistributionsofspeciescorrespondingtofivebiological hypothesesaboutpatternsofspeciesincidence ...... 108

4.2. Insulardistributionsofeightspeciesofbaton32islandsintheGulfof California,Mexico...... 110

4.3. Incidencefunctionsbasedonmodelaveragedparameterestimatesshowing therelationshipbetweenprobabilityofoccurrenceonislandsandislandsize... 112

4.4. Incidencefunctionsbasedonmodelaveragedparameterestimatesshowing therelationshipbetweenprobabilityofoccurrenceandislandisolation ...... 113

4.5. Incidencegraphsforeachspeciesshowingtherelationshipbetween probabilityofoccurrenceandareaandisolationofislands...... 114

LISTOFTABLES Table Page

2.1. SamplingeffortandcharacteristicsofislandsintheGulfofCalifornia, Mexicosampledforpresenceofbats...... 35

2.2. Samplingeffortandnumberofspeciesdetectedatfourareassampledonthe Bajapeninsula,Mexico...... 36

2.4. BatspeciesdetectedinnorthernandsouthernregionsoftheBajapeninsula andsubarchipelagoswithacousticsamplingmethods...... 38

3.1. Characteristicsof20islandssampledforpresenceofbatspeciesinthe southernGulfofCalifornia,Mexico...... 73

3.2. BatspeciesdetectedduringsamplingfromMarchJune,20042005on southernislandsintheGulfofCaliforniaandcoastalhabitatsoftheBaja peninsula...... 74

3.3. Maximallypackednestedmatrixofinsularbatspecieson20islandsinthe GulfofCalifornia,Mexico...... 75

3.4. Nestedtemperaturesandassociated pvaluesfor20matricescompiledusing randomlyselecteddetectorsfromeachisland...... 76

3.5. Wingaspectratiosandspeciesrankinthenestedmatrix...... 77

3.6. Estimatesofproportionofsiteuseat27coastalsitesonthepeninsula,Baja CaliforniaSur,Mexico...... 78

3.7. Maximallypackedmatrixof15batspecieson27sitesincoastalpeninsula habitat,BajaCaliforniaSur,Mexico...... 79

4.2. Islandcharacteristicsof32islandsintheGulfofCalifornia,Mexicoused foranalyzingpatternsofspeciesincidence...... 104

4.3. Relativevariableimportanceforestimatedparametercoefficients...... 105

4.4. Modelaveragedparameterestimatesfortheeffectsofarea,isolation,andan interactiontermonincidenceofbatspecies...... 106

4.5. Traitsofbatspecies,includingforagingandroostingguildclassifications...... 107

LISTOFAPPENDICES

Appendix Page A. ANABATECHOLOCATIONCALLIDENTIFICATIONKEY ...... 133 B. SPECIESACCUMULATIONCURVES...... 164 C. PRESENCEOFBATSONISLANDSINTHEGULFOFCALIFORNIA, MEXICO ...... 165

LISTOFAPPENDIXFIGURES Figure Page

A.1. Echolocationcallsequenceby A. pallidus ...... 146

A.2. Echolocationcallsequenceby E. fuscus ...... 147

A.3. Echolocationcallsequenceby E. perotis ...... 148

A.4. Echolocationcallsequenceby L. blossevillii ...... 149

A.5. Echolocationcallsequenceby L. cinereus ...... 150

A.6. Echolocationcallsequenceby L. xanthinus ...... 151

A.7. Echolocationcallsequenceby L. curasoae ...... 152

A.8. Echolocationcallsequenceby M. californicus ...... 153

A.9. Echolocationcallsequenceby M. mormoops ...... 154

A.10. Echolocationcallsequenceby M. californicus ...... 155

A.11. Echolocationcallsequenceby M. evotis ...... 156

A.12. Echolocationcallsequenceby M. vivesi ...... 157

A.13. Echolocationcallsequenceby M. volans ...... 158

A.14. Echolocationcallsequenceby M. yumanensis ...... 159

A.15. Echolocationcallsequenceby N. femorosaccus ...... 160

A.16. Echolocationcallsequenceby N. macrotis ...... 161

A.17. Echolocationcallsequenceby P. hesperus ...... 162

A.18. Echolocationcallsequenceby T. brasiliensis ...... 163

B.1. Speciesaccumulationcurvesgeneratedfromacousticsamplingforbats ...... 164

InfluencesofIslandCharacteristicsonCommunityStructureandSpeciesIncidenceof DesertBatsinaNearshoreArchipelago,BajaCalifornia,Mexico

by WinifredF.Frick

2

CHAPTER1:INTRODUCTION

Understandingfactorsthatinfluencediversityofspeciesisoneofthe cornerstonesofecology.Islandbiogeographyhasbeenpivotalinthestudyofspecies diversitybecausearchipelagoesprovidenaturalmodelsystemsforinvestigatingpatterns ofdiversityandprocessesthatshapeecologicalcommunities(Rosenzweig1995).The equilibriumtheoryofislandbiogeography(MacArthurandWilson1963,1967),which explainsspeciesrichnessonislandsasbeingadynamicequilibriumbetweenopposing forcesofimmigrationandextinction,hasstronglyinfluencedthestudyofdiversityinreal andhabitatfragmentarchipelagos(DoakandMills1994).MacArthurandWilson’s equilibriummodelhasbeenthefoundationofislandbiogeographytheoryandofearly conservationbiology,inpartbecauseofitssimplicity,butalsobecauseitspredictions canbetestedempiricallybymeasuringspeciesrichnessonislandsindifferenttypesof archipelagoes(Lomolino2000a).

Oneoftheshortcomingsoftheequilibriummodel,however,isitsfocuson speciesneutralcountsofrichnessratherthanexplicitlyaccountingfordifferencesin immigrationandextinctionratesamongspecies(BrownandLomolino2000).Research onhowareaandisolationinfluencecompositionofcommunitiesprovidesaspecies specificextensionoftheequilibriummodelthatdemonstrateshowspeciesmaydifferin theirvagilityandpersistencecapacities(Lomolino2000b).Analysesofcommunity nestedness,apatternofcompositionwherespeciesatsitesthatcontainfewerspecies formsubsetsofspeciesfoundatrichersites,aimtodeterminewhetherdeterministicor

3 stochasticprocessesshapecommunitystructure(AtmarandPatterson1993,Patterson andAtmar2000).Analyzingpatternsofnestednessmayofferpotentialinsightsfor conservationbyidentifyingspeciesatriskofextinctionacrossfragmentedlandscapes

(Patterson1987),buttheseinferencesaredependentonunderstandingtheunderlying mechanisms(Donlanetal.2005).

Speciesrichnessandnestednessarepropertiesofecologicalcommunities.In comparison,metapopulationresearchfocusespopulationdynamicsbyinvestigatingthe roleofpersistenceanddispersalofpopulationsacrossisolatedhabitats.Metapopulation theoryhasemergedasadistinctdiscipline(Hanski1999),butitsoriginsarerootedin bothequilibriumtheory(MacArthurandWilson1963,1967)andDiamond’s(1975) pioneeringconceptofincidencefunctions(Hanski1991).Investigatingtheinfluenceof areaandisolationofislandsonincidenceofspeciesprovidespotentialinsightintohow persistenceandvagilityofspeciesmayvary(Diamond1975,AdlerandWilson1985,

Taylor1991).Byaddressingcommunityandspecieslevelquestions,Ihopetobetter understandfactorsimportantinshapingpatternsofspeciesdiversity.

Mydissertationresearchinvestigatedtheinfluenceofareaandisolationofislands ontherichness,nestednessandoccurrencepatternsofadesertbatassemblageintheGulf ofCalifornia,BajaCalifornia,Mexico.Batscompriseaquarterofallspecies, butaredistinctfromothermammalsintheirabilityto.Batsaregenerallyassumedto havehighimmigrationanddispersalratesamongisolatedhabitats(Lomolino1984,

Lawlor1986,Lomolino1986,CarvajalandAdler2005),butourunderstandingoffactors influencingcommunitystructureinisolatedandfragmentedhabitatsremainsdeficient

(RaceyandEntwistle2003).FiftyonepercentofMicrochiropteranbatsareconsidered

4 eithercriticallyendangered,endangered,datadeficient,vulnerableornearthreatened

(Hutsonetal.2001)presumablyduetolowpopulationdensitiesofmanyspeciesand degradationandlossofhabitat(RaceyandEntwistle2003).Understandingtherolesof persistenceandvagilityoncommunitystructureandincidenceinanaturallyinsular systemmayprovidesomeinsightforbatconservation.

InChapter2ofthisdissertation,weexplorehowareaandisolationinfluence speciesrichnessofbatsontwosubarchipelagosintheGulfofCalifornia,Mexico.The positivespeciesarearelationshipisoneofthebestsupportedpatternsinecology,but multiplecausalmechanismsmaygeneratesuchpatterns(Rosenzweig1995,Gotelli

2001).Wecomparerichnessofbatsontwosubarchipelagosthatshareasimilarsource fauna,butdifferinvegetationdensity,inanattempttoteaseaparttheindependent influencesofarea per se andhabitatdiversityonspeciesrichness.Inaddition,weask whetherisolationfromsourcepopulationsnegativelyinfluencesrichnessofthisvagile groupofmammals.

Inthethirdchapter,weexaminetheinfluenceofareaandisolationofislandson thenestedsubsetstructureofcommunitycompositioninthesouthernsubarchipelagoin

BajaCalifornia,Mexico.Toexplorehowdifferentialvagilitymayinfluencecommunity composition,wecomparedanecomorphologicaltrait,representingcostoftransport,to nestednessofspecies.Wecomparednestedcompositionpatternsonthearchipelagoto compositionpatternsatsitesincoastalhabitatsontheBajapeninsulatoinvestigatehow nestednessmaymanifestindifferentlandscapetypesandatdifferentspatialscales.In addition,weassessedtheimpactofimperfectdetectionprobabilitiesonaccuracyof

5 presenceabsencematricesbyestimatingtheprobabilityasitewasusedbyaspecies givenitwasneverdetected(MacKenzieetal.2006).

Inthefourthchapter,wefocusourresearchquestionsatthelevelofspeciesand comparepatternsofinsularincidenceforsixspeciestobetterunderstandtheroleof persistenceandvagilityonprobabilityofoccurrenceonislandsforbats.Weexamined whetherincidenceisinfluencedbyminimumareathresholds,maximumisolationeffects, orcombinationsofbothanddiscussthepotentialmechanismsthatproducedifferent patternsofislandoccupancy.

Eachofthethreemanuscriptsattemptstoprovidepotentialinsightsaboutthe ecologicaltheoryfromwhichitdrawsaswellasbetterourunderstandingoftheecology ofbats.Thestudyofspeciesrichness,communitynestedness,andspeciesincidenceare linkedbythefundamentalgoalofseekingtounderstandpatternsofspeciesdiversityand theunderlyingprocessesthatshapesuchpatterns.Ecologyhaslongbeenascienceof pattern,butrecentemphasishasbeenplacedonfocusingecologicalresearchoncausal mechanisms(GastonandBlackburn2000).Althoughtheresearchpresentedhereis patternoriented,Ihavetriedthroughouttoconnectthemechanisticdotsandhopeour workwillrepresentaninitialstepinacontinuingresearchprogramaimedatstudying communityandpopulationecologyofdesertbats.

6

LITERATURECITED

Adler,G.H.,andM.L.Wilson.1985.SmallmammalsonMassachusettsislands:Theuse ofprobabilityfunctionsinclarifyingbiogeographicrelationships.Oecologia 66:178186.

Atmar,W.,andB.D.Patterson.1993.Themeasureoforderanddisorderinthe distributionofspeciesinfragmentedhabitats.Oecologia96:373382.

Brown,J.H.,andM.V.Lomolino.2000.Concludingremarks:Historicalperspectiveand thefutureofislandbiogeography.GlobalEcologyandBiogeography9:8792.

Carvajal,A.,andG.H.Adler.2005.BiogeographyofmammalsontropicalPacific islands.JournalofBiogeography32:15611569.

Diamond,J.M.1975.Assemblyofspeciescommunities.Pages342444 in J.M. DiamondandM.L.Cody,editors.Ecologyandevolutionofcommunities. BelknapPress,Cambridge,Massachusetts,USA.

Doak,D.F.,andL.S.Mills.1994.Ausefulrolefortheoryinconservation.Ecology 75:615626.

Donlan,C.J.,J.Knowlton,D.F.Doak,andN.Biavaschi.2005.Nestedcommunities, invasivespeciesandHoloceneextinctions:Evaluatingthepowerofapotential conservationtool.Oecologia145:475485.

Gaston,K.J.,andM.Blackburn.2000.Patternandprocessinmacroecology.Blackwell Publishing,Cambridge,UK.

Gotelli,N.J.2001.Aprimerofecology.SinauerAssociates,Inc.,Sunderland, Massachusetts,USA.

Hanski,I.1991.Singlespeciesmetapopulationdynamics:Concepts,modelsand observations.BiologicalJournaloftheLinneanSociety42:1738.

7 Hanski,I.1999.Metapopulationecology.OxfordUniversityPress,NewYork,New York,USA.

Hutson,A.M.,S.P.Mickleburgh,andP.A.Racey.2001.Microchiropteranbats:global statussurveyandconservationactionplan.IUCN/SSCChiropteraSpecialist Group.InternationalUnionfortheConservationofNatureandNatural Resources,Gland,SwitzerlandandCambridge,UK.

Lawlor,T.E.1986.Comparativebiogeographyofmammalsonislands.Biological JournaloftheLinneanSociety28:99125.

Lomolino,M.V.1984.Mammalianislandbiogeography:Effectsofarea,isolationand vagility.Oecologia61:376382.

Lomolino,M.V.1986.Mammaliancommunitystructureonislands:Theimportanceof immigration,extinctionandinteractiveeffects.BiologicalJournaloftheLinnean Society28:121.

Lomolino,M.V.2000a.Acallforanewparadigmofislandbiogeography.Global EcologyandBiogeographyLetters9:16.

Lomolino,M.V.2000b.Aspeciesbasedtheoryofinsularzoogeography.Global EcologyandBiogeography9:3958.

MacArthur,R.H.,andE.O.Wilson.1963.Anequilibriumtheoryofinsular zoogeography.Evolution17:373387.

MacArthur,R.H.,andE.O.Wilson.1967.Thetheoryofislandbiogeography.Princeton UniversityPress,Princeton,NewJersey,USA.

MacKenzie,D.I.,J.D.Nichols,J.A.Royle,K.H.Pollock,L.L.Bailey,andJ.E.Hines. 2006.Occupancyestimationandmodeling:Inferringpatternsanddynamicsof speciesoccurrence.Elsevier,Inc.,SanFrancisco,California,USA.

Patterson,B.D.1987.Theprincipleofnestedsubsetsanditsimplicationsforbiological conservation.ConservationBiology1:323334.

8 Patterson,B.D.,andW.Atmar.2000.Analyzingspeciescompositioninfragments. in G. Rheinwald,editor.IsolatedVertebrateCommunitiesintheTropics,Proc.4thInt. Symp.,Bonn.Zool.Monogr.46,pp.924.

Racey,P.A.,andA.C.Entwistle.2003.Conservationecologyofbats. in T.H.Kunzand M.B.Fenton,editors.BatEcology.TheUniversityofChicagoPress,Chicago, Illinois,USA.

Rosenzweig,M.L.1995.Speciesdiversityinspaceandtime.CambridgeUniversity Press,Cambridge,UK.

Taylor,B.1991.Investigatingspeciesincidenceoverhabitatfragmentsofdifferentareas alookaterrorestimation.BiologicalJournaloftheLinneanSociety42:177 191.

9

CHAPTER2:ISLANDBIOGEOGRAPHYOFBATSINBAJA:PATTERNSOF BATSPECIESRICHNESSINADESERTARCHIPELAGO

ABSTRACT

MacArthurandWilson’s(1963,1967)influentialequilibriumtheoryofisland biogeographyhasinspiredfourdecadesofresearchonspeciesrichnesspatternsof varioustaxaindifferentarchipelagosettings.However,biogeographyresearchon insularbatfaunasremainsscant,particularlyinnearshorearchipelagos.Weinvestigated theinfluenceofsizeandisolationofislandsonpatternsofspeciesrichnessofbatsina nearshorearchipelagoinBajaCalifornia,Mexicotoevaluateforcesimportantin determiningcommunitystructureofbatsinisolatedhabitats.Presence/absencesurveys forbatspecieswereconductedon32islandsintheGulfofCaliforniausingacousticand mistnetsurveys.Usinganinformationtheoreticapproach,wecomparedapriori biologicalhypothesesabouttheinfluenceofarea,isolation,andislandgroup(two subarchipelagos)onspeciesrichnessofbats.Speciesrichnesswasinfluencedbyboth areaandisolationofislandsandwashigherinthesouthernsubarchipelago,whichhas denservegetation.Log 10 areawaspositivelyrelatedtobatspeciesrichness,which increasedbyonespeciesforevery5.4foldincreaseinislandarea.Richnessdeclinedby onespeciesper6.25kmincreaseinisolationfromtheBajapeninsula.Ourresults demonstratethatevenhighlyvagileorganismslikebatscanbeaffectedbymoderate isolationdistancesinsomecontexts.Furthermore,regionaldifferencesinhabitatmay alsoinfluencebatrichness.

10 INTRODUCTION

Thestudyofinsularpopulationshasreceivedprolongedinterestinecology,in partbecauseislandsprovidesimplifiedmodelsystemsforunderstandinghowecological communitiesarestructured.MacArthurandWilson’s(1963,1967)equilibriumtheoryof islandbiogeographyprovidedatheoreticalfoundationforunderstandingpatternsof speciesrichnessinislandsystemsbyproposingrichnessisatabalancebetweenthe opposingforcesofextinctionandcolonization.Fourdecadesofresearchhavebeen inspiredbyMacArthurandWilson’sinfluentialtheoryandnumerousstudieshavefield testedthepredictionsofthetheorybyestimatingtheinfluenceofsizeandisolationof islandonrichnessofvarioustaxaindifferentarchipelagos(Brown1986,Rosenzweig

1995,Lomolino2000a).

Thespeciesarearelationshipisoneofthemostwidelydocumentedphenomena inecology(Arrhenius1921,Preston1962,MacArthurandWilson1967,Rosenzweig

1995).Thereareseveralcompetinghypothesesaboutmechanismsdrivingspeciesarea relationships,including1)directeffectsofareaper se resultingfromafundamentallink betweenareaandpopulationsize,affectingextinctionprobability(Preston1962,

MacArthurandWilson1967);2)indirecteffectsofarearesultingfromastrong correlationbetweenareaandhabitatdiversity(Williams1943,RicklefsandLovette

1999);and3)thepassivesamplinghypothesis,whichresultsfromlargerareasbeing largertargetsforcolonizingindividuals(ConnorandMcCoy1979,Colemanetal.1982).

Discriminatingamongthesehypotheseshasproveddifficult,asmeasuresofareaand habitatdiversityareoftenconfounded,makingtheircontributionstorichnessdifficultto disentangle(RicklefsandLovette1999).

11 Thespeciesisolationrelationshiphashistoricallyreceivedlessattentionthanthe speciesarearelationship(Lomolino1986),buthasequallyimportantimplicationsforthe influencesofdispersalandvagilityofspeciesondistributionpatterns.Ecologically, isolationisacombinationofbothphysicaldistancefromasourcepopulationandthe relativevagility,ordispersalcapability,oftheorganismunderstudy(Moilanenand

Nieminen2002,Tayloretal.2006).Negativespeciesisolationrelationshipsmayoccur whencolonizationratesdeclineasisolationfromasourcepopulationincreases

(MacArthurandWilson1967).Isolationcanalsoinfluencepopulationpersistenceviaa

“rescueeffect”,ifpopulationsare“rescued”fromextinctionbyhighimmigrationrates

(BrownandKodricBrown1977).

Thisstudyfocusesontheinfluencesofareaandisolationofislandsonbats.

Althoughbatscompriseaquarterofallmammalspecies,ourunderstandingoffactors influencingcommunitystructureinisolatedorfragmentedhabitatsisminimal(Racey andEntwistle2003).Theonlyvolantmammals,batsarehighlymobileandtherefore generallyassumedtohavehighimmigrationanddispersalratesamongisolatedhabitats

(Lomolino1984,Lawlor1986,Lomolino1986,CarvajalandAdler2005).Afew biogeographicstudieshaveanalyzedinsularbatfaunasinoceanicarchipelagosandreport speciesarearelationshipssimilartobirds,theothervolanthomeotherms(Wright1981,

Lomolino1984,Lawlor1986,RicklefsandLovette1999,CarvajalandAdler2005).

Ourfirstresearchobjectivewastodeterminewhetherbatcommunitiesonanear shorearchipelagoconformtopredictionsofislandbiogeographytheory.By investigatingtheinfluenceofareaandisolationofislandsonspeciesrichnessofbats,we aimedtodescribespeciesareaandspeciesisolationrelationshipsforvagilemammals

12 (BrownandKodricBrown1977,Lomolino1984).Oursecondgoalwastoexplorehow area per se andhabitatdiversitymayindependentlyinfluencebatrichness.Earlier studieshaveshownthatrichnessofbatsmaybelessaffectedbyhabitatdiversitythan othertaxabecausetheyarehabitatgeneralists(RicklefsandLovette1999).Buthabitat characteristicsmayinfluenceoccurrenceofbatsinsomeisolatedhabitats(Carvajaland

Adler2005).Findingrelevantmetricsofhabitatdiversitythatarenotsignificantly correlatedwithislandareaischallenging(GotelliandGraves1996,RicklefsandLovette

1999).Instead,wecomparedbatrichnessamongtwonaturalsubdivisionsofthegreater archipelagoofislandsoffthegulfcoastofBajaCalifornia.

Thesouthernsubarchipelagotendstohavebrushier,denservegetationthan islandsinthenorthernMidriffandBahíadeLosÁngelesgroups(Codyetal.2002).

Vegetativedifferencesinfluencebirdrichness,withhighernumbersofbirdspecieson southernislands(CodyandVelarde2002).Thelinkstovegetationcomplexityareless wellestablishedforbatspeciesthanforbirds(MacArthurandMacArthur1961,Tomoff

1977,Cody1989,Gill1995),butwehypothesizedthatpatternsofbatrichnesswould mirrorthoseobservedforbirdsandbehigheronsouthernislandsduetodifferencesin habitatbetweenthetwosubarchipelagos.

Acommonproblemwithcomparingarchipelagofaunasisdeterminingthe appropriatesourcefauna(GotelliandGraves1996).Allislandsinthisstudyaresituated offthegulfcoastoftheBajaCaliforniapeninsula,thelikelysourcepoolforinsular populations.BecausedistributionofbatsinBajaCaliforniaispoorlyknown,wesampled forpresenceofbatsincoastalhabitatsinfourregionsofthepeninsulatodeterminethe potentialpoolofcolonizingspecies.Determiningsourcepoolsofspeciesprovidesa

13 contextforunderstandinghowcharacteristicsofislandsinfluencecommunitystructureof batsthatisnotconfoundedbypotentialdifferencesinregionalsourcefaunas.

METHODS

StudyRegion

TheGulfofCalifornia(Figure2.1)innorthwestMexicocontainsmorethan100 islandsandisletsthatrangeinsizefromafewhectaresto1,123km 2(Carreñoand

Helenes2002).TherearetwosubarchipelagosoffthegulfcoastofBajaCalifornia

(Codyetal.2002,CodyandVelarde2002):thenorthernsubarchipelago,whichincludes theBahíadeLosÁngelesandMidriffislandgroups,andthesouthernsubarchipelago, whichextendsfromLoretotoLaPaz,BajaCaliforniaSur.Islandsandadjacentgulf coasthabitatsoftheBajaCaliforniapeninsulaconformtoaSonoranDesert

“sarcocaulescent”vegetationtype(Shreve1951,Wiggins1980),dominatedbycolumnar cacti( Pachycereus pringlei and Stenocereus thurberias )anddeserttrees( Cercidium ,

Bursera ,and Jatropha ).

Theclimateintheregionishotanddrywithunpredictablerainfallaveraging between100and150mmperyear(Codyetal.2002).Thenorthernislandsreceivemost oftheirrainfallinwinterandareconsiderablymorearidandbarrenthanislandsinthe southernpartoftheGulf,whereapproximately40%oftherainfalloccursinthesummer, resultingindenservegetation(Codyetal.2002).

Veryfewoftheislandshavepermanentsourcesoffreshwater,butsomeofthe largerislandsthathavewelldevelopeddrainagecourses(i.e., arroyos )haveephemeral freshwaterinremnantpoolsknownas tinajas (CodyandVelarde2002).Smallerislands

(<200ha)donothavethesurfaceareanorsoiltypetodevelopdrainagesandtypically

14 havenofreshwaterexceptforephemeralpuddlesafterrainstorms(Codyetal.2002,

CodyandVelarde2002).Thepeninsularcoastalregionisusedextensivelyforgrazing livestockandhasanetworkofmaintainedspringboxesthatprovidepermanentorsemi permanentwater.

Fiveoftheislandsincludedinthisstudyareoceanic(PartidaNorte,Rasa,

Salsipuedes,SanLorenzo,SanIldefonso,andSantaCatalina);theremainderareland bridgeislandsthatwereonceconnectedtotheBajapeninsula(CarreñoandHelenes

2002).Mostislandsarecomposedofgraniticorvolcanicrocksandhavesteepterrain

(CarreñoandHelenes2002).Crevicesandsmallcavesareabundantonallislands,but largecavesprobablyonlyoccuronlargerislands.Interiorareasoflargeislandsareonly accessiblebyfootviaarroyosandnarrowcanyons.Apartfromtemporaryfishingcamps onbeaches,almostallislandsareuninhabitedbyhumans(BahreandBourillón2002).

DataCollection

Weconductedpresenceabsencesurveysforbatson32islandsacrossthenorthern

(n=12)andsouthern(n=20)subarchipelagosintheGulfofCaliforniafrom1April to1

June20042006.Wesampledforpresenceofbatspeciesoneachislandforafiveday periodusingpassiveAnabatacousticstations(TitleyElectronics,Australia).On10 islands,activehandheldAnapocketacousticmonitoring(Corben2004)andmistnet surveyswereconductedtoverifyspeciesdetectedwithpassiveacousticstations.

Aspecieswasconsideredpresentifitwasdetectedatleastonce,without determinationofbreedingorresidencystatus.Generallyoneislandwassampledata time,butoccasionallymultiplesmallislandsweresampledsimultaneously.Historical recordsofbatobservationsexistforsomeislandsinthestudyregion(seeLawloretal.

15 2002forareview).Inthefewcaseswhereahistoricalrecordexistedforaspeciesthat wedidnotdetectduringoursampling,wedidnotincludeitintheanalysis.

Repeatsamplingacrossyearson10islands(Table2.1)determinedthatpatterns ofspeciesdetectionweretypicallyconsistentacrossyears,allowingislandssampledin differentyearstobepooledinasingleanalysis.However,twospecies( Nyctinomops femorosaccus and Tadarida brasiliensis )werenotredetectedonislandsresampledin

2006onislandsinboththenorthernandsouthernsubarchipelagos.Oursamplingwas limitedtospringandwemakenoinferencesregardingseasonalityofpresenceofbatson islands.

FourregionsoftheBajagulfcoast(Figure2.1)weresampledtodeterminethe regionalsourcepoolforislands;samplesitesrangedfrom6to13perregion(Table2.2).

Regionswereselectedforsamplingbasedonaccessibilityandproximitytostudyislands.

Samplingonthepeninsulawasconductedinasimilarmannertothatonislandswith fivedaysamplingperiods.

Acoustic sampling

Werecordedbatecholocationsusingbroadbandultrasonicbatdetectors(Anabat

II;TitleyElectronics)todeterminepresenceofspecies(Hayes1997,O’Farrelletal.

1999,GehrtandChelsvig2004).PassivemonitoringstationscontainedanAnabatII detectorattachedtoahighfrequencymicrophonehousedinawaterproofshroudwitha

45 °reflector(Messina2004)mountedona1mtallpole.Thedetectorwasconnectedto anAnabatCompactFlashZeroCrossingsInterfaceModule(TitleyElectonics)recording device.

16 Thenumberofpassiveacousticstationsplacedonanislandincreasedwithisland size(range:113detectorsperisland).Weplaceddetectorsatrandomlydetermined distancesbetween100and1,000mfromsafeboatlandings.Givenalackofadequatea prioriinformationaboutaccessiblelandings,safelandingswereassessedonarrival.We randomlyselectedlandingsaftercircumnavigatinganislandtodeterminebeachlandings withterrainaccessibleonfoot.Whenadversefieldconditionsprohibitedrandom selection,landingswereselectedhaphazardlyaccordingtoaccessibilityandsafe deployment.Numberoflandingsrangedfrom18perislandand18islands(alllessthan

105ha)weresampledwithonlyonedetector.Wesampled113siteswithpassive acousticstationson32islands(Table2.1)and40sitesonfourareasoftheBajapeninsula

(Table2.2).

On10islands,activemonitoringofbatactivitywasconductedatmistnetsurvey locationsusingaspotlightandAnapocketsoftware(Corben2004)onahandheldPDA, whichdisplaysbatcallsastimeversusfrequencygraphsinrealtime.Speciesidentified withvisualconfirmationinthespotlightwereusedtoverifypresenceofspeciesdetected withpassiveacousticdetectorsandtobuildareferencecalllibraryofecholocation signaturesoffreeflyingbats.

Mist-net sampling

Mistnetsurveyswereconductedtoverifyidentificationofspeciesdetectedwith acousticsampling,tobuildanecholocationcallreferencelibraryfromhandrelease recordings,andtotrainobserverstorecognizeflightpatternsandbodyshapesinthe spotlightforidentifyingfreeflyingbatswithactivemonitoring.Handreleaserecordings

17 wereconductedusingAnapocket(Corben2004)andabrightspotlight.Batswere releasedandrecordedaslongastheyremainedinconstantviewinthespotlight.

Mistnetsitesonislandswereselectedinattempttomaximizecapturesandwere typicallyplacedindryarroyos(flyways)anddesertscrubhabitatsoroverfreshwater pools( tinajas orspringboxes)whenavailable.Typically,fivedifferentlocationswere sampledoneachisland,exceptintwocaseswhereaccesswaslimited.Weopenedmist netsatsunsetandmonitoredthematleastevery15minutesfor4hours.Capturedbats wereidentifiedtospecies,age,sex,andreproductivestatus(Anthony1988,Racey1988).

Echolocation analysis for species identification

WedevelopedagraphicalanddescriptivekeyofAnabatecholocationcalls

(AppendixA).Anabatusesazerocrossingsanalysis(ZCA)(Parsonsetal.2000)which producesfilesdisplayingecholocationcallsontimefrequencygraphs.Sequenceswere identifiedtospeciesiftheyhadgreaterthantwodiagnosticpulsesthatmetdefined criteriabasedonreferencecalls(seeAppendixA).Atotalof286,994Anabatfileswere randomlyassignedbydetectornighttothreeobserverstrainedtoidentifycallsusingthe key.Observerslabeled123,505batecholocationfileswithaspecies,phonicgroup,or batfragmentlabel(seeAppendixA).Theremainderofunlabeledfilesrepresentefiles createdbywind,insects,miceandbirds.Sequencesidentifiedtospecieswereproofed bytheseniorauthor.

Identifyingecholocationcallscanproducefalsenegativeandfalsepositiveerrors.

Falsenegativeerrors(speciesispresentandnotdetected)occurwhenaspeciesispresent andisrecordedbythedetector,butthecallisinsufficientlydiagnostictobelabeledas producedbythatspecies.Falsepositiveerrors(speciesisabsentandisfalselydetected)

18 occurwhenanecholocationcallismisclassifiedasaspeciesthatwasinfactnotpresent.

Ourapproachtoclassifyingecholocationcallswasdesignedtominimizebothfalse negativeandfalsepositiveerrors,butgreateremphasiswasplacedonavoidingfalse positiveerrors.Ingeneral,thespeciesintheassemblagewereeasilyidentifiabletothe specieslevelusingthekey.

Becauseofoureffortstominimizefalsepositiveerrors,ourapproachwasnot sensitivetodetectingraretaxawithecholocationcallmorphologiessimilartocommon taxa.Forexample,somecallsfromtheregionallyrarespecies Lasiurus cinereus maybe confusedwiththecommon Nyctinomops femorosaccus .Thisbiaswasuniformacross islandsandpeninsularsitesandalthoughitmayhavenegativelybiasedoverallspecies richness,ouridentificationofrecordedspeciesshouldbeareasonableindexof communitycomposition.

DataAnalysis

Species Richness Estimation

Thecountofobservedspecies,whichisareliableestimateofspeciesrichness whenaspeciesaccumulationasymptotehasbeenreached(GotelliandColwell2001), wasusedtoestimatespeciesrichness.Inspectionofspeciesaccumulationcurves indicatedspeciesrichnesswasasymptoticbythefourthnight(n=28)ofsamplingandon nineislandsnonewspeciesweredetectedaftertheinitialnightofsampling(Appendix

B).

Todeterminewhetherfivenightsofsamplingresultedinanexhaustivesample, wesampled10islandsforuptoeightnights.Inonlyonecasewasthereanadditional

19 speciesdetectedafternightfive( Leptonycteris curasoae onIslaSanFranciscoonthe sixthnight).

Island Characteristics

Islandcharacteristicsweremeasuredusinga“headsup”digitizedGISlayer createdinArcview3.2fromLandsat7satelliteimages(Table2.1).Wemeasuredthe shortestoverwaterpath(km)totheBajapeninsula(thesourcepopulation)usingNearest

FeaturesandPathextensiontools(Jenness2004,2005)inArcView3.2asanindexfor isolation.Thismetricallowedforsteppingstonetypemovementsbysummingover waterlegsifsteppingstonepathsweretheshortestroutetothepeninsula.Thisapproach accountsforthepresenceofneighboringislandsiftheyfunctionassteppingstones,but emphasizestheroleoftheBajapeninsulaasthesourcepool.Morecomplexmeasuresof isolation,includingareabasedmetrics,areoftenadvocated(MoilanenandNieminen

2002,Benderetal.2003,Matteretal.2005),buttheseapproachesaremoreapplicableto fragmentedsystemswherethereisnoclearsourcepopulation(MoilanenandNieminen

2002).Thesemetricsmayalsobelessappropriateforcommunityquestionsastheyare highlysensitivetovariationinscalesofmovementamongspecies(Benderetal.2003,

Bélisle2005,Tayloretal.2006).

Species richness regression analysis

Weusedthesemilogmodelofthespeciesarearelationship(numberofspecies vs.log 10 area)becauseitbettermettheassumptionsofconstantvarianceandfitthandid theloglogformofthelinearizedArrhenius(1921)powerfunction(Rosenzweig1995) basedoninspectionofresidualplots.Explanatoryvariablesincludedlog 10 area(ha),

20 isolation(km),andagroupingvariableforsubarchipelagoforthecomparisonof regressionlinesamongthenorthernandsouthernislandgroups.Wedeveloped13a prioricandidatemodels(Table2.3)representingbiologicalhypothesesthatincorporate combinationsofmaineffects,additiveeffects,andselectedinteractionsamongareaand isolationandsubarchipelago.Wedidnotmodelaninteractionbetweenisolationand subarchipelagobecausewesawnoapriori reasontosuspectthatthespeciesisolation relationshipwoulddifferbetweenthetwosubarchipelagos.

Assumptionsofconstantvarianceandnormalityofresidualswereassessedby inspectionofresidualplotsandsummariespriortoconsiderationofmodelresults.

Collinearityamongexplanatoryvariableswasassessedbyinspectionofscatterplotsand estimationofPearsoncorrelationcoefficients.Allmodelspresentedmetassumptionsof linearregressionmodelsandallanalyseswereconductedusingProgramRv.2.4.1.

Model Selection

WeusedAICmodelselectionmethodstocomparethesetof13aprioricandidatemodels

(Table2.3),usingthesmallsamplesizecorrectionform(AIC c)(BurnhamandAnderson

2002).Allmodelshadthesamesamplesize(n=32islands).Modelswererankedby

AIC cvalue(lowestAIC chasthemostsupportfromthedata)andwerecomparedusing

AIC candAIC cmodelweights.WeconsideredmodelswithAIC c≤2tobestrongly competingmodels(BurnhamandAnderson2002).Modelweightsgivetherelative supportofevidenceinfavorofagivenmodelforthesetofaprioricandidatemodels

(BurnhamandAnderson2002).

21 RESULTS

Regionalsourcefauna

Fifteenspeciesofbatweredetectedincoastalhabitatsacrossfourregionsofthe

Bajapeninsula(Table2.4).Fourspeciesdetectedonthepeninsulawereneverdetected onislands( Eptesicus fuscus , Lasiurus blossevilli , Myotis volans, and Myotis yumanensis ).

Communitycompositionwassimilaramongthreeareassampledinthesouthandthe northernregion,withafewexceptions. Mormoops megalophylla and Nyctinomops macrotis weredetectedinthesouthernregionbutnotinthenorthernregion. E. fuscus ,

M. volans ,and Lasiurus xanthinus weredetectedinatleastoneofthethreesouthern areasandwerenotdetectedatnorthernsamplingsites.However,threeofthesespecies werecapturedatMisionSanBorjasinthemountainsaboveBahíadeLosÁngeles, indicatingtheyoccurinthenorth,butmaynotbecommonincoastalhabitats.Thefish eatingbat, , wasnotdetectedatsitesinthenorth,butwasdetectedon southernpeninsularsitesandbothnorthernandsouthernislands.

Speciesrichnesspatterns

Themodelbestexplainingvariationinspeciesrichnessonislandsincorporated parallelslopesfortheinfluencesoflog 10 areaandisolationonbatrichnessinthetwo subarchipelagos(Table2.3).Thissuggestsareaandisolationinfluencespeciesrichness ofbatsinbothsubarchipelagos,butoverallrichnessdiffersbetweentheislandgroups afteraccountingforareaandisolation.Theparallelslopesmodelhad wi=0.76.The nextbestmodel(AIC c=2.85, w =0.18)includedallthesametermsplusaninteraction termforlog 10 areaandisolation.Thesetwomodelscombinedaccountedfor94%of modelweights.Thenullmodelhadnosupport(AICc=41.76, w =0.00).

22 Thebestfitmodelestimatedtheinterceptforbatrichnessinthenorthern subarchipelagoat1.79species(SE=0.49;95%C.L.:0.78,2.81)andat4.35species(SE

=0.48;95%C.L.:3.36,5.34)inthesouth,indicatingthatnorthernislandshad2.55fewer speciesthansouthernislandsafteraccountingforsizeandisolationofislands(Figure

2.2).Theregressioncoefficientforlog 10 areawas1.38(SE=0.18;95%C.L.:1.01,

1.75),indicatingrichnessincreasesbyaboutonespeciesforevery5.37foldincreasein islandareaacrossthestudyregion.Thecoefficientestimateforisolationwas0.16(SE=

0.03;95%C.L.:0.22,0.10),indicatingrichnessdecreasesbyonespeciesforevery6.25 kmfurtherawayfromtheBajapeninsulainthestudyregion.Acrosstherangeof isolationvaluesintheregion,thisresultsinadecreaseofabouttwobatspeciesatthe moreisolatedislands(ca.25kmfromthepeninsula)forislandsofthesamesize.

DISCUSSION

Ourresultsdemonstratethatspeciesrichnessofbatcommunitiesonislandsinthe

GulfofCaliforniaisaffectedbyareaandisolationinwaysconsistedwithandpredicted byislandbiogeographytheory(MacArthurandWilson1963,1967).Previousstudiesof islandbiogeographyofbatshavefocusedoncomparativestudiesofdifferenttaxonomic groupsonoceanicarchipelagostoinvestigatehowvagilitymayaffectslopes(zvalues)of speciesareacurveswhencomparingtaxonomiccommunities,suchasbirds,butterflies, ornonvolantmammals(Wright1981,Lomolino1984,Lawlor1986,Ricklefsand

Lovette1999).Comparing zvaluesamongtaxonomicgroupsmaybemisleadingand mayhavenobiologicalmeaning(ConnorandMcCoy1979,GotelliandGraves1996).

Ingeneralbatfaunasdemonstratepatternsmoresimilartobirdsthantononvolant mammals,presumablybecauseofsimilardispersalcapabilities.

23 Influenceofisolationonspeciesrichness

Althoughvagilityofbatsandbirdsmaybesimilar,speciesrichnessofbatswas reducedbymoderatedistancesofisolation,whereasisolationdoesnotappeartoreduce speciesrichnessofbirdsorreptilesonislandsintheGulfofCalifornia(Case2002,Cody andVelarde2002).Richnessofbatsisgenerallyexpectedtobeinfluencedbyisolation onlyinverydistantarchipelagos(Lomolino1984,Lawlor1986,CarvajalandAdler

2005).However,twostudiesofbatcommunitiesonnearshorearchipelagosin

Scandinaviareportsimilarresultsthatbatfaunasarericheronlargerislandsandthat isolationreducesthenumberofinsularspecies(Ahlén1983,JohanssonanddeJong

1996).SimilarityofpatternsinBajaandScandinaviasuggestsbatcommunitiesin insularhabitatsmaybenegativelyinfluencedbyrelativelymodestdistancesofisolation indifferenthabitatsettings.

Twopossiblemechanismscouldunderlieobservedinfluencesofisolationonbat richness:reducedratesofimmigrationasisolationincreases(islandbiogeography hypothesis)orhabitatusedecisionsbyindividuals(foragingusehypothesis).Patternsof richnessonnearshorearchipelagosmayofferadifferentperspectivethantraditional islandbiogeographyhypothesesbyfocusingatascalewherepresenceofspeciesresults fromhabitatselectionchoicesofindividualsratherthanfromcommunitiesbeingshaped bythepassiveforcesofimmigrationandextinction(Russelletal.2006).Thespecies isolationrelationshipobservedforbatsinthisstudycouldoccurfromforaginguseof islandsneartheBajapeninsula,asourpresence/absencedatadidnotdistinguishbetween foragingandbreedinguseofislands.

24 Thetraditionalexplanationforaspeciesisolationrelationshipisdiminishedrates ofimmigrationasisolationfromasourcepopulationincreasesis(MacArthurandWilson

1967).Althoughmanybatspecieshavelargehomerangesandtheabilitytotravellarge distancesinasingleforagingbout(KunzandLumsden2003),theabilityorwillingness tocrossopenwaterisunknownformostspecies(Ahlén1983).Experimentalresearchon orientationandnavigationsuggestsacousticcuesandlandmarksareimportantforsome batspecies(Jensenetal.2005),butthesestudiesarefocusedoncloserangeorientation ratherthanlargescalenavigation.Atleastonespecies( E. fuscus )mayusemagnetic fieldstonavigateoverlargedistances(ca.20km)(Hollandetal.2006).Somespecies appeartohavenoproblemstravelingoverwater.Forexample,previousstudieson L. curasoae revealedthisspeciesregularlycommutesca.30kmfromamaternitycaveon

IslaTiburonontheSonoransideofthegulftoforagenearBahiaKino,Sonora(Sahleyet al.1993,Horneretal.1998a).Moreresearchonnavigationanddispersalofbatsis necessarytodeterminehowlandscapeconditionsinfluencemovementsofbats.

Regardlessofwhetherpresenceofspeciesrepresentsforagingactivityrelatedtohabitat selectiondecisionsorequilibriumofimmigrationandextinctionrates,isolatedhabitatsin thisarchipelagoappeartosupportfewerspeciesofbatsevenatdistancesthatdonot affectrichnessofothervertebrates,suchasbirdsandreptiles(Case2002,Codyand

Velarde2002).

Influencesofareaandhabitatonspeciesrichness

Increasedrichnessofbatswithislandsizeisconsistentwithislandbiogeography theory,butdoesnotdistinguishamongcompetinghypothesesaboutcausalfactors responsibleforobservedspeciesarearelationships(GotelliandGraves1996).Species

25 arearelationshipsmayresultfromdirectinfluencesofarea per se onpopulation persistenceorfromindirectinfluencesfromthecorrelationofhabitatdiversitywitharea

(Rosenzweig1995).RicklefsandLovette(1999)reportedthatbatsintheLesserAntilles displayedstrongspeciesarearelationships,buthabitatdiversitydidnotsignificantly contributiontorichness.Manyspeciesofbatsoccurinawidevarietyofhabitatsand maybelesssusceptibletodirecteffectsofhabitatdiversityonspeciesrichness(Ricklefs andLovette1999).

Bothareaandhabitatdiversitymayinfluencebatrichnessinourstudy.Larger islandssupportgreatertopographicaldiversity,whichcreatesgreaterhabitatdiversityand producesformations,suchasrockycanyons,thatmaycontainsemipermanentpoolsof freshwater( tinajas )(Codyetal.2002,CodyandVelarde2002).InSonorandesert ecosystems,topographicaldiversityisstronglyrelatedtohabitatdiversity(Búrquezetal.

1999).

Althoughhabitatdiversitywasnotmeasureddirectlyonislandsandsurrogates suchaselevationweretoostronglycorrelatedwithareatobeincludedinourmodels, therearesubstantialdifferencesinvegetationstructurebetweenislandsinthesouthern subarchipelago,whichismoreexposedtosummermonsoons,andislandsinthenorthern subarchipelagotendtobedrier(Codyetal.2002).Southernislands,whichhavedenser vegetation,supportedhighernumbersofbatspeciesthanmorexericnorthernislands.

Reducedrichnessinthenorthernsubarchipelagoinourstudyisconsistentwithpatterns ofbatrichnessintropicalPacificislands,wherefrugivorousbatsareabsentfromislands withlowplantandtopographicaldiversity(CarvajalandAdler2005).

26 Vegetationstructureandxericitycouldaffectpersistenceofbatpopulationsby affectingfoodresources(i.e.,insectavailability)andaccesstosemipermanent freshwaterin tinajas thatpersistforlongperiodsafterinfrequentrainstorms.Although somedesertbatspeciesmaybecompletelywaterindependentoronlyneedinfrequent accesstofreshwater(Geluso1978,Belletal.1986),manyspeciesrequireregular drinkingtomaintainpositivewaterbalance(Carpenter1969,Geluso1978,Kurtaetal.

1990,Webbetal.1995).Duringoursurveys,weonlyfoundfreshwateronIslaCarmen andIslaEspirituSanto/PartidaSur.Theinfluenceofxericityoncommunitystructureis alsoevidentforbirdpopulations,wherespeciesthatpreferbrushier,denservegetationare morecommonlydistributedinthesouthernislandsandspeciesthatprefermoreopen, drierhabitatsfrequentnorthernislands(CodyandVelarde2002).

Historicalfactorscouldalsoinfluencepresentdaypatternsofspeciesrichness

(RicklefsandSchluter1993).Northernandsouthernpartsofthegulfhavedistinct geologichistories,andtheBajapeninsulawasseparatedbyamidpeninsularseaway duringthemiddlePleistocene(Riddleetal.2000,Lindelletal.2006).Thishistorical separationmayleadtodifferencesinthesourcefaunasonthepeninsula,thusaffecting patternsofinsularrichness.Thesourcefaunasweresimilaramongsampledregionsin thenorthernandsouthernpeninsula,indicatingbothsubarchipelagosweresubjecttoa similarpoolofpotentialcolonizingspecies.Similarityofsourcefaunassuggest historicalfactorsareprobablynotresponsibleforobserveddifferencesinbatrichnesson islands.

Futurephylogeographicstudiescomparinggeneticseparationofinsularand peninsularpopulationscouldprovidevaluableinsightsintothedispersalandvicariance

27 historiesofbatspecies,ashasbeenshownforothervertebratesintheregion(Riddleet al.2000).Phylogeographicpatternscouldhelpdistinguishbetweenecologicaland historicalmechanismsbehindcommunitypatternsandmayalsoprovideanindirect meansofunderstandingdispersalofbatsandconnectivityofpopulationsamongislands andtheBajapeninsula(RicklefsandSchluter1993,Avise2000).

Ourresultspresentanimportantstepinunderstandinghowbatcommunitiesare structuredinisolatedhabitats.Thepatternsweobservedinthisdesertecosystemsuggest batcommunitiesmaybemoresensitivetoisolationthanpreviouslyexpected(Lomolino

1984,Lawlor1986,CarvajalandAdler2005).Moreresearchisneeded,however,to understandthemechanisticrelationshipsbetweenspeciesrichnessandisolationof islands.Inaddition,largerislandsthathadgreatertopographicalandvegetativediversity tendedtosupportgreaternumbersofbatspeciesasispredictedbyislandbiogeography theoryandthespeciesarearelationship(Rosenzweig1995).Additionalstudiesonthe directlinkagesbetweenspeciesrichnessandhabitatrequirementsofindividualspecies willincreaseourunderstandingofthefunctionalrelationshipsbetweenarea,habitat diversity,andstructureofbatcommunities.

28

LITERATURECITED

Ahlén,I.1983.ThebatfaunaofsomeisolatedislandsinScandinavia.Oikos41:352358.

Anthony,E.L.P.1988.Agedeterminationinbats.Pages4758 in T.H.Kunz,editor. Ecologicalandbehavioralmethodsforthestudyofbats.SmithsonianInstitution Press,,D.C.,USA.

Arrhenius,O.1921.Speciesandarea.JournalofEcology9:9599.

Avise,J.C.2000.Phylogeography:Thehistoryandformationofspecies.Harvard UniversityPress,Cambridge,Massachusetts,USA.

Bahre,C.J.,andL.Bourillón.2002.HumanimpactintheMidriffislands.Pages383406 in T.J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyof theSeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Bélisle,M.2005.Measuringlandscapeconnectivity:Thechallengeofbehavioral landscapeecology.Ecology86:19881995.

Bell,G.P.,G.A.Bartholomew,andK.A.Nagy.1986.Therolesofenergetics,water economy,foragingbehaviorandgeothermalrefugiainthedistributionofthebat, Macrotus californicus .JournalofComparativePhysiologyB156:441450.

Bender,D.J.,L.Tischendorf,andL.Fahrig.2003.Usingpatchisolationmetricsto predictmovementinbinarylandscapes.LandscapeEcology18:1739.

Brown,J.H.1986.TwodecadesofinteractionbetweentheMacArthurWilsonmodel andthecomplexitiesofmammaliandistributions.BiologicalJournalofthe LinneanSociety28:231251.

Brown,J.H.,andA.KodricBrown.1977.Turnoverratesininsularbiogeography:Effect ofimmigrationonextinction.Ecology58:445449.

Burnham,K.,P.,andD.R.Anderson.2002.Modelselectionandmultimodelinference: Apracticalinformationtheoreticapproach,Secondedition.Springer,NewYork, NewYork,USA.

29 Búrquez,A.,A.MartínezYrízar,R.S.Felger,andD.Yetman.1999.Vegetationand habitatdiversityatthesouthernedgeoftheSonoranDesert.Pages3667 in R.H. Robichaux,editor.EcologyofSonoranDesertplantsandplantcommunities. UniversityofArizona,Tucson,Arizona,USA.

Carpenter,R.E.1969.Structureandfunctionofthekidneyandthewaterbalanceof desertbats.PhysiologicalZoology42:288302.

Carreño,A.L.,andJ.Helenes.2002.Geologyandagesoftheislands.Pages1440 in T. J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyofthe SeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Carvajal,A.,andG.H.Adler.2005.BiogeographyofmammalsontropicalPacific islands.JournalofBiogeography32:15611569.

Case,T.J.2002.Reptiles:Ecology.Pages221270in T.J.Case,M.L.Cody,andE. Ezcurra,editors.AnewislandbiogeographyoftheSeaofCortés.Oxford UniversityPress,NewYork,NewYork,USA.

Cody,M.L.1989.Anintroductiontohabitatselectioninbirds.Pages458 in M.L. Cody,editor.Habitatselectioninbirds.AcademicPress,Inc.,Orlando,Florida, USA.

Cody,M.L.,R.Moran,J.Rebman,andH.Thompson.2002.Plants.Pages63111 in T. J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyofthe SeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Cody,M.L.,andE.Velarde.2002.Landbirds.Pages271312 in T.J.Case,M.L.Cody, andE.Ezcurra,editors.ANewIslandBiogeographyoftheSeaofCortés.Oxford UniversityPress,NewYork,NewYork,USA.

Coleman,B.D.,M.A.Mares,M.R.Willig,andY.H.Hsieh.1982.Randomness,area, andspeciesrichness.Ecology63:11211133.

Connor,E.F.,andE.D.McCoy.1979.Thestatisticsandbiologyofthespeciesarea relationship.AmericanNaturalist113:791833.

30 Corben,C.2004.AnapocketAnabatonaPDA,v.2.34.Availableat: http://www.hoarybat.com .

Gehrt,S.D.,andJ.E.Chelsvig.2004.Speciesspecificpatternsofbatactivityinan urbanlandscape.EcologicalApplications14:625635.

Geluso,K.N.1978.Urineconcentratingabilityandrenalstructureofinsectivorousbats. JournalofMammalogy59:312323.

Gill,F.B.1995.Ornithology,2ndedition.W.H.FreemanandCompany,NewYork,New York,USA.

Gotelli,N.J.,andR.K.Colwell.2001.Quantifyingbiodiversity:Proceduresandpitfalls inthemeasurementandcomparisonofspeciesrichness.EcologyLetters4:379 391.

Gotelli,N.J.,andG.R.Graves.1996.Nullmodelsinecology.SmithsonianInstitution Press,WashingtonD.C.,USA.

Hayes,J.P.1997.Temporalvaritioninactivityofbatsandthedesignofecholocation monitoringstudies.JournalofMammalogy78:514524.

Holland,R.A.,K.Thorup,M.J.Vonhof,W.W.Cochran,andM.Wikelski.2006.Bat orientationusingEarth'smagneticfield.Nature444:702.

Horner,M.A.,T.H.Fleming,andC.T.Sahley.1998.Foragingbehaviourandenergetics ofanectarfeedingbat, Leptonycteris curasoae (Chiroptera:Phyllostomidae). JournalofZoologicalSoceityofLondon244:575586.

Jenness,J.2004.Nearestfeatures(nearfeat.avx)extensionforArcView3.x,v.3.8a. JennessEnterprises.Availableat: http://www.jennessent.com/arcview/nearest_features.htm .

Jenness,J.2005.Path,withdistancesandbearings(pathfind.avx)extensionforArcView 3.x,v.3.2.JennessEnterprises.Availableathttp://www.jennessent.com/path.htm .

31 Jensen,M.E.,C.F.Moss,andA.Surlykke.2005.Echolocatingbatscanuseacoustic landmarksforspatialorientation.TheJournalofExperimentalBiology208:4399 4410.

Johansson,M.,andJ.deJong.1996.Batspeciesdiversityinalakearchipelagoincentral Sweden.BiodiversityandConservation5:12211229.

Kunz,T.H.,andL.F.Lumsden.2003.Ecologyofcavityandfoliageroostingbats. in T. H.KunzandM.B.Fenton,editors.BatEcology.TheUniversityofChicago Press,Chicago,Illinois,USA.

Kurta,A.,T.H.Kunz,andK.A.Nagy.1990.Energeticsandwaterfluxoffreeranging bigbrownbats( Eptesicus fuscus )duringpregnancyandlactation.Journalof Mammalogy71:5965.

Lawlor,T.E.1986.Comparativebiogeographyofmammalsonislands.Biological JournaloftheLinneanSociety28:99125.

Lawlor,T.E.,D.J.Hafner,P.Stapp,B.R.Riddle,andS.A.C.Ticul.2002.The mammals.Pages326361 in T.J.Case,M.L.Cody,andE.Ezcurra,editors.A NewIslandBiogeographyoftheSeaofCortes.OxfordUniversityPress,New York,NewYork,USA.

Lindell,J.,A.Ngo,andR.W.Murphy.2006.Deepgenealogiesandthemidpeninsular seawayofBajaCalifornia.JournalofBiogeography33:13271331.

Lomolino,M.V.1984.Mammalianislandbiogeography:Effectsofarea,isolationand vagility.Oecologia61:376382.

Lomolino,M.V.1986.Mammaliancommunitystructureonislands:Theimportanceof immigration,extinctionandinteractiveeffects.BiologicalJournaloftheLinnean Society28:121.

Lomolino,M.V.2000.Acallforanewparadigmofislandbiogeography.Global EcologyandBiogeographyLetters9:16.

MacArthur,R.H.,andJ.MacArthur.1961.Onbirdspeciesdiversity.Ecology42:594 598.

32 MacArthur,R.H.,andE.O.Wilson.1963.Anequilibriumtheoryofinsular zoogeography.Evolution17:373387.

MacArthur,R.H.,andE.O.Wilson.1967.Thetheoryofislandbiogeography.Princeton UniversityPress,Princeton,NewJersey,USA.

Matter,S.F.,T.Roslin,andJ.Roland.2005.Predictingimmigrationoftwospeciesin contrastinglandscapes:Effectsofscale,patchsizeandisolation.Oikos111:359 367.

Messina,T.2004.Thebattechnicalnotesarchive:Remotetransducersfor Anabats,Availableat: http://home.earthlink.net/~nevadabat/Remote/ExtCableFab.html .

Moilanen,A.,andM.Nieminen.2002.Simpleconnectivitymeasuresinspatialecology. Ecology83:11311145.

O’Farrell,M.J.,B.W.Miller,andW.L.Gannon.1999.Qualitativeidentificationof freeflyingbatsusingtheAnabatdetector.JournalofMammalogy80:1123.

Parsons,S.,A.M.Boonman,andM.K.Obrist.2000.Advantagesanddisadvantagesof techniquesfortransformingandanalyzingchiropteranecholocationcalls.Journal ofMammalogy81:927938.

Preston,F.W.1962.Thecanonicaldistributionofcommonnessandrarity:Part1. Ecology43:185215.

Racey,P.A.1988.Reproductiveassessmentinbats. in T.H.Kunz,editor.Ecological andBehavioralMethodsfortheStudyofBats.SmithsonianInstitutePress, WashingtonD.C.,USA.

Racey,P.A.,andA.C.Entwistle.2003.Conservationecologyofbats. in T.H.Kunzand M.B.Fenton,editors.BatEcology.TheUniversityofChicagoPress,Chicago, Illinois,USA.

Ricklefs,R.E.,andI.J.Lovette.1999.Therolesofislandarea per se andhabitat diversityinthespeciesarearelationshipsoffourLesserAntilleanfaunalgroups. JournalofAnimalEcology68:11421160.

33 Ricklefs,R.E.,andD.Schluter.1993.Speciesdiversityinecologicalcommunities: Historicalandgeographicperspectives.TheUniversityofChicagoPress, Chicago,Illinois,USA.

Riddle,B.R.,D.J.Hafner,L.F.Alexander,andJ.R.Jaeger.2000.Crypticvicariancein thehistoricalassemblyofaBajaCaliforniaPeninsularDesertbiota.Proceedings oftheNationalAcademyofSciencesUSA97:1443814443.

Rosenzweig,M.L.1995.Speciesdiversityinspaceandtime.CambridgeUniversity Press,Cambridge,UK.

Russell,G.J.,J.M.Diamond,T.M.Reed,andS.L.Pimm.2006.Breedingbirdson smallislands:Islandbiogeographyoroptimalforaging?JournalofAnimal Ecology75:324339.

Sahley,C.T.,M.A.Horner,andT.H.Fleming.1993.Flightspeedsandmechanical poweroutputsofthenectarfeedingbat, Leptonycteris curasoae (Phyllostomidae: Glossophaginae).JournalofMammalogy74:594600.

Shreve,F.1951.ThevegetationoftheSonoranDesert.CarnegieInstituteofWashington Publications591:698700.

Taylor,P.D.,L.Fahrig,andK.A.With.2006.Landscapeconnectivity:Areturntothe basics.Pages2943 in K.CrooksandM.A.Sanjayan,editors.Connectivity Conservation.CambridgeUniversityPress,NewYork,NewYork,USA.

Tomoff,C.S.1977.Avianspeciesdiversityindesertscrub.Ecology55:396403.

Webb,P.I.,P.A.Racey,andS.M.Swift.1995.Thecomparativeecophysiologyofwater balanceinmicrochiropteranbats.Pages203218 in P.A.RaceyandS.M.Swift, editors.Ecology,evolution,andbehaviorofbats.SymposiaoftheZoological SocietyofLondonNo.67.

Wiggins,I.L.1980.FloraofBajaCalifornia.StanfordUniversityPress,Stanford, California,USA.

Williams,C.B.1943.Areaandthenumberofspecies.Nature152:264267.

34 Wright,S.J.1981.Intraarchipelagovertebratedistributions:Theslopeofthespecies arearelation.AmericanNaturalist118:726748.

35

Table2.1.Samplingeffortandcharacteristicsofislands(n=32)intheGulfof California,Mexicosampledforpresenceofbatspecies.Numberofdetectorsequalsthe numberofpassiveacousticdetectorsthatranfor≥3nights.EspirituSantoiscombined withPartidaSurasasingleisland.

Archi No.of AreaIsolation No.of Mistnet Island Year pelago Species (ha) (km) Detectors Surveys SanJosé South 12 18,494.5 4.75 11 yes 2005 Carmen South 9 14,801.4 5.50 13 yes 2004,2006 Danzante South 8 423.7 2.67 6 yes 2004 EspirituSanto South 8 10,367.1 6.21 10 yes 2005 SanFrancisco South 8 419.0 7.16 2 2005,2006 Coronados South 7 715.8 2.60 7 yes 2004 Gallina South 6 2.0 7.18 1 2005 Monserrat South 6 1,902.8 13.66 8 yes 20042006 SanLorenzo North 6 3,632.3 16.31 9 yes 2006 CabezoCaballo North 5 71.0 1.89 1 2004,2006 GemelitosEast North 5 3.9 0.82 1 2004 Pardo South 5 4.3 0.36 1 2004 SantaCatalina South 5 3,995.6 25.06 13 yes 2005 SantaCruz South 5 1,315.1 19.81 3 yes 2005 Ventana North 5 128.2 3.09 2 2004,2006 Blanco South 4 1.3 0.84 1 2004 Cayo South 4 6.7 6.22 1 2005 CoronadosSmith North 4 852.1 2.22 2 2006 GalerasEast South 4 5.4 16.40 1 20042006 Islitas South 4 3.3 0.41 1 2004 SanIldefonso South 4 104.2 10.01 7 yes 2004,2006 Tijeras South 4 4.0 1.90 1 2004 GalerasWest South 3 3.2 16.77 1 20042006 LasAnimasSur South 3 9.1 16.49 1 2005 SanDiego South 3 62.9 19.06 2 2005 Bota North 2 9.6 2.64 1 2004 GemelitosWest North 2 2.4 0.86 1 2004,2006 Pata North 2 14.5 2.57 1 2004,2006 Piojo North 2 67.6 4.57 1 2006 Salsipuedes North 2 102.6 17.70 1 2006 PartidaNorte North 1 94.0 17.84 1 2006 Rasa North 1 59.2 20.75 1 2006

36 Table2.2.Samplingeffortandnumberofspeciesdetectedatfourareassampledonthe Bajapeninsula,Mexico.

No.of No.of Mistnet Name Region Year Species Detectors Surveys SanEvaristo South 13 11 yes 2005 AguaVerde South 12 10 yes 2005 Tecolote South 9 13 yes 2005 BahíadeLosÁngeles North 7 6 yes 2006

Table2.3.Modelselectionresultsfor13candidatemodelsofinsularrichnessofbatspecies.Isol=isolationvariablerepresenting shortestroutetotheBajapeninsula;Arch=groupingvariableforsubarchipelago.K=numberofmodelparameters;+indicates additiveeffects;*indicatesinteractioneffects.

ModelName K i wi S=logArea+Isol+Arch 5 0.00 0.76 S=logArea+Isol+Arch+logArea*Isol 6 2.85 0.18 S=logArea+Isol+Arch+logArea*Isol+logArea*Isol*Arch 7 5.46 0.05 S=logArea+Isol+Arch+logArea*Arch+logArea*Isol+logArea*Isol*Arch 8 8.73 0.01 S=logArea+Arch 4 19.62 0.00 S=logArea+Isol 4 21.54 0.00 S=logArea+Arch+logArea*Arch 5 21.90 0.00 S=logArea+Isol+logArea*Isol 5 24.00 0.00 S=logArea 3 29.64 0.00 S=Isol+Arch 4 32.99 0.00 S=Arch (group means) 3 34.83 0.00 S=null (overall mean) 2 41.76 0.00 S=Isol 3 41.98 0.00 37

38 Table2.4.BatspeciesdetectedinnorthernandsouthernregionsoftheBajapeninsula andsubarchipelagoswithacousticsamplingmethods.*indicatesspeciescapturedin mistnets,butnotdetectedwithacousticsampling. DetectedonPeninsula DetectedonIslands Northern Southern Northern Southern Species Region Region Archipelago Archipelago Family:Mormoopidae Mormoops megalophylla   Family:Phyllostomidae Macrotus californicus     Leptonycteris curasoae     Family Antrozous pallidus    Eptesicus fuscus *  Lasiurus blossevilli  Lasiurus xanthinus *   Myotis californicus     Myotis volans *  Myotis yumanensis  Myotis vivesi    Pipistrellus hesperus     FamilyMolossidae Tadarida brasiliensis     Nyctinomops femorosaccus     Nyctinomops macrotis    Eumops sp. 

39

Figure2.1.Mapofstudyislands(inblack)inthesouthernandnorthernsubarchipelagos intheGulfofCalifornia,BajaCalifornia,Mexico.PointsontheBajapeninsularepresent acousticsitesusedtosampleregionalsourcefaunas,groupedintofourregions.Sampled regionsonthepeninsulafromnorthtosouthareherereferredtoas:BahíadeLos Ángeles,AguaVerde,SanEvaristo,Tecolote.

40 Species Richness Species 0 2 4 6 8 10 12 1 10 100 1000 10000 Area (ha) Figure2.2.Speciesarearelationshipofbatrichnessforsouthernislands(solidline)and northernislands(dashedline)intheGulfofCalifornia,Mexico.Regressionlinesare drawnusingaverageisolation,becauseoftheparallelnegativeinfluenceofisolationon speciesrichness.

41

CHAPTER3:NESTEDNESSOFADESERTBATASSEMBLAGE: COMPOSITIONPATTERNSININSULARANDCONTIGUOUSLANDSCAPES

ABSTRACT

Communitycompositionisnestedwhenspeciesatmoredepauperatesitesaresubsetsof thesuiteofspeciesoccurringatmorespeciesrichsites.Nestedpatternscanresultfrom severaldifferentmechanisms,whichmaydependonlandscapetypeandspatialscale.

Weinvestigatedpatternsandprocessesofnestedcompositionfordesertbatassemblages intwodifferentlandscapetypesinBajaCalifornia,Mexico.Communitycompositionfor batswassignificantlynestedacrossanislandarchipelagointheGulfofCalifornia.

Nestednessonthearchipelagowasassociatedwithislandcharacteristics,suggesting selectiveimmigrationsandextinctionsareimportantdriversofnestednessforinsularbat faunas.However,nestednessalsooccurredacrosssitesincoastalpeninsularhabitat, despiteanabsenceofregionalinfluencessuchasextinctionandimmigrationdynamics.

Nestednesscanbeausefulstepindescribingpatternsofcompositionandidentifying speciesatconservationrisk,butautecologicaldetailswillbenecessaryforrobust conservationdecisionmakingandadditionalanalysesareneededtounderstand mechanismsbehindcompositionpatterns.

INTRODUCTION

Understandingfactorsimportantinstructuringdiversityandcommunity compositionisanelusive,yetimportant,goalforconservation.Identifyinghow communitiesarestructuredacrosslandscapetypesandspatialscaleshasparticular

42 relevancetoconservationaimedatpreservingspeciesdiversityinfragmentedlandscapes

(Patterson1987,PattersonandAtmar2000).Nestedsubsettheoryprovidesauseful frameworkforanalyzingcommunitycompositionpatternsandhaspotentialtoidentify mechanismsthatinfluencelocaldiversity(PattersonandAtmar2000),yetits applicabilitytoconservationdecisionmakingremainsdebatable(Boecklen1997,Donlan etal.2005).

Anestedsubsetoccurswhenspeciesatspeciespoorsitesaresubsetsofthesuite ofspeciesthatoccuratmorespeciesrichsites(PattersonandAtmar1986).Numerous studieshaveinvestigatednestednesspatternsforavarietyoftaxaoverthepast15years

(PattersonandAtmar1986,Bolgeretal.1991,WrightandReeves1992,CookandQuinn

1995,Kadmon1995,Wrightetal.1998,Conroyetal.1999,Davidaretal.2002,

Bascompteetal.2003,HausdorandHennig2003,Cooketal.2004,Sfenthourakisetal.

2004,FischerandLindenmayer2005,Greveetal.2005,MartínezMorales2005,

McAbendrothetal.2005,WetheredandLawes2005).Thesestudiesandothershave shownthatnestednessisapervasivepatterninfaunalassemblages.Indeed,absenceof nestednessmaybemoreinterestingthanitspresence(SimberloffandMartin1991,

Kadmon1995).

Althoughpatternsofnestednesshavebeenwelldocumented,theunderlying mechanismsaremoredifficulttodetermine.Nestednessmaybecausedbyseveral mechanisms,including:1)selectiveextinctionvulnerabilities(PattersonandAtmar1986,

WrightandReeves1992);2)selectiveimmigrationabilities(Darlington1957,Cookand

Quinn1995,Kadmon1995,Looetal.2002);3)gradientsinspeciestoleranceforhabitat variables(Cooketal.2004);4)anestedstructureofhabitatdiversity(Cutler1994,Calmé

43 andDesrochers1999);and5)samplingartifacts(Cutler1994,Higginsetal.2006).

Thesemechanismscanallproducenestedcompositionpatternsacrosssitesthatshare commonevolutionaryandrecenthistoriesandsimilarenvironmentalconditions(Cutler

1994).

Nestednessanalysestraditionallyfocusonpatternsininsularandfragmented landscapes,applyingaspeciesspecificextensionoftheMacArthurandWilsonparadigm

(Kadmon1995,Lomolino1996).Inthiscontext,nestednessisametricthatcharacterizes communitycompositionacrossasetofsites,whereeachsiterepresentsanislandor habitatpatch(WrightandReeves1992).Generally,inferencesaboutmechanismsare madeabouttheinfluenceofcharacteristicsofislands(orpatches)oncommunity assemblywithemphasisonthedifferentialresponsesofspeciestothosecharacteristics.

Nestednessanalysisbuildsonislandbiogeographytheorybyprovidinginformationabout howareaandisolationinfluencecommunitycomposition(Lomolino1996).

Ininsularandfragmentedlandscapes,differentialimmigrationandpersistence abilitiesamongspeciesarelikelydriversofnestednesspatterns(PattersonandAtmar

1986,Cutler1994,CookandQuinn1995,Lomolino1996,2000b).Whilesomesystems maybedominantlyextinctiondriven(i.e.,landbridgeislands)andotherscolonization driven(i.e., oceanicislands),theseforcesreinforceeachothertoproducenestedness whenspeciesimmigrationandpersistenceabilitiesarecorrelated(Cutler1994,Lomolino

2000b).Bothimmigrationandpersistenceareexpectedtocontributetonestedness patternsinsystemswherethegradientsofareaandisolationaresufficienttoinfluence thepersistenceandimmigrationofsome,butnotall,species(Lomolino2000b).

Understandingtheroleofselectiveimmigrationsandextinctionsinshapingcomposition

44 patternsacrossinsularlandscapeshelpsidentifythescaleatwhichisolationandarea influenceincidenceofspecies(WrightandReeves1992).

Areaandisolationvaluesareoftenusedtotesthypothesesaboutselective immigrationsandextinctions(Lomolino1996),butspeciestraitscouldalsobeusefulfor assessingthecontributionofdifferentialabilitiesofspeciestonestedness.Forexample, ifimmigrationabilityisastrongdeterminantofnestedpatterns(Kadmon1995,

Lomolino1996,Looetal.2002),thenecomorphologicalcharactersrepresentingrelative mobilityofspeciesmayindicatetheroleofimmigrationinstructuringcomposition patterns.

Factorsinfluencingspeciescompositionmayoperateatdifferentspatialscales, suchthatspeciesthatarewidespreadacrossonescale(e.g., localsiteswithinhabitats) couldberareacrossanotherscale(e.g.,asuiteofdiscretehabitatpatchesorislands)

(Wiens1989,Cooketal.2004,Sfenthourakisetal.2004).Ifnestednesspatternsare createdbyscaledependentprocesses,suchasselectiveimmigrationsandextinctions operatingacrossalandscape,wehypothesizethatcompositionwillnotbenestedin contiguoushabitatswherethosemechanismsareweakerorlacking.However,ifpassive samplingorstochasticprocessesassociatedwithspeciesabundancedistributionsstrongly influencenestedcompositionpatterns(Cutler1994,Higginsetal.2006),nestednessmay alsoappearatsiteswithincontiguoushabitats.Investigatingnestednesspatternsacross insularandcontiguoushabitatsmayprovideinsightabouttheinfluenceoflandscapetype andspatialscaleoncommunitycomposition.

Weinvestigatednestedsubsetstructureforinsularbatassemblagesonanear shorearchipelagointheGulfofCaliforniatodeterminewhetherislandcharacteristics

45 suchassizeandisolationinfluencecommunitycompositionofbats.Weassessedthe potentialroleofselectiveimmigrationsandextinctionsonshapingnestedsubsetpatterns byanalyzingtheassociationofsizeandisolationofislandsandtraitsofspeciesonnested structure.Inaddition,weexaminedwhetherbatcompositionwasnestedacrosssiteson theadjacentBajaCaliforniapeninsulatodeterminewhethercompositionpatternswould besimilartothosefoundonthearchipelago.Wehypothesizedthatcommunity compositionpatternswouldnotbenestedacrosslocalsitesalongthepeninsulaifisland biogeographicaldynamicsaretheprimarydriversofnestedness.

Comparingcommunitycompositionpatternsmaybemisleadingifsiteswhere specieswereneverdetectedwereinfactoccupied(orused)bythespecies(Cametal.

2000).Thisfalsenegativebiasindetection/nondetectiondatahasreceivedconsiderable attentioninthelastfewyears,particularlysincedevelopmentofapproachesfor simultaneouslyestimatingprobabilitiesofsiteoccupancyanddetection(MacKenzieetal.

2002,Tyreetal.2003).Weestimatedprobabilityofuseofsitesincoastalhabitatonthe

BajapeninsulausingtheMacKenzieetal.(2002)approachtoestablishwhether probabilitiesofdetectionatsitesweresufficientfordeterminingspeciescomposition patterns.Wealsocomparedestimatesforprobabilityofusetoinsularincidenceto determinewhetherspeciesthatwerewidespreadincoastalpeninsularhabitatswerealso widespreadacrossthearchipelago.Ifcompositionpatternsarescaledependent,thenthe scaleofinvestigationcouldstronglyinfluencewhichspeciesareidentifiedas conservationpriorities(HartleyandKunin2003).

46 METHODS

StudyRegion

TheGulfofCalifornia(Figure3.1)innorthwestMexicocontainsmorethan100 islandsandisletsthatrangeinsizefromafewhectaresto1,223km 2(Carreñoand

Helenes2002).ThesouthernsubarchipelagoandadjacentgulfcoastoftheBaja

Californiapeninsula,extendingfromLoretotoLaPaz,conformtoaSonoranDesert sarcocaulescentvegetationtype(Shreve1951,Wiggins1980),dominatedbycolumnar cacti( Pachycereus pringlei and Stenocereus thurberias )anddeserttrees( Cercidium ,

Bursera ,and Jatropha ).

Theclimateoftheregionishotanddrywithunpredictablerainfallaveraging between100and150mmperyear(Codyetal.2002).Thesouthernpartofthegulf receivesapproximately40%ofitsrainfallinthesummer(Codyetal.2002).

Veryfewoftheislandshavepermanentsourcesoffreshwater,butsomeofthe largerislandsthathavewelldevelopeddrainagecourses(i.e., arroyos )haveephemeral freshwaterinremnantpoolsknownas tinajas (CodyandVelarde2002).Smallerislands

(<200ha)donothavethesurfaceareanorsoiltypetodevelopdrainagesandtypically havenofreshwaterexceptforephemeralpuddlesafterrainstorms(Codyetal.2002,

CodyandVelarde2002).WefoundfreshwateronIslaCarmen(maintainedspringboxes for Ovis canadensis )andIslaEspirituSanto/PartidaSur(natural tinajas ).Thepeninsular coastalregionisusedextensivelyforgrazinglivestockandhasanetworkofmaintained springboxesthatprovidepermanentorsemipermanentwater.

Mostislandsarecomposedofgraniticorvolcanicrocksandhavesteepterrain

(CarreñoandHelenes2002).Crevicesandsmallcavesareabundantonallislands,but

47 largecavesprobablyonlyoccuronlargerislands.Interiorareasoflargeislandsareonly accessiblebyfootviaarroyoandnarrowcanyons.Apartfromtemporaryfishingcamps onbeaches,almostallislandsareuninhabitedbyhumans(BahreandBourillón2002).

DataCollection

Sampling on islands

Weconductedpresenceabsencesurveysforbatson20islandsinthesouthern subarchipelagointheGulfofCaliforniafrom1April to1June20042005(Figure3.1).

Wesampledforpresenceofbatspeciesoneachislandforafivedayperiodusingpassive

Anabatacousticstations(TitleyElectronics,Australia).Onsevenislands,activehand heldAnapocketacousticmonitoring(Corben2004)andmistnetsurveyswereconducted toverifyspeciesdetectedwithpassiveacousticstations.Aspecieswasconsidered presentifitwasdetectedatleastonce,withoutdeterminationofbreedingorresidency status.Generallyoneislandwassampledatatime,butoccasionallymultiplesmall islandsweresampledsimultaneously.

Sampling on the peninsula

WeconductedpresenceabsencesurveysinthreecoastalregionsoftheBaja peninsulafromApril1toJune1in2005(Figure3.1).Regionswereselectedfor samplingbasedonaccessibilityandproximitytostudyislands.Samplingonthe peninsulawasconductedinasimilarmannertothatonislandswithfivedaysampling periods.Passiveacousticstationswereplacedinrandomlyselectedroadaccessible arroyoswithin3kmoftheshore.Passiveacousticstationsthatranforfiveconsecutive

48 nights(n=27)wereusedinanalysesofprobabilityofsiteuse(Ψ)andpeninsular nestedness.

Acoustic sampling

Werecordedecholocationsofbatsusingbroadbandultrasonicbatdetectors

(AnabatII;TitleyElectronics)todeterminepresenceofspecies(Hayes1997,O’Farrellet al.1999,GehrtandChelsvig2004).PassivemonitoringstationscontainedanAnabatII detectorattachedtoahighfrequencymicrophonehousedinawaterproofshroudwitha

45 °reflector(Messina2004)mountedona1mtallpole.Thedetectorwasconnectedto anAnabatCompactFlashZeroCrossingsInterfaceModule(TitleyElectonics)recording device.

Thenumberofpassiveacousticstationsplacedonanislandincreasedwithisland size(range:113detectorsperisland).Weplaceddetectorsatrandomlydetermined distancesbetween100and1,000mfromsafeboatlandings.Givenalackofadequatea prioriinformationaboutaccessiblelandings,safelandingswereassessedonarrival.We randomlyselectedlandingsaftercircumnavigatinganislandtodeterminebeachlandings withterrainaccessibleonfoot.Whenadversefieldconditionsprohibitedrandom selection,landingswereselectedhaphazardlyaccordingtoaccessibilityandsafe deployment.Numberoflandingsrangedfrom18perislandandnineislands(allless than100ha)weresampledwithonlyonedetector.

Onsevenislandsandthreepeninsularregions,activemonitoringofbatactivity wasconductedatmistnetsurveylocationsusingaspotlightandAnapocketsoftware

(Corben2004)onahandheldPDA,whichdisplaysbatcallsastimeversusfrequency graphsinrealtime.Speciesidentifiedwithvisualconfirmationinthespotlightwereused

49 toverifypresenceofspeciesdetectedwithpassiveacousticdetectorsandtobuilda referencecalllibraryofecholocationsignaturesoffreeflyingbats.

Mist-net sampling

Mistnetsurveyswereconductedonnineofthe20islandsandineachofthe peninsularareastoverifyidentificationofspeciesdetectedwithacousticsampling,to buildanecholocationcallreferencelibraryfromhandreleaserecordings,andtotrain observerstorecognizeflightpatternsandbodyshapesinthespotlightforidentifying freeflyingbatswithactivemonitoring.Handreleaserecordingswereconductedusing

Anapocket(Corben2004)andabrightspotlight.Batswerereleasedandrecordedas longastheyremainedinconstantviewinthespotlight.

Mistnetsitesonislandswereselectedinattempttomaximizecapturesandwere typicallyplacedindryarroyos(flyways)anddesertscrubhabitatsoroverfreshwater pools( tinajas orspringboxes)whenavailable.Typically,fivedifferentlocationswere sampledoneachisland,exceptintwocaseswhereaccesswaslimited.Mistnetsurveys werelimitedtofourvisitsattheAguaVerdeandTecolotepeninsularregions.We openedmistnetsatsunsetandmonitoredthematleastevery15minutesfor4hours.

Capturedbatswereidentifiedtospecies,age,sex,andreproductivestatus(Anthony

1988,Racey1988).

Echolocation analysis for species identification

WedevelopedagraphicalanddescriptivekeyofAnabatecholocationcalls

(AppendixA).Anabatusesazerocrossingsanalysis(ZCA)(Parsonsetal.2000)which producesfilesdisplayingecholocationcallsontimefrequencygraphs.Sequenceswere

50 identifiedtospeciesiftheyhadgreaterthantwodiagnosticpulsesthatmetdefined criteriabasedonreferencecalls(seeAppendixAfordetail).Anabatfileswererandomly assignedbydetectornighttothreeobserverstrainedtoidentifycallsusingthekey.

Sequencesidentifiedtospecieswereproofedbytheseniorauthor.

Identifyingecholocationcallscanproducefalsenegativeandfalsepositiveerrors.

Falsenegativeerrors(speciesispresentandnotdetected)occurwhenaspeciesispresent andisrecordedbythedetectorbutthecallisinsufficientlydiagnostictobelabeledas beingproducedbythatspecies.Falsepositiveerrors(speciesisabsentandisfalsely detected)occurwhenanecholocationcallismisclassifiedasaspeciesthatwasinfactnot present.Ourapproachtoclassifyingecholocationcallswasdesignedtominimizeboth falsenegativeandfalsepositiveerrors,butgreateremphasiswasplacedonavoidingfalse positiveerrors.Ingeneral,thespeciesintheassemblagewereeasilyidentifiabletothe specieslevelusingthekey.

Becauseofoureffortstominimizefalsepositiveerrors,ourapproachwasnot sensitivetodetectingraretaxawithecholocationcallmorphologiessimilartocommon taxa.Forexample,somecallsfromtheregionallyrarespecies Lasiurus cinereus maybe confusedwiththecommon Nyctinomops femorosaccus .Thisbiaswasuniformacross islandsandpeninsularsitesandalthoughmayhavenegativelybiasedoverallspecies richness,ouridentificationofrecordedspeciesshouldbeareasonableindexof communitycomposition.

51 DataAnalysis

Probability of peninsular site use

WeusedProgramPRESENCE(MacKenzieetal.2006)toestimateprobabilities ofdetectorsiteoccupancy(Ψ)anddetection( p)forspeciesusing27detectorsites sampledforfiveconsecutivenightsincoastalpeninsularhabitats(Figure3.1).Key assumptionsofthesiteoccupancymodelare1)closuretochangesinoccupancyduring repeatsamplevisitsand2)nomisclassificationofspecies.Theassumptionofclosure mayberelaxedifaspeciesmovesinandoutofthesamplesiterandomlywithrespectto samplevisits(MacKenzieetal.2006).Whenclosureisviolated,apparentoccupancy shouldbeinterpretedasuseratherthantrueoccupancy(MacKenzieetal.2006).

Giventhehighmobilityofbatsandoursamplingmethodology,weinterpretour datatobeindicativeofuseratherthanoccupancyastheareasampledbyanacoustic detectorisnotconstantlyoccupiedbyaspecies.Underthisinterpretation,probabilityof detection( p)isafunctionoftheprobabilitiesthatthespeciesisavailabletobedetected andthatthespeciesisdetectedandidentifiedcorrectly.Thesetwocomponentsarenot separatelyestimable,butjointlyaccountforbothsourcesofimperfectdetectabilityto allowanunbiasedestimateofsiteuse.

Violationofthemisclassificationassumptioncouldleadtopositivelybiased estimatesofsiteuseifaspeciesthatisnotpresentisrecordedaspresent(RoyleandLink

2006).Forthemajorityofthespeciesinvestigated,distinctecholocationcallsmake misclassificationunlikely.However,echolocationcallsfrom Macrotus californicus and

Myotis californicus aresimilarandestimatesofsiteuseforthesetwospeciesmaybe confounded.

52 Todetermineifsamplingatthedetectorsitescalewasexhaustive,weused

MacKenzieetal.’s(2006)approachforcalculatingΨ condl ,theprobabilityasitewasused byaspecies,givenitwasneverdetectedduringthefivenightsamplingperiod,usingthe followingequation:

5 Ψ∑ 1( − p j ) j=1 Ψcondl = 5 1( − Ψ) + Ψ∑ 1( − p j ) j=1 where pjistheprobabilityofdetectionandΨistheprobabilityofsiteuse.Theassociated standarderrorestimateswerecalculatedusingtheapproximateasymptoticvariancefrom thedeltamethod(MacKenzieetal.2006;pg.98).Thisallowedustodeterminethe probabilitythatnondetectionsinthepresenceabsencematrixusedinthenestedness analysisrepresentedtrueabsencesofspecies.

Wereliedonexaminationofspeciesaccumulationcurvestodeterminethat samplingonislandswasexhaustive(AppendixB).

Nested subset structure analysis

WeestimatednestednessusingtheprogramBinMatNest(RodríguezGironésand

Santamaría2006),whichusesageneticalgorithmtomaximallypackthebinary presenceabsencematrixandcalculatesauniquelydefinedisoclinethatminimizes nestednesstemperature.Temperaturesof0 °representperfectlyorderedornested matricesandtemperaturesof100 °representperfectlydisorderedmatrices(Atmarand

Patterson1993,RodríguezGironésandSantamaría2006).Inthearchipelagoanalysis, rowsrepresentislandsandpresenceabsencedatafromdetectorsiteswithinislandsare

53 aggregated.Forthepeninsularanalysis,rowsrepresentindividualdetectorsampling sites.

Wecomparedestimatednestednesstemperatureofourmatrixto1,000Monte

Carlosimulationsgeneratedwithaconstrainednullmodel(nullmodel3)thataccounts fortheincidencesofspecies(columntotals)andrichnessesofislands(rowtotals)while samplingthenullspaceuniformly(Bascompteetal.2003,RodríguezGironésand

Santamaría2006).Thereislittleagreementonwhichnullmodelismostappropriatefor estimatingsignificanceofnestedsubsetpatterns(GotelliandGraves1996,Wrightetal.

1998,BrualdiandSanderson1999,Jonsson2001,FischerandLindenmayer2002,

RodríguezGironésandSantamaría2006).Wechoseaconstrainednullmodelbecause webelievebuildingmorebiologicalrealismintothenullmodelprovidesamore meaningfultestofthesignificanceofnestednessbyminimizingTypeIerrors(Brualdi andSanderson1999,RodríguezGironésandSantamaría2006,butseeJonsson2001).In addition,nullmodel3islesspronetoTypeIandIIerrorsthannullmodel1

(unconstrainedrowandcolumntotals)(AtmarandPatterson1993)andnullmodel2

(constrainedspeciescolumntotals)(FischerandLindenmayer2002),evenwhenthe generatingconstraintscorrespondtoadifferentnullalgorithm(i.e.,null1and2)

(RodríguezGironésandSantamaría2006).However,nullmodel3ispronetoTypeII errorsifthegeneratingconstraintsofthesystemunderinvestigationcorrespondtonull algorithm1,makingitaconservativetestofnestednessifthereisnobiological expectationofconstrainedincidenceandrichnesstotals(RodríguezGironésand

Santamaría2006).

54 Nestedtemperatureisdependentonsizeandfillofthematrix,buttheprobability ofobservingthecalculatednestednessmetricfromchanceisnot(RodríguezGironésand

Santamaría2006).Therefore,werestrictourcomparisonofmatricestointerpretationof the pvaluesfromtheMonteCarlosimulationsanddonotdirectlycomparenestedness temperatures(RodríguezGironésandSantamaría2006).

Selective immigration and extinction on islands

Todeterminecorrelatesofnestedness,weusedSpearmanrankandpartial

Spearmanrankcorrelationtestsoftheorderofislandrowsinthemaximallypacked matrixtoislandareaandisolationranks.PartialSpearmanrankcorrelationtestswere usedtoassessthecorrelationofareaonisolationafteraccountingfortheeffectofthe othervariable(Shipley2000).Islandswithsharedcompositionsweregiventiedranks.

Islandcharacteristicsweremeasuredusinga“headsup”digitizedGISlayer createdinArcview3.2fromLandsat7satelliteimages(Table3.1).Wemeasuredthe shortestoverwaterpath(km)totheBajapeninsulausingNearestFeaturesandPath extensiontools(Jenness2004,2005)inArcView3.2asanindexforisolation.This metricallowedforsteppingstonetypemovementsbysummingoverwaterlegsif steppingstonepathsweretheshortestroutetothepeninsula.Thisapproachaccountsfor thepresenceofneighboringislandsiftheyfunctionassteppingstones,butemphasizes theroleoftheBajapeninsulaasthesourcepool.Morecomplexmeasuresofisolation, includingareabasedmetrics,areoftenadvocated(MoilanenandNieminen2002,Bender etal.2003,Matteretal.2005),buttheseapproachesaremoreapplicabletofragmented systemswherethereisnoclearsourcepopulation(MoilanenandNieminen2002).These complexmetricsmayalsobelessappropriateforcommunityquestionsastheyarehighly

55 sensitivetomovementscalesthatvaryamongspecies(Benderetal.2003,Bélisle2005,

Tayloretal.2006).

Toevaluatethecontributionofvagilityofbatstonestedness,weperformeda

Spearmanrankcorrelationoftherankofspeciesorderinthemaximallypackedmatrixto wingaspectratioofspecies,anecomorphologicaltraitthatstronglyrelatestocostof transportduringflight(NorbergandRayner1987).Wingaspectratiovaluesweretaken frompublishedsources(NorbergandRayner1987,Milneretal.1990,Sahleyetal.

1993).AveragevaluesforLasiurinesinNorbergandRayner(1987)wereusedinlieuof availableestimatesfor Lasiurus xanthinus .Aspectratiooftheecomorphologically similar Tadarida brasiliensis wasusedfor Nyctinomops femorosaccus .

Comparison of peninsular and archipelago species composition

Todeterminewhetherspeciesdetectedfrequentlyacrosspeninsularsitesarealso detectedfrequentlyacrossthearchipelago,wecomparedtherankorderofspeciesin nestedmatricesforthepeninsulaandarchipelagowithaSpearmanrankcorrelationtest.

Speciesthatweredetectedonthepeninsulaandneverdetectedonislandsweregivena tiedrankoflastplaceonthearchipelago.SpearmanRankandPartialRankcorrelation analyseswereconductedwithPROCCORRinSASv.9.1.

Sampling artifacts on the archipelago

Becausethenestednessanalysisforarchipelagoaggregatespresenceabsencedata acrossmultipledetectorsitesforlargerislands(n=9),wetestedwhethernestednessof thearchipelagocouldariseasasamplingartifact.Werandomlysampledsingledetectors thatranforfivenightsfromislandswithmultipledetectorsandreranthenestedness

56 analysison20randomlycompiledmatricesusingonlythepresenceabsenceinformation fromsingledetectorsforeachisland.Eachmatrixconsistedof20rowsrepresentingthe sameislandsasinthearchipelagoanalysis,buteachrowrepresentedarandomlyselected detectorfromthatislandratherthantheaggregateofpresenceabsenceinformationfrom alldetectorsiteswithinanisland.Rowsrepresentingsmallislandsthatonlyhadone detectorsite(n=11)wererepeatedineachrun.Thisapproachdoesnotruleoutpassive samplingasamechanismofnestedness,butdoesprovidesomeinsightintothepotential biasfromgreatersamplingeffortonlargerislandstoproducenestedpatterns.

RESULTS

Twelvespeciesofbatweredetectedonislands,including10insectivorous species,1nectarivorousspecies,and1piscivorousspecies(Table3.2).Fifteenspecies weredetectedincoastalhabitatsontheBajapeninsula,including11ofthespecies detectedonislandsand4additionalspeciesofinsectivorousbat(Table3.2).

ArchipelagoNestedness

Themaximallypackedincidencematrix(Table3.3)forthearchipelagohadan estimatednestednesstemperatureofT=10.04,whichwassignificantlylower(p<0.001) thanthemeantemperatureof1,000randomlygeneratedmatrices(T=35.3;SE=0.17) usingnullmodel3.

Nestednessdoesnotappeartobeasamplingartifactfromgreatersamplingeffort onlargerislandsas20runsofmatricescompiledfromrandomlyselectedsingledetectors fromeachislandwerestillsignificantlynested(MeanT=15.68,SE=0.57;Mean p value<0.03,SE=0.001)(Table3.4).

57 SelectiveImmigrationandExtinction

Areaandorderofislandsinthemaximallypackedmatrixwerecorrelated

(Spearmanrankcorrelation ρ=0.72,p<0.0003).Whentheeffectofisolationwas accountedfor,areaandorderofislandswasevenmorestronglycorrelated(partial

Spearmanrankcorrelation ρ=0.82,p<0.0001).Nestedislandorderwasalso significantlyandinverselycorrelatedwithisolationrankwhentheeffectsofareawere accountedfor(partialSpearmanrankcorrelation ρ=0.61,p<0.006),butnot significantotherwise(Spearmanrankcorrelation ρ=0.26,p<0.27).Speciesorderin themaximallypackedmatrixwasnotsignificantlycorrelatedwithwingaspectratiosof bats(Spearmanrankcorrelation ρ=0.13,p<0.69)(Table3.5).

PeninsularSiteUse

Ofthefifteenspeciesdetectedincoastalpeninsularhabitat,wedetectedsix species( Myotis californicus , Pipistrellus hesperus , Macrotus. californicus , Nyctinomops femorosaccus , Antrozous pallidus , Mormoops megalophylla )atgreaterthan50%ofsites

(Table3.6,Figure3.2).Forsevenspecies( Myotis californicus , Pipistrellus hesperus ,

Macrotus californicus , Nyctinomops femorosaccus , Antrozous pallidus , Eptesicus fuscus,

Nyctinomops macrotis ),theprobabilitythataspecieswaspresentatasitewhereitwas neverdetectedwasextremelylow(Table3.6),providingconfidenceintheinterpretation thatfailuretodetectthesespeciesatasiterepresentsatrueabsence.Forthesespecies, theestimatedprobabilityofuseofdetectorsites(Ψ)wasthesameasthenaiveestimate

(Table3.6),whichistheproportionofsitessurveyedwhereaspecieswasdetected

(Mackenzie2006).Forfourspecies( Myotis vivesi, Mormoops megalophylla, Tadarida

58 brasiliensis ,and Leptonycteris curasoae ),detectionprobabilitiesweresufficientlylowto negativelybiasnaiveestimatesofuse(Table3.6).Atthescaleofthedetectorsite, occurrencesmaybemorecommonthanrepresentedinouranalysisforthosespecies.

Estimationforfourspecies( Lasiurus blossevillii, Lasiurus xanthinus, Myotis volans, and

Myotis yumanensis )wasnotpossibleduetosparsedata.

PeninsularNestedness

Useofpeninsularcoastalsitesbybatswassignificantlynested,asthemaximally packedmatrixofdetectionsatpeninsularsites(Table3.7)hadanestimatednestedness temperatureofT=16.64,significantlylower(p<0.001)thanthemeantemperatureof

1,000randomlygeneratedmatrices(T=38.47;SE=0.14)usingnullmodel3.

ComparisonofPeninsularandArchipelagoSpeciesComposition

Therankorderofthespeciesoccurringacrosspeninsularsitesandthearchipelago weresignificantlycorrelated(Spearmanrankcorrelation ρ=0.61,p<0.01),indicating speciesthatcontributedtonestednessonthepeninsulaalsocontributedtonestedness acrossthearchipelago.However,substantialcorrespondencebetweeninsularand peninsularincidenceonlyoccurredforspeciesthatwererarelydetected(occurat<20% sitesorislands)andtwoubiquitousspecies( P. hesperus and N. femorosaccus )(Figure

3.2).Fourspeciesonthepeninsula( E. fuscus, L. blossevillii, M. volans, M. yumanensis ) wereneverdetectedonislandsandonerareinsularspecies( Eumops sp. )wasnever detectedonthepeninsula.

59 DISCUSSION

Assemblagesofbatsweresignificantlynestedacrossthearchipelagoandacross sitesonthepeninsula,indicatingnestednessofbatfaunascanoccurinbothinsularand contiguouslandscapes.Thepresenceofnestednessinboththearchipelagoand peninsularlandscapessuggeststhatdifferentmechanismsmaycreatenestednesspatterns atmultiplespatialscales(HartleyandKunin2003).Forthearchipelago,nestedness suggestscommunitycompositionisstructuredacrossislandsinapredictablemannerthat canberelatedtoislandcharacteristics(PattersonandAtmar1986,Lomolino1996).

Acrosspeninsularsites,inferenceislimitedtolocalinfluencesondiversityratherthan associatedwithregionalinfluenceslikecolonizationandextinction(Cooketal.2004).

Otherstudieshavealsofoundthatnestednessoccursatmultiplespatialscales(Cooket al.2004,Sfenthourakisetal.2004).

Wedidnotexpecttoobservenestednessatpeninsularsites,becauseunlikethe archipelagoscalewheremechanismsthatstructurecommunitycompositionmaybe associatedwithislandcharacteristics,sitesonthepeninsulaoccurredinsimilarhabitats thatlackedadistinctgradientinconditions.Acrosslocalsites,nestednessshouldbe associatedwithagradientinspeciestolerancesforhabitatvariablesorenvironmental conditions(Cooketal.2004).Inthisstudy,peninsularsiteswerechosenwithoutsucha habitatfilterinmind.

Nestednesspatternsatpeninsularsitesmayhavebeenassociatedwithan unidentifiedenvironmentalgradientorhabitatheterogeneitythataffecteduseofsitesor simplyfromalackofothertypesofcompositionstructuringmechanisms,like competition,thatleadtohighlydisorderedmatrices(e.g.,checkerboards).Species

60 turnover(betadiversity)istypicallylowinbatassemblagesbecausevagilityassociated withflightallowsforoverlappinghomeranges(Pattersonetal.2002).Sixspecieswere detectedatgreaterthan50%ofpeninsularsites(Figure3.2)andthesimilarityinsiteuse amongthesespecieshadastronginfluenceonnestedness.Consistentwiththepassive samplinghypothesis,nestedpatternsmayarisefromrandomplacementofindividuals fromspecieswithdifferentabundancedistributions(Cutler1994,Higginsetal.2006).

Ourresultsprovidesomeevidencethatnestednessmayoccurinecologicalcommunities evenwithoutapparentunderlyingfactors(SimberloffandMartin1991).Nestedness analysismaybeusefulforexaminingpatternsofcommunitycomposition,butwecaution againstmakinginferencestodeterministicmechanismsbasedsolelyonpresenceof nestedness.

Forthearchipelago,weexaminedpotentialprocessesaffectingnestednessby analyzingtherelationshipofislandcharacteristicstonestedness(Lomolino1996).

Selectiveimmigrationandextinctionlikelyplayimportantrolesinshapingthisinsular batassemblageasdemonstratedbythestrongcorrelationbetweenareaandisolationwith theorderofislandsinthenestedmatrix(Table3.3).Thestrongnestednesspatternand correlationwithbothareaandisolationtonestednesssuggestsbatvagilityand persistenceabilityarepositivelycorrelated(WrightandReeves1992,Lomolino2000b).

Ourresultshighlightthatimmigrationandextinctionmaybothcontributetonested patternsratherthanassumingfaunalsystemsmustbedrivenbyoneortheother

(Lomolino1986,1996).

Thefactthatimmigrationandextinctionarebothimportantmechanismsbehind nestednessmayhelpexplainwhywefailedtodetectarelationshipbetweenwingaspect

61 ratioandspeciesrankinthenestedmatrix.Areahadthestrongestassociationwith nestedrank,indicatingthatpersistencemayhaveastrongerinfluencethanvagilityon compositionpatterns.Nestedorderofspeciesappearstobeacombinationofvagility andpersistenceandnoteasilysummarizedbyasimpleecomorphologicaltraitrelatingto costofflight.

Othermechanismssuggestedtocreatenestednessincludehabitatnestednessand samplingartifacts.Thehabitatnestednesshypothesisissimilartothehabitatdiversity– areahypothesisthatstatesthathigherrichnessonlargerislandsisduetogreaterhabitat diversity,notarea per se (Cutler1994).Habitatnestednessassociatedwithstepwise changesindrainagemorphologyasislandareaincreaseshasbeensuggestedasalikely mechanismdrivingnestedbirddistributionsonBajaislands(Cody1983,Codyand

Velarde2002).Increasingtopographicalandhabitatdiversitywithislandsizecould contributetotheassociationbetweenislandsizeandnestednessofbatcommunities,if somespeciesrequiregreatertopographicaldiversityforroostinghabitatandgreater vegetationdiversityforforaginghabitat.

Wedeterminednestednesswasnotlikelyduetosamplingartifactsbyshowing thatnestedpatternsoccurredevenwhenwerandomlysampledsingledetectorsfrom largerislands(Table3.4).Thisdoesnoteliminatethepossibilitythatpassivesampling maycontributetonestedpatternsifwidespreadspeciesalsohavemuchhigher abundancesandtherebyhavehigherdetectionprobabilities(Higginsetal.2006).Butif passivesamplingwereresponsiblefornestedness,wewouldnotexpectstrong associationsbetweenareaandisolationandthenestedorderofislands.These

62 associationssuggestselectiveimmigrationandextinctionareimportantforcesin structuringcompositionpatternsinthissystem(Lomolino1996).

Thenestednesspatternssuggestareaandisolationinfluencespeciescomposition aswellastotalrichnessonislands(MacArthurandWilson1967).Thismayhave importantconservationimplicationsifcompositionandfocalspecieshavepredictable distributionsbasedonislandorpatchcharacteristics(WrightandReeves1992).

Nestednessmayproveusefulasastartingpointforidentifyingpotentialconservation concerns,butgiventhatnestednessmayoccurfrommultiplemechanisticexplanations andthatspeciestraitsmaynotbeeasilycorrelatedwithrankinginanestedmatrix,we agreethatautecologicaldetailsshouldbeconsideredforrobustconservationdecision making(Boecklen1997,Donlanetal.2005).

ComparisonofPeninsularandInsularComposition

ResultsfromthetestofSpearmanrankcorrelationonnestedorderofspeciesin theinsularandpeninsularmatricessuggestthatthesamespeciescontributetonestedness inbothlandscapes.Thiscorrelationseemstobedominatedbyfourspeciesthatwere rarelydetectedonthepeninsulaandonthearchipelago(Figure3.2).Onlytwospecies werecommonlydetectedonboththepeninsulaandarchipelago(Figure3.2).The remainingspecieswereeithercommonlydetectedonthepeninsulaanduncommonly detectedonthearchipelagoorviceversa.Forourpurposes,wedefinecommonas occurringatgreaterthan50%ofsitesorislandsanduncommonasoccurringatlessthan

50%.Althoughfourspeciesdetectedonthepeninsulawereneverdetectedonislands, therewasnotastrongtendencytobemorewidespreadonthepeninsulaasnearlyhalfthe specieshadhigherincidencesonislandsthanacrosspeninsularsites(Figure3.2).

63 Theabsenceof E. fuscus fromislandsissurprisingconsideringitiscapableof dispersinglongdistances(Hollandetal.2006,Neubaumetal.2006)insomelandscapes.

Accesstopermanentfreshwatermaybeanimportantfactorinrestrictingthedistribution ofthisspeciesindesertlandscapes(Carpenter1969,Kurtaetal.1990).Peninsular habitatswerestructurallysimilartoislandhabitats,withtheexceptionthattheytendedto supportregularaccesstofreshwaterintheformofspringboxesforlivestock andnatural tinajas .

Ofthesevenspeciesthatweremorefrequentlydetectedonthearchipelago,four belongtotheMolossidae,afamilycharacterizedbyhighflyingspeciesadaptedforlong distanceforaging(NorbergandRayner1987).Themigratory L. curasoae wasalso detectedonmoreislands(85%)thanestimatedtooccuronsitesonthepeninsula(53% afteraccountingforimperfectdetectability).Thisspeciesisknowntocommutelong distancesbetweenroostsandforaginggrounds(Sahleyetal.1993,Horneretal.1998b).

M. vivesi ,theendemicfisheatingbat,occurredonall20islands,butwasonlydetectedat

26%ofpeninsularsites.Accountingforimperfectdetectionprobabilitiesatpeninsular sites,theestimatedproportionofsitesusedby M. vivesi wasstillonly53%(Table3.6).

Itappearsthatspeciesthatweremorefrequentlydetectedonthearchipelagothanthe peninsulahavehighvagilityoruniquenaturalhistories(i.e.,piscivory).

Usingpresenceabsencematricestoanalyzecommunitycompositionpatternshas alonghistoryincommunityecology,butlittleattentionhasbeenpaidtotheimpactof imperfectdetectabilityonobservedincidencepatterns.Imperfectdetectabilitycouldlead tofalseabsencesinthepresenceabsencematrixifspecieswerepresentbutnotdetected

64 atsites.Wefoundformostbatspeciesinourassemblagethatfivenightsofacoustic samplingwassufficienttoadequatelydeterminepresenceofspeciesatlocalsites.

Ourresearchraisesinterestingquestionsabouttheunderlyingmechanismsbehind theassemblyofdesertbatcommunities.Agradientinspeciesimmigrationabilitiesand extinctionvulnerabilitiesappearstocontributetocompositionpatternsintheinsular landscapewestudied.Thenestednessofcommunitiesatsitesincontiguouscoastal habitatsindicatestheprevalenceofnestedpatternsatdifferentspatialscalesandin differentlandscapes.

65

LITERATURECITED

Anthony,E.L.P.1988.Agedeterminationinbats.Pages4758 in T.H.Kunz,editor. Ecologicalandbehavioralmethodsforthestudyofbats.SmithsonianInstitution Press,Washington,D.C.,USA.

Atmar,W.,andB.D.Patterson.1993.Themeasureoforderanddisorderinthe distributionofspeciesinfragmentedhabitats.Oecologia96:373382.

Bahre,C.J.,andL.Bourillón.2002.HumanimpactintheMidriffislands.Pages383406 in T.J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyof theSeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Bascompte,J.,P.Jordano,C.J.Melián,andJ.M.Olesen.2003.Thenestedassemblyof plantanimalmutualisticnetworks.ProceedingsoftheNationalAcademyof SciencesUSA100:93839387.

Bélisle,M.2005.Measuringlandscapeconnectivity:Thechallengeofbehavioral landscapeecology.Ecology86:19881995.

Bender,D.J.,L.Tischendorf,andL.Fahrig.2003.Usingpatchisolationmetricsto predictanimalmovementinbinarylandscapes.LandscapeEcology18:1739.

Boecklen,W.J.1997.Nestedness,biogeographictheory,andthedesignofnature reserves.Oecologia112:123142.

Bolger,D.T.,A.C.Alberts,andM.E.Soulé.1991.Occurrencepatternsofbirdspecies inhabitatfragments:Sampling,extinction,andnestedspeciessubsets.The AmericanNaturalist137:155166.

Brualdi,R.A.,andJ.G.Sanderson.1999.Nestedspeciessubsets,gaps,anddiscrepancy. Oecologia119:256264.

Calmé,S.,andA.Desrochers.1999.Nestedbirdandmicrohabitatassemblagesina peatlandarchipelago.Oecologia118:361370.

66 Cam,E.,J.D.Nichols,J.E.Hines,andJ.R.Sauer.2000.Inferencesaboutnestedsubsets structurewhennotallspeciesaredetected.Oikos91:428434.

Carpenter,R.E.1969.Structureandfunctionofthekidneyandthewaterbalanceof desertbats.PhysiologicalZoology42:288302.

Carreño,A.L.,andJ.Helenes.2002.Geologyandagesoftheislands.Pages1440 in T. J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyofthe SeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Cody,M.L.1983.Thelandbirds.Pages210245 in T.J.CaseandM.L.Cody,editors. IslandBiogeographyintheSeaofCortéz.UniversityofCaliforniaPress, Berkeley,California,USA.

Cody,M.L.,R.Moran,J.Rebman,andH.Thompson.2002.Plants.Pages63111 in T. J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyofthe SeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Cody,M.L.,andE.Velarde.2002.Landbirds.Pages271312 in T.J.Case,M.L.Cody, andE.Ezcurra,editors.ANewIslandBiogeographyoftheSeaofCortés.Oxford UniversityPress,NewYork,NewYork,USA.

Conroy,C.J.,J.R.Demboski,andJ.A.Cook.1999.Mammalianbiogeographyofthe AlexanderArchipelagoofAlaska:Anorthtemperatenestedfauna.Journalof Biogeography26:343352.

Cook,R.R.,P.L.Angermeier,D.S.Finn,N.L.Poff,andK.L.Krueger.2004. Geographicvariationinpatternsofnestednessamonglocalstreamfish assemblagesinVirginia.Oecologia140:639649.

Cook,R.R.,andJ.F.Quinn.1995.Theinfluenceofcolonizationinnestedspecies subsets.Oecologia102:413424.

Corben,C.2004.AnapocketAnabatonaPDA,v.2.34.Availableat: http://www.hoarybat.com .

Cutler,A.1994.Nestedbiotasandbiologicalconservation:Metrics,mechanisms,and meaningofnestedness.LandscapeandUrbanPlanning28:7382.

67 Darlington,P.J.1957.Zoogeography:Thegeographicaldistributionof.John Wiley&Sons,NewYork,NewYork,USA.

Davidar,P.,K.Yogananad,T.Ganesh,andS.Devy.2002.Distributionsofforestbirds andbutterfliesintheAndamanislands,BayofBengal:Nestedpatternsand processes.Ecography25:516.

Donlan,C.J.,J.Knowlton,D.F.Doak,andN.Biavaschi.2005.Nestedcommunities, invasivespeciesandHoloceneextinctions:Evaluatingthepowerofapotential conservationtool.Oecologia145:475485.

Fischer,J.,andD.B.Lindenmayer.2002.Treatingthenestednesstemperaturecalculator asa"blackbox"canleadtofalseconclusions.Oikos99:193199.

Fischer,J.,andD.B.Lindenmayer.2005.Nestednessinfragmentedlandscapes:Acase studyonbirds,arborealmarsupialsandlizards.JournalofBiogeography32:1737 1750.

Gehrt,S.D.,andJ.E.Chelsvig.2004.Speciesspecificpatternsofbatactivityinan urbanlandscape.EcologicalApplications14:625635.

Gotelli,N.J.,andG.R.Graves.1996.Nullmodelsinecology.SmithsonianInstitution Press,WashingtonD.C.,USA.

Greve,M.,N.J.M.Gremmen,K.J.Gaston,andS.L.Chown.2005.Nestednessof SouthernOceanislandbiotas:Ecologicalperspectivesonabiogeographical conundrum.JournalofBiogeography32:155168.

Hartley,S.,andW.E.Kunin.2003.Scaledependencyofrarity,extinctionrisk,and conservationpriority.ConservationBiology7:15591570.

Hausdor,B.,andC.Hennig.2003.NestednessofnorthwestEuropeanlandsnailranges asaconsequenceofdifferentialimmigrationfromPleistoceneglacialrefuges. Oecologia135:102109.

Hayes,J.P.1997.Temporalvaritioninactivityofbatsandthedesignofecholocation monitoringstudies.JournalofMammalogy78:514524.

68 Higgins,C.L.,M.R.Willig,andR.E.Strauss.2006.Theroleofstochasticprocessesin producingnestedpatternsofspeciesdistributions.Oikos114:159167.

Holland,R.A.,K.Thorup,M.J.Vonhof,W.W.Cochran,andM.Wikelski.2006.Bat orientationusingEarth'smagneticfield.Nature444:702.

Horner,M.A.,T.H.Fleming,andC.T.Sahley.1998.Foragingbehaviourandenergetics ofnectarfeedingbat,Leptonycteriscurasoae(Chiroptera:Phyllostomidae). JournalofZoology(London)244:575586.

Jenness,J.2004.Nearestfeatures(nearfeat.avx)extensionforArcView3.x,v.3.8a. JennessEnterprises.Availableat: http://www.jennessent.com/arcview/nearest_features.htm .

Jenness,J.2005.Path,withdistancesandbearings(pathfind.avx)extensionforArcView 3.x,v.3.2.JennessEnterprises.Availableathttp://www.jennessent.com/path.htm .

Jonsson,B.G.2001.Anullmodelforrandomizationtestsofnestednessinspecies assemblages.Oecologia127:309313.

Kadmon,R.1995.Nestedspeciessubsetsandgeographicisolation:Acasestudy. Ecology76:458465.

Kurta,A.,T.H.Kunz,andK.A.Nagy.1990.Energeticsandwaterfluxoffreeranging bigbrownbats( Eptesicus fuscus )duringpregnancyandlactation.Journalof Mammalogy71:5965.

Lomolino,M.V.1986.Mammaliancommunitystructureonislands:Theimportanceof immigration,extinctionandinteractiveeffects.BiologicalJournaloftheLinnean Society28:121.

Lomolino,M.V.1996.Investigatingcausalityofnestednessofinsularcommunities: Selectiveimmigrationsorextinctions?JournalofBiogeography23:699703.

Lomolino,M.V.2000.Aspeciesbasedtheoryofinsularzoogeography.GlobalEcology andBiogeography9:3958.

69 Loo,S.E.,R.MacNally,andG.P.Quinn.2002.Anexperimentalexaminationof colonizationasageneratorofbioticnestedness.Oecologia132:118124.

MacArthur,R.H.,andE.O.Wilson.1967.Thetheoryofislandbiogeography.Princeton UniversityPress,Princeton,NewJersey,USA.

MacKenzie,D.I.,J.D.Nichols,G.B.Lachman,S.Droege,J.A.Royle,andC.a. Langtimm.2002.Estimatingsiteoccupancyrateswhendetectionprobabilitiesare lessthanone.Ecology83:22482255.

MacKenzie,D.I.,J.D.Nichols,J.A.Royle,K.H.Pollock,L.L.Bailey,andJ.E.Hines. 2006.Occupancyestimationandmodeling:Inferringpatternsanddynamicsof speciesoccurrence.Elsevier,Inc.,SanFrancisco,California,USA.

MartínezMorales,M.A.2005.Nestedspeciesassemblagesasatooltodetectsensitivity toforestfragmentation:Thecaseofcloudforestbirds.Oikos108:634642.

Matter,S.F.,T.Roslin,andJ.Roland.2005.Predictingimmigrationoftwospeciesin contrastinglandscapes:Effectsofscale,patchsizeandisolation.Oikos111:359 367.

McAbendroth,L.,A.Foggo,S.D.Rundle,andD.T.Bilton.2005.Unravelling nestednessandspatialpatterninpondassemblages.JournalofAnimalEcology 74:4149.

Messina,T.2004.TheNevadabattechnicalnotesarchive:Remotetransducersfor Anabats,Availableat:http://home.earthlink.net/~nevadabat/ Remote/ExtCableFab.html.

Milner,J.,C.Jones,andJ.K.Jones,Jr.1990. Nyctinomops macrotis .Mammalian Species355:14.

Moilanen,A.,andM.Nieminen.2002.Simpleconnectivitymeasuresinspatialecology. Ecology83:11311145.

Neubaum,D.J.,T.J.O'Shea,andK.R.Wilson.2006.Autumnmigrationandselection ofrockcrevicesashibernaculabybigbrownbatsin.Journalof Mammalogy87:470479.

70 Norberg,U.M.,andJ.M.V.Rayner.1987.Ecologicalmorphologyandflightinbats (Mammalia;Chiroptera):Wingadaptations,flightperformance,foragingstrategy andecholocation.PhilosophicalTransactionsoftheRoyalSocietyofLondonB BiologicalSciences316:335427.

O’Farrell,M.J.,B.W.Miller,andW.L.Gannon.1999.Qualitativeidentificationof freeflyingbatsusingtheAnabatdetector.JournalofMammalogy80:1123.

Parsons,S.,A.M.Boonman,andM.K.Obrist.2000.Advantagesanddisadvantagesof techniquesfortransformingandanalyzingchiropteranecholocationcalls.Journal ofMammalogy81:927938.

Patterson,B.D.1987.Theprincipleofnestedsubsetsanditsimplicationsforbiological conservation.ConservationBiology1:323334.

Patterson,B.D.,andW.Atmar.1986.Nestedsubsetsandthestructureofinsular mammalianfaunasandarchipelagos.BiologicalJournaloftheLinneanSociety 28:6582.

Patterson,B.D.,andW.Atmar.2000.Analyzingspeciescompositioninfragments. in G. Rheinwald,editor.IsolatedVertebrateCommunitiesintheTropics,Proc.4thInt. Symp.,Bonn.Zool.Monogr.46,pp.924.

Patterson,B.D.,M.R.Willig,andR.D.Stevens.2002.Trophicstrategies,niche partitioning,andpatternsofecologicalorganization.Pages536579 in T.H.Kunz andM.B.Fenton,editors.BatEcology.TheUniversityofChicagoPress, Chicago,Illinois,USA.

Racey,P.A.1988.Reproductiveassessmentinbats. in T.H.Kunz,editor.Ecological andBehavioralMethodsfortheStudyofBats.SmithsonianInstitutePress, WashingtonD.C.,USA.

RodríguezGironés,M.A.,andL.Santamaría.2006.Anewalgorithmtocalculatethe nestednesstemperatureofpresenceabsencematrices.JournalofBiogeography 33:924935.

Royle,J.A.,andW.A.Link.2006.Generalizedsiteoccupancymodelsallowingforfalse positiveandfalsenegativeerrors.Ecology87:835841.

71 Sahley,C.T.,M.A.Horner,andT.H.Fleming.1993.Flightspeedsandmechanical poweroutputsofthenectarfeedingbat, Leptonycteris curasoae (Phyllostomidae: Glossophaginae).JournalofMammalogy74:594600.

Schnitzler,H.U.,andE.K.V.Kalko.2001.Echolocationbyinsecteatingbats. BioScience51:557.

Sfenthourakis,S.,S.Giokas,andE.Tzanatos.2004.Fromsamplingstationsto archipelagos:Investigatingaspectsoftheassemblageofinsularbiota.Global EcologyandBiogeography13:2335.

Shipley,B.2000.Causeandcorrelationinbiology:Auser'sguidetopathanalysis, structrualequations,andcausalinference.CambridgeUniversityPress, Cambridge,UK.

Shreve,F.1951.ThevegetationoftheSonoranDesert.CarnegieInstituteofWashington Publications591:698700.

Simberloff,D.,andJ.L.Martin.1991.Nestednessofinsularavifaunas:Simplesummary statisticsmaskingcomplexspeciespatterns.OrnisFennica68:178192.

Taylor,P.D.,L.Fahrig,andK.A.With.2006.Landscapeconnectivity:Areturntothe basics.Pages2943 in K.CrooksandM.A.Sanjayan,editors.Connectivity Conservation.CambridgeUniversityPress,NewYork,NewYork,USA.

Tyre,A.J.,B.Tenhumberg,S.A.Field,D.Niejalke,K.Parris,andH.P.Possingham. 2003.Improvingprecisionnandreducingbiasinbiologicalsurveys:Estimating falsenegativeerrorrates.EcologicalApplications13:17901801.

Wethered,R.,andM.J.Lawes.2005.Nestednessofbirdassemblagesinfragmented Afromontaneforest:Theeffectofplantationforestryinthematrix.Biological Conservation123:125137.

Wiens,J.1989.Spatialscalinginecology.Functionalecology3:385397.

Wiggins,I.L.1980.FloraofBajaCalifornia.StanfordUniversityPress,Stanford, California,USA.

72 Wright,D.H.,B.D.Patterson,G.M.Mikkelson,A.Cutler,andW.Atmar.1998.A comparativeanalysisofnestedsubsetpatternsofspeciescomposition.Oecologia 113:120.

Wright,D.H.,andJ.H.Reeves.1992.Onthemeaningandmeasurementofnestedness ofspeciesassemblages.Oecologia92:416428.

73 Table3.1.Characteristicsof20islandssampledforpresenceofbatspeciesinthe southernGulfofCalifornia,BajaCaliforniaSur,Mexico.Islandsarepresentedinorder ofdescendingsize.

Nested Area Isolation Species Island Matrix (ha) (km) Richness Rank SanJosé 18,494.5 4.75 12 1 Carmen 14,801.4 5.50 9 2 EspirituSanto/PartidaSur 10,367.1 6.21 8 4 SantaCatalina 3,995.6 25.06 5 11 Monserrat 1,902.8 13.66 6 8 SantaCruz 1,315.1 19.81 5 7 Coronados 715.8 2.60 7 6 Danzante 423.7 2.67 8 5 SanFrancisco 419.0 7.16 8 3 SanIldefonso 104.2 10.01 4 12 SanDiego 62.9 19.06 3 18 LasAnimasSur 9.1 16.49 3 19 Cayo 6.7 6.22 4 13 GalerasEast 5.4 16.40 4 16 Pardo 4.3 0.36 5 10 Tijeras 4.0 1.90 4 14 Islitas 3.3 0.41 4 15 GalerasWest 3.2 16.77 3 20 Gallina 2.0 7.18 6 9 Blanco 1.3 0.84 4 17

Table3.2.BatspeciesdetectedduringsamplingonsouthernislandsintheGulfofCaliforniaandcoastalhabitatsoftheBaja peninsula.ForagingguildclassificationsfollowSchnitzlerandKalko(2001).

No. No. Species Species Islands Peninsular ForagingGuild RoostingGuild Code Occupied SitesUsed Family:Mormoopidae Mormoops megalophylla MOME 3 16 edge&gapinsectivore caveobligate Family:Phyllostomidae Macrotus californicus MACA 6 23 narrowspaceinsectivore caveobligate Leptonycteris curasoae LECU 17 13 nectarivore caveobligate Family:Vespertilionidae Antrozous pallidus ANPA 5 19 narrowspaceinsectivore cave&crevice Eptesicus fuscus EPFU 0 11 edge&gapinsectivore crevice Lasiurus blossevillii LABL 0 4 edge&gapinsectivore foliage Lasiurus xanthinus LAXA 2 1 edge&gapinsectivore foliage Myotis californicus MYCA 7 26 edge&gapinsectivore crevice Myotis volans MYVO 0 1 edge&gapinsectivore crevice Myotis yumanensis MYYU 0 1 edge&gapinsectivore crevice Myotis vivesi MYVI 20 7 piscivore crevice Pipistrellus hesperus PIHE 14 25 edge&gapinsectivore crevice Family:Molossidae Eumops sp. EUSP 1 0 openspaceinsectivore crevice Nyctinomops femorosaccus NYFE 19 23 openspaceinsectivore crevice Nyctinomops macrotis NYMA 7 4 openspaceinsectivore crevice Tadarida brasiliensis TABR 11 6 openspaceinsectivore cave&crevice 74

Table3.3.Maximallypackednestedmatrixofinsularbatspecieson20islandsintheGulfofCalifornia,BajaCaliforniaSur, Mexico.EspirituSantoincludesPartidaSur.SpeciescodesareprovidedinTable3.2.

MYVI NYFE LECU PIHE TABR MYCA NYMA MACA ANPA MOME LAXA EUSP SanJosé 1 1 1 1 1 1 1 1 1 1 1 1 Carmen 1 1 1 1 0 1 1 1 1 1 0 0 SanFrancisco 1 1 1 1 1 1 1 1 0 0 0 0 EspirituSanto 1 1 1 1 1 1 1 1 0 0 0 0 Danzante 1 1 1 1 0 1 1 1 0 1 0 0 Coronados 1 1 1 1 1 1 0 1 0 0 0 0 SantaCruz 1 1 0 1 0 0 0 0 1 0 1 0 Monserrat 1 1 1 1 0 0 1 0 1 0 0 0 Gallina 1 1 1 1 1 1 0 0 0 0 0 0 Pardo 1 1 1 1 1 0 0 0 0 0 0 0 SantaCatalina 1 0 1 1 0 0 1 0 1 0 0 0 SanIldefonso 1 1 1 0 1 0 0 0 0 0 0 0 Cayo 1 1 1 0 1 0 0 0 0 0 0 0 Tijeras 1 1 1 0 1 0 0 0 0 0 0 0 LasIslitas 1 1 0 1 1 0 0 0 0 0 0 0 GalerasEast 1 1 1 0 1 0 0 0 0 0 0 0 Blanco 1 1 1 1 0 0 0 0 0 0 0 0 SanDiego 1 1 0 1 0 0 0 0 0 0 0 0 LasAnimasSur 1 1 1 0 0 0 0 0 0 0 0 0 GalerasWest 1 1 1 0 0 0 0 0 0 0 0 0 75

76

Table3.4.Nestedtemperaturesandassociated pvaluesfor20matricescompiledusing randomlyselecteddetectorsfromeachisland. Pvaluesgeneratedfrom1,000Monte Carlosimulationsusingnullalgorithm3.

Run NestedTemp. pvalue 1 17.93 0.002 2 10.74 0.000 3 14.21 0.001 4 15.89 0.001 5 16.65 0.002 6 12.53 0.000 7 12.71 0.000 8 16.97 0.002 9 15.47 0.003 10 19.63 0.011 11 13.53 0.002 12 16.63 0.002 13 20.12 0.007 14 19.74 0.019 15 17.12 0.002 16 15.16 0.002 17 14.01 0.000 18 16.92 0.001 19 14.43 0.001 20 13.23 0.000

77

Table3.5.Wingaspectratiosandspeciesrankinthenestedmatrix.

NestedMatrix WingAspect Species Rank Ratio Myotis vivesi 1 7.4 Nyctinomops femorosaccus 2 8.2 Leptonycteris curasoae 3 6.6 Pipistrellus hesperus 4 5.7 Tadarida brasiliensis 5 8.2 Myotis californicus 6 5.6 Nyctinomops macrotis 7 9.7 Macrotus californicus 8 6.4 Antrozous pallidus 9 6.1 Mormoops megalophylla 10 7.1 Lasiurus xanthinus 11 7.5 Eumops sp 12 9.5

78

Table3.6.Estimatesofproportionofsiteuseat27coastalsitesonthepeninsula,Baja CaliforniaSur,Mexico.NaiveΨistheproportionofsiteswhereaspecieswasdetected. EstimationofΨandΨ condl for L. blossevillii, L. xanthinus, M. volans, and M. yumanensis wasnotpossibleduetosparsedata.

Probabilityof Probabilityof ProbabilityofUse, SiteUse Detection GivenNotDetected Naive Species Ψ Ψ SE p SE Ψcondl SE My. californicus 0.96 0.96 0.04 0.83 0.03 0.00 0.005 P. hesperus 0.93 0.93 0.05 0.90 0.03 0.00 0.000 Ma. californicus 0.85 0.85 0.06 0.71 0.04 0.01 0.011 N. femorosaccus 0.85 0.85 0.07 0.72 0.03 0.01 0.008 A. pallidus 0.70 0.70 0.09 0.67 0.05 0.01 0.008 M. megalophylla 0.59 0.66 0.11 0.37 0.06 0.17 0.106 L. curasoae 0.48 0.53 0.11 0.38 0.07 0.10 0.070 E. fuscus 0.41 0.42 0.10 0.53 0.07 0.02 0.014 M. vivesi 0.26 0.53 0.29 0.13 0.08 0.28 0.356 T. brasiliensis 0.22 0.33 0.15 0.20 0.10 0.11 0.132 N. macrotis 0.15 0.16 0.07 0.42 0.12 0.01 0.015 N. blossevillii 0.15 ------L. xanthinus 0.04 ------M. volans 0.04 ------M. yumanensis 0.04 ------

Table3.7.Maximallypackedmatrixof15batspecieson27sitesincoastalpeninsulahabitat,BajaCaliforniaSur,Mexico.

MYCA PIHE NYFE MACA ANPA LECU MOME EPFU MYVI TABR NYMA LABL LAXA MYVO MYYU SE1_AC06 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 SE9_AC08 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 AV4A_AC11 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 AV3_AC09 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 TE11_AC11 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 AV2B_AC10 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 SE3_AC01 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 AV2A_AC04 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 SE2_AC05 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 SE5_AC10 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 SE10_AC07 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 AV2R_AC02 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 SE1_ACH9 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 AV6_AC06 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 AV8_ACH9 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 SE6_AC09 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 TE8_AC07 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 SE4_AC11 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 TE5_AC12 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 TE1_AC09 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 TE3_AC08 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 AV1_AC01 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 TE9_AC05 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 TE2_AC04 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 AV8_ACH7 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 TE4_AC02 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

TE6_AC01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79

80

Figure3.1.Mapofstudyislands(inblack)intheGulfofCalifornia,Mexicoand acousticsamplesites(points)ontheBajapeninsula.Namesofpeninsularregionsfrom northtosouthare:AguaVerde,SanEvaristo,andTecolote.

81

MYCA PIHE

MACA NYFE

ANPA

MOME

LECU

EPFU

MYVI TABR

LABL NYMA

Proportion of Peninsular Sites Used MYVO LAXA MYYU EUSP 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 Proportion of Islands Occupied

Figure3.2.Frequencyofoccurrencesacrosspeninsularsitesandislands.Topleft quadrantcontainsspeciesthatwerefrequentlyfoundatsitesonthepeninsula,but detectedonfewislands.Toprightquadrantcontainsspeciesfrequentlydetectedonboth thepeninsulaandislands.Bottomrightquadrantcontainsspeciesfoundatfewsiteson thepeninsula,butfrequentlydetectedonislands.Bottomleftquadrantcontainsspecies detectedatfewsitesonthepeninsulaandonfewislands.

82

CHAPTER4:PATTERNSOFISLANDOCCUPANCYINBATS:INFLUENCES OFAREAANDISOLATIONONINSULARINCIDENCEOFVOLANT MAMMALS

ABSTRACT

Weinvestigatedtheinfluenceofareaandisolationofislandsonprobabilityof occurrenceofsixbatspecieson32islandsinadesertislandarchipelagoinBaja

California,Mexico.WeextendedLomolino’s(1986)hypothesesaboutpatternsof insularincidencetovolantmammals(bats)usinganinformationtheoretic(AIC)model selectionapproach.Wecomparedfiveapriorimodelstoexplainpatternsofisland occupancy,includingrandompatterns,minimumareaeffects,maximumisolationeffects, additiveareaandisolationeffects,andcompensatoryareaandisolationeffects.Five speciesofinsectivorousbat( Pipistrellus hesperus, Myotis californicus , Macrotus californicus , Antrozous pallidus ,and Mormoops megalophylla )displayedminimumarea thresholdsonincidence,suggestingislandoccupancybythesespeciesislimitedby resourcerequirements.Islandssmallerthan100hatypicallydidnotsupportoccupancy orusebymostinsectivorousspeciesofbats,exceptatminimalisolationdistances.

Minimumareathresholdsonoccupancybybatsmirrorpatternsfoundforoccupancyby birdsinthesamearchipelago.Probabilityofoccurrenceonislandstendedtobelowerat greaterisolationsforsomespecies.Twospeciesofbats( Leptonycteris curasoae and

Myotis vivesi )hadhighlevelsofincidenceacrossislandsofallsizeandisolations, indicatingnoeffectofareaorisolationonthesespeciesfortherangeofvaluesavailable inthisarchipelago.

83 INTRODUCTION

Theequilibriumtheoryofislandbiogeography(MacArthurandWilson1963,

1967)explainspatternsofspeciesrichnessininsularhabitatsintermsofrecurring colonizationandextinctioneventsinecologicaltimescales(Rosenzweig1995).The conceptsoftheequilibriumtheorycanbeextendedtospecieslevelpatternstoinvestigate interspecificdifferencesinhowdistributionsofspeciesareinfluencedbyimmigration andpersistenceabilities(Lomolino1986,PeltonenandHanski1991,Lomolino2000b).

Byfocusingonspecieslevelpatterns,researchquestionsshiftfromcommunitylevel dynamicstopopulationdynamicsofindividualspeciesinametapopulationcontext

(HanskiandGaggiotti2004).

Investigationofpatternsofinsulardistributionsmayprovideinsightintohow speciesvaryinpersistenceandimmigrationabilitiesbydeterminingtheinfluenceofarea andisolationofislandsontheprobabilityofoccurrenceofspecies(Diamond1975,

GilpinandDiamond1981,AdlerandWilson1985,PeltonenandHanski1991,Taylor

1991).FivepotentialpatternsofinsulardistributionswereproposedbyLomolino

(1986),includingrandompatterns,minimumareaeffects,maximumisolationeffects, noncompensatory(oradditive)areaandisolationeffects,andcompensatory(or interactive)areaandisolationeffects(Figure4.1).Eachofthesepatternscorrespondsto abiologicalhypothesisabouttheinfluenceofvagilityandpersistenceabilitiesofspecies onprobabilityofoccurrenceonislands.Withtheexceptionofrandompatterns,these hypothesizeddistributionalpatternscorrespondtodeterministicfactorsassociatedwith characteristicsofspeciesthatshapepatternsofincidenceinpredictableways(Lomolino

2000b).

84 Minimumareaeffects(Figure4.1b)occurwhenincidenceofspeciesbecomes negligibleonislandsbelowathresholdofislandsize(Robbinsetal.1989,Peltonenand

Hanski1991,Hinsleyetal.1996,Watsonetal.2005).Minimumareathresholdssuggest extinctiondynamicsareimportantdeterminantsofincidenceofspecies,aspopulations cannotbesustainedbelowacriticalminimumareaeitherduetodemographic stochasticityorlimitedhabitatavailability(Lomolino1986,Hanski1991,Taylor1991,

GaggiottiandHanski2004).Maximumisolationpatterns(Figure4.1c)suggestincidence ofspeciesisinfluencedbyimmigrationratesviaathresholdresponsesuchthatbeyond someisolationvalueimmigrationratesbecomesufficientlylowastoprevent colonizationorrescueeffects(Lomolino2000b).Dependingontherangeofareaand isolationvaluesinthelandscapeandcapacitiesofthespeciesbeingstudied,thesetwo mechanisms(extinctionorimmigration)mayindependentlyexplainincidenceofspecies.

Iftherangeofareaandisolationvaluesencompassestheextentofpersistenceand immigrationabilities,thenareaandisolationmaybothinfluenceprobabilityof occurrenceonislands(AdlerandWilson1985,Lomolino1986).Theadditive(non compensatory)hypothesis(Figure4.1d)incorporatestheinfluencesofareaandisolation onincidencewhenimmigrationandextinctioneventsarenotinterdependent(Lomolino

1986).Compensatoryeffects(Figure4.1e)occureitherwhenlowimmigrationratesare compensatedbylowextinctionratesorwhenhighextinctionratesarecompensatedby highimmigrationrates,suchthatpresenceonsmallislandsisdependentonisland isolationandpresenceonfarislandsisdependentonislandsize(Lomolino1986,

Lomolinoetal.1989).Compensatorypatternssuggestspecieslevelmanifestationsof theequilibriummodelofislandbiogeographywhereprobabilityofoccurrenceresults

85 fromrecurrentimmigrationandextinctiondynamics(Lomolino1986,Hanskiand

Gaggiotti2004).

Studiesofnonvolantmammalshavedemonstratedthatvagilityincreases compensatoryeffectsbyincreasingimmigrationratesrelativetoextinctionrates(Adler andWilson1985,Lomolino1986,PeltonenandHanski1991).Inthisstudy,weextend

Lomolino’s(1986)hypothesesaboutpatternsofinsulardistributiontovolantmammals

(bats)todeterminefactorsimportantinshapingpatternsofinsularincidenceofhighly vagilemammals.PreviousanalysesontheinsularbatfaunaintheGulfofCalifornia

(Chapters2and3),demonstratethatsizeandisolationofislandsinfluencebothspecies richnessandcommunitycompositionpatterns.Thegoalofthisstudywastodetermine whetherinsularincidenceofbatspeciesisinfluencedbyimmigrationandpersistence abilitiesbyexploringhowareaandisolationofislandsinfluenceincidenceand comparingpatternsamongspecies.

METHODS

StudyRegion

TheGulfofCaliforniainnorthwestMexicocontainsmorethan100islandsand isletsthatrangeinsizefromafewhectaresto1,123km 2(CarreñoandHelenes2002).

IslandvegetationconformstotheSonoranDesert“sarcocaulescent”type(Shreve1951,

Wiggins1980),dominatedbycolumnarcacti( Pachycereus pringlei and Stenocereus thurberias )anddeserttrees( Cercidium , Bursera ,and Jatropha ).

Theclimateoftheregionishotanddrywithunpredictablerainfallaveraging between100and150mmperyear(Codyetal.2002).Veryfewoftheislandshave permanentsourcesoffreshwater,butsomeofthelargerislandsthathavewelldeveloped

86 drainagecourses(i.e., arroyos )haveephemeralfreshwaterinremnantpools(Codyand

Velarde2002).Smallerislands(<200ha)donothavethesurfaceareanorsoiltypeto developdrainagesandtypicallyhavenofreshwaterexceptforephemeralpuddlesafter rainstorms(Codyetal.2002,CodyandVelarde2002).

Mostislandsarecomposedofgraniticorvolcanicrocksandhavesteepterrain

(CarreñoandHelenes2002).Crevicesandsmallcavesareabundantonallislands,but largecavesprobablyonlyoccuronlargerislands.Interiorareasoflargeislandsareonly accessiblebyfootviaarroyosandnarrowcanyons.Apartfromtemporaryfishingcamps onbeaches,almostallislandsareuninhabitedbyhumans(BahreandBourillón2002).

DataCollection

Sampling on islands

Weconductedpresenceabsencesurveysforbatson32islandsintheGulfof

Californiafrom1April to1June,20042006.Wesampledforpresenceofbatspecies oneachislandforafivedayperiodusingpassiveAnabatacousticstations(Titley

Electronics,Australia).On10islands,activehandheldAnapocketacousticmonitoring

(Corben2004)andmistnetsurveyswereconductedtoverifyspeciesdetectedwith passiveacousticstations.Aspecieswasconsideredpresentifitwasdetectedatleast once,withoutdeterminationofbreedingorresidencystatus.Generallyoneislandwas sampledatatime,butoccasionallymultiplesmallislandsweresampledsimultaneously.

Repeatsamplingacrossyearson10islandsdeterminedthatpatternsofspeciesdetection wereconsistentacrossyears,allowingislandssampledindifferentyearstobepooledina singleanalysis.Speciesaccumulationcurves(AppendixB)demonstratesamplingeffort wassufficienttoaccuratelydeterminepresenceofspeciesonislands.

87 Acoustic sampling

Werecordedecholocationsofbatsusingbroadbandultrasonicbatdetectors

(AnabatII;TitleyElectronics)todeterminepresenceofspecies(Hayes1997,O’Farrellet al.1999,GehrtandChelsvig2004).PassivemonitoringstationscontainedanAnabatII detectorattachedtoahighfrequencymicrophonehousedinawaterproofshroudwitha

45 °reflector(Messina2004)mountedona1mtallpole.Thedetectorwasconnectedto anAnabatCompactFlashZeroCrossingsInterfaceModule(TitleyElectonics)recording device.

Thenumberofpassiveacousticstationsplacedonanislandincreasedwithisland size(range:113detectorsperisland).Weplaceddetectorsatrandomlydetermined distancesbetween100and1,000mfromsafeboatlandings.Givenalackofadequatea prioriinformationaboutaccessiblelandings,safelandingswereassessedonarrival.We randomlyselectedlandingsaftercircumnavigatinganislandtodeterminebeachlandings withterrainaccessibleonfoot.Whenadversefieldconditionsprohibitedrandom selection,landingswereselectedhaphazardlyaccordingtoaccessibilityandsafe deployment.Numberoflandingsrangedfrom18perislandandeighteenislands(all lessthan105ha)weresampledwithonlyonedetector.

On10islands,activemonitoringofbatactivitywasconductedatmistnetsurvey locationsusingaspotlightandAnapocketsoftware(Corben2004)onahandheldPDA, whichdisplaysbatcallsastimeversusfrequencygraphsinrealtime.Speciesidentified withvisualconfirmationinthespotlightwereusedtobuildareferencecalllibraryof echolocationsignaturesoffreeflyingbatsandverifypresenceofspeciesdetectedwith passiveacousticdetectors.

88 Mist-net sampling

Mistnetsurveyswereconductedtoverifyidentificationofspeciesdetectedwith acousticsampling,tobuildanecholocationcallreferencelibraryfromhandrelease recordings,andtotrainobserverstorecognizeflightpatternsandbodyshapesinthe spotlightforidentifyingfreeflyingbatswithactivemonitoring.Handreleaserecordings wereconductedusingAnapocket(Corben2004)andabrightspotlight.Batswere releasedandrecordedaslongastheyremainedinconstantviewinthespotlight.

Mistnetsitesonislandswereselectedinattempttomaximizecapturesandwere typicallyplacedindryarroyos(flyways)anddesertscrubhabitatsoroverfreshwater pools( tinajas orspringboxes)whenavailable.Typically,fivedifferentlocationswere sampledoneachisland,exceptintwocaseswhereaccesswaslimited.Weopenedmist netsatsunsetandmonitoredthematleastevery15minutesfor4hours.Capturedbats wereidentifiedtospecies,age,sex,andreproductivestatus(Anthony1988,Racey1988).

Echolocation analysis for species identification

WedevelopedagraphicalanddescriptivekeyofAnabatecholocationcalls

(AppendixA).Anabatusesazerocrossingsanalysis(ZCA)(Parsonsetal.2000)which producesfilesdisplayingecholocationcallsontimefrequencygraphs.Sequenceswere identifiedtospeciesiftheyhadgreaterthantwodiagnosticpulsesthatmetdefined criteriabasedonreferencecalls(seeAppendixA).Anabatfileswererandomlyassigned bydetectornighttothreeobserverstrainedtoidentifycallsusingthekey.Sequences identifiedtospecieswereproofedbytheseniorauthor.

Identifyingecholocationcallscanproducefalsenegativeandfalsepositiveerrors.

Falsenegativeerrors(speciesispresentandnotdetected)occurwhenaspeciesispresent

89 andisrecordedbythedetectorbutthecallisinsufficientlydiagnostictobelabeledas beingproducedbythatspecies.Falsepositiveerrors(speciesisabsentandisfalsely detected)occurwhenanecholocationcallismisclassifiedasaspeciesthatwasnot present.Ourapproachtoclassifyingecholocationcallswasdesignedtominimizeboth falsenegativeandfalsepositiveerrors,butgreateremphasiswasplacedonavoidingfalse positiveerrors.Ingeneral,thespeciesintheassemblagewereeasilyidentifiabletothe specieslevelusingthekey.

DataAnalysis

Species Incidence

Speciesincidencewasestimatedusinglogisticregressionwithbinomialerrors

(Taylor1991,RitaandRanta1993,Crawley2005).Probabilityofoccurrence(p)isthe binomialresponse(0=unoccupied,1=occupied)andthelogitlinktransformationisfit totheresponsevariableintheform:

logit(p)=β0+β 1(X 1)+β 2(X 2)+…β k(X k) whereβ’srepresentparametercoefficientsonthelogitscaleassociatedwithX 1…X k explanatoryvariables.Parametercoefficientswereestimatedusingmaximumlikelihood methods(HosmerandLemeshow1989).

Fivemodelsofincidencewerefitforeachspeciestoinvestigatefactors influencingspeciesspecificoccurrencepatterns,includingnull,areaonly,isolationonly, additiveareaandisolation,andinteractiveareaandisolation(compensatory)models

(Table4.1).

Islandcharacteristicsweremeasuredusinga“headsup”digitizedGISlayer createdinArcview3.2fromLandsat7satelliteimages(Table4.2).Wemeasuredthe

90 shortestoverwaterpath(km)totheBajapeninsulausingNearestFeaturesandPath extensiontools(Jenness2004,2005)inArcView3.2asanindexforisolation.This metricallowedforsteppingstonetypemovementsbysummingoverwaterlegsif steppingstonepathsweretheshortestroutetothepeninsula.Thisapproachaccountsfor thepresenceofneighboringislandsiftheyfunctionassteppingstones,butemphasizes thelikelyroleoftheBajapeninsulaasapredominantsourcepool.

Model Selection and Model Averaging

Tocompareourfiveapriorimodelsonspeciesincidence,weusedAkaike

InformationCriteria(AIC)modelselectioncriteria(BurnhamandAnderson2002).

ModelswererankedbyAIC cvalue(smallsamplesizecorrectionformofAIC)and comparedusingAIC candAIC cmodelweights.TheAIC cvaluesrepresenttherelative supportbetweenthebestapproximatingmodel(AIC min )andeachcompetingmodel

(AIC i).WeconsideredmodelswithAIC c≤2tobestronglycompetingmodels

(BurnhamandAnderson2002).AIC cmodelweightswereusedtoassesstherelative supportofindividualmodels,usingtheformula:

 1  exp− AICci   2  wi = R  1  exp − AICc ∑i=1  i   2 

Toaccountformodeluncertainty,weusedmodelaveraging(BurnhamandAnderson

2002)ofparametercoefficientestimatestodetermineafinalmodelofspeciesincidence.

Modelaveragedparameterestimateswerecomputedas:

5 βˆ = βˆ ( j ) ∑wi( j ) r=1

91 where istheAkaikeweightand βˆ istheparametercoefficientestimatefor wi ( j ) explanatoryvariable jinmodel i.Theunconditionalsamplingvarianceforthemodel averagedparameterestimateswasestimatedas(BurnhamandAnderson2002):

2 ˆ  5 ˆ 2  var β = var βˆ Model + βˆ − β ( ) ∑wˆ i ()j i ( j j )   i=1 

Whenagivenmodeldidnotincludeagivenparameter,thecoefficientvaluewas assumedtobe0(BurnhamandAnderson2002).Allstatisticalanalyseswereconducted inProgramRv.2.4.1.

RESULTS

Logisticregressionmodelswerefitforsixspecies(Table4.1)whoseoccurrences rangedfromthreeto25islandsinthearchipelago.Estimationwasnotpossiblefor

Myotis vivesi ,asthisspeciesoccurredonallislandsexceptone,norfor Lasiurus xanthinus ,whichoccurredononlytwoislands(Figure4.2).

ModelSelectionResults

Area,independentlyorincombinationwithisolation,wasavariableinstrongly competingmodelsforeachoffivespeciesofinsectivorousbat(Table4.1).However,for

Leptonycteris curasoae thenullmodelhadthelowestAIC cvalue;thenullmodelwasnot astronglycompetingmodelforanyotherspecies.ThesumoftheAIC cweightsfor modelswhichincludedareaindicatestrongsupportfortherelativeimportanceofareaas anexplanatoryvariableonincidenceoffivespecies(Table4.3).Themodelselection resultsalsosuggestthatisolationinfluencesoccurrencesofsomespecies.

92 Theadditiveareaandisolationmodelwasthebestfitmodelfor Myotis californicus , Macrotus californicus, Antrozous pallidus, and Mormoops megalophylla

(Table4.1).Probabilityofoccurrenceof Myotis californicus and Macrotus californicus wasstronglyinfluencedbyareaandisolationandtherelationshipbetweenincidenceand areamaydependonthelevelofisolationasthecompensatorymodel(interactivearea andisolation)wasthesecondbestmodelrankedbyAIC c weightsforthesespecies(Table

4.1).For A. pallidus and M. megalophylla , theareaonlymodelhadcompetingsupport fromthedata(i.e.,AIC c <2.0)(Table4.1).Thesespeciesoccurredononlyafew islands( A. pallidus :n=5; M. megalophylla :n=3)(Figure4.2),affectingtheprecision ofourestimatesandlimitingthestrengthofourinferencesaboutpatternsofoccupancy ofthesespecies.

For Pipistrellus hesperus ,allthreemodelsthatincludedarea(areaonly, area*isolation,andarea+isolation)werestronglycompetingmodels(AIC c <2.0)with wivaluessimilarforthethreemodels(Table4.1).Areaappearstohavethestrongest influenceonincidenceofthisspecies,butthismaybedependentonthelevelofisolation

(Figure4.3).

Nospecieshadoverwhelmingsupport( wi>0.90)forasingleapproximating modelonincidenceofspecies.Therefore,wepresentmodelresultsusingmodel averagedparameterestimates,whichaccountfortheuncertaintyinmodelselection

(Table4.4)(BurnhamandAnderson2002).

ModelAveragedParameterEstimates

Modelaveragedestimatesforcoefficientswerepositiveforareaforallspecies andwerenegativeforisolationforallspeciesexcept A. pallidus (Table4.4).This

93 suggeststhatprobabilityofoccurrenceofmostbatspeciestendedtoincreasewithisland size(Figure4.3)anddecreasewithislandisolation(Figure4.4).Thepositiveeffectof isolationonincidencefor A. pallidus (Figure4.4)maybeduetoacombinationofasteep thresholdofminimumareaonoccupancyforthisspeciesandstatisticalleveragecaused byislandsinthesmallestsizeclassesalsobeingtheleastisolated.Confidenceintervals onmostmodelaveragedparameterestimateswerewideduetosmallsamplesizesand fromusingtheunconditionalsamplingvariancetoaccountformodelselection uncertainty(BurnhamandAnderson2002).

DISCUSSION

OuranalysisextendsLomolino’s(1986)hypothesesaboutinsulardistributionsto anothergroupofmammalsanddemonstratesthatvolantmammalsdisplaysimilar patternsofoccupancytononvolantmammalsinrealarchipelagoes.Insulardistributions ofinsectivorousbatsinthisarchipelago(Table4.5)appeartobecharacterizedby minimumareathresholdswithsomeevidencethatisolationmayalsoinfluenceincidence

(Figure4.5).Patternsofislandoccupancybyinsectivorousbatsareconsistentwiththe resultsfromanalysesofrichnessandcompositionofbatcommunitiesinthestudyregion, whichdemonstratedthatbothareaandisolationinfluencerichnessandcomposition,with arearepresentingthestrongestinfluence.

Theinfluenceofislandsizeonthespeciesweexaminedsuggestsextinction dynamicscouldbeimportantindetermininginsulardistributionsofbatsinthissystem.

Mostofthesespeciesdisplayaminimumareathresholdeffectonoccupancy(Figure

4.2),suggestingthatbelowacertainsize,speciesdonotuseislandsorareunableto sustainpopulationsduetolackofhabitatorsmallpopulationdynamics(Hanski1991).

94 Theobservedthresholdsforoccupancyofroughly100haissimilartopatternsof occupancybybreedinglandbirdsinthesamearchipelago(CodyandVelarde2002).

Reducedplantandbirdrichnessonislandsbelow200hainBajaCaliforniahasbeen attributedtothelackofgeologicstructurepermittingformationofcanyonsandarroyos thatincreasebothtopographicalandhabitatdiversity(Codyetal.2002,Codyand

Velarde2002).

Ofthefiveinsectivorousspeciesthatappearsensitivetoareathresholdson occupancy(Figure4.3),twospecies( Macrotus californicus and Antrozous pallidus )are mediumtolargebodiedgleanersoflargearthropods;twospecies( Myotis californicus and Pipistrellus hesperus )aresmallbodiedaerialinsectivores,andonespecies

(Mormoops megalophylla )isalargebodiedaerialinsectivore.Althoughprecisionwas poorfordetectingsignificantparametercoefficientsfor A. pallidus and M. megalophylla duetosmallnumbersofislandsoccupied(n=5and3,respectively),distributionsof thesespeciesappeartobelimitedbyhigherminimumareathresholds(ca.1,000ha)than thoseestimatedforotherspecies.

Inadditiontotheinfluenceofareaonoccupancy,isolationmayalsoinfluence insulardistributionsforsomespecies,butisolationappearstobelessimportantthanarea inshapingincidencepatterns(Table4.3).Inferenceabouttheinfluenceofisolationon insularincidenceishamperedbywideconfidenceintervalsofmodelaveragedestimates oftheisolationcoefficient.Equivocalresultsmaybeduetotherangeofvaluesof isolationbeingfairlymoderateincomparisontovagilityofmanybatspecies.Ageneral trendtowardnegativeinfluenceofisolationonoccupancyofbatsforthemoderatevalues ofisolationthatoccurinthisarchipelagosuggestsomebatsmaybesensitivetomodest

95 distancesbetweenspatiallyseparatedhabitatpatches,especiallyifpatchsizeissmall

(Figure4.3).

Forsmallislands(<100ha)theinfluenceofisolationcouldbemaskedbyvery lowlevelsofoccupancyformostspecies(except M. vivesi , L. curasoae ,and P. hesperus ) duetothethresholdresponseofareaonincidence.Presenceofspeciessuchas P. hesperus onislandssmallerthan100hawithin5kmoftheBajapeninsulamayrepresent occasionalforagingactivityfrompopulationsresidentonthepeninsula.Basedon predictionsfrommodelaveragedestimates,compensatoryeffectsaresuggestedbyhow therelationshipbetweenincidenceandisolationchangesatdifferentlevelsofislandsize forseveralspecies(Figure4.4).Inparticular,aninteractionbetweenareaandisolation for P. hesperus isevident,astherelationshipbetweenincidenceandisolationisnegative forislandssmallerthan100ha,butnorelationshipexistsbetweenisolationandincidence forislandsgreaterthan100ha(Figure4.4).Thispatternsupportsthecompensatory hypothesisthatimmigrationratescancompensateforhighextinctionratesforclose, smallislandsandthathighpersistenceonlargeislandscancompensateforlow immigrationratesatgreaterisolations(Lomolino1986).

Isolationappearstoapproachathresholdtypeeffectatdistancesof1015km fromtheBajapeninsulafortwospecies, Myotis californicus and Macrotus californicus

(Figure4.4).For M. megalophylla ,astrongthresholdappearsat5km,butdataforthis speciesarebasedononly3islandoccurrencesandaresuggestiveatbest. A. pallidus has ananomalouspatternofapositiverelationshipbetweenisolationandprobabilityof occupancyduetolowoccurrencesandstatisticalleverage.

96 Useofislandssmallerthan100hawaslargelylimitedtotwononinsectivorous species: Myotis vivesi ,afisheatingbat,and L. curasoae ,anectarfeedingspecies.A regionalendemic, M. vivesi foragesovertheoceanforsmallbaitfish(BloodandClark

1998).Smallrockyislandsprovidehabitatforroostingincloseproximitytoforaging areas(BloodandClark1998),explainingtheprevalenceofthisspeciesacrosstherange ofislandsizeandisolationvaluesinthearchipelago.

L. curasoae ishighlyvagileandcapableofcommutinglongdistancesinanight

(Sahleyetal.1993,Horneretal.1998a).Theisolationdistancesinthisarchipelagodo notappeartoposeasignificantimmigrationfilterforthisspecies.Inaddition,lackofa relationshipbetweenareaanduseofislandsfor L. curasoae demonstratesthatthis speciesiscapableofusingsmallislandsasforagingpatches.Almostallsmallislandsin

Bajahaveatleastafewcardoncacti( P. pringleii ),amajorsourceoffoodforthis nectarivorousbat.Thestationaryandtemporallypredictablenatureofafloralfood sourcemaypermitgreateruseofsmall,spatiallyisolatedresourcepatches.

Habitatqualityorcomplexitycanhaveapositiveinfluenceonincidenceforsome species(AdlerandWilson1985,Thomasetal.2001).Tobetterunderstandthe fundamentalrelationshipsbetweenoccurrencesofbatsandresourceavailability,future studiesshouldfocusonspecifichabitatrelationshipsamongspeciesandhowhabitat differencesonislandsinfluencepatternsofuseandoccupancy.Duetosmallsample sizes,wewereunabletoassesswhetherhabitatdifferencesassociatedwiththenorthern andsouthernsubarchipelagos(seeChapter2)influencedpatternsofoccupancybybats.

Insulardistributionsaregenerallyassumedtobedeterminedbyimmigrationand extinctiondynamicsatboththecommunityandpopulationlevelinecologicaltime

97 scales,butothermechanismsmayalsoplayimportantrolesinshapingincidenceof species,includinginterspecificcompetitionandfunctionalrelationshipsrelatingtoprey orfoodavailability.

98

LITERATURECITED

Adler,G.H.,andM.L.Wilson.1985.SmallmammalsonMassachusettsislands:Theuse ofprobabilityfunctionsinclarifyingbiogeographicrelationships.Oecologia 66:178186.

Anthony,E.L.P.1988.Agedeterminationinbats.Pages4758 in T.H.Kunz,editor. Ecologicalandbehavioralmethodsforthestudyofbats.SmithsonianInstitution Press,Washington,D.C.,USA.

Bahre,C.J.,andL.Bourillón.2002.HumanimpactintheMidriffislands.Pages383406 in T.J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyof theSeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Blood,B.R.,andM.K.Clark.1998. Myotis vivesi .MammalianSpecies588:15.

Burnham,K.,P.,andD.R.Anderson.2002.Modelselectionandmultimodelinference: Apracticalinformationtheoreticapproach,Secondedition.Springer,NewYork, NewYork,USA.

Carreño,A.L.,andJ.Helenes.2002.Geologyandagesoftheislands.Pages1440 in T. J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyofthe SeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Cody,M.L.,R.Moran,J.Rebman,andH.Thompson.2002.Plants.Pages63111 in T. J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyofthe SeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Cody,M.L.,andE.Velarde.2002.Landbirds.Pages271312 in T.J.Case,M.L.Cody, andE.Ezcurra,editors.ANewIslandBiogeographyoftheSeaofCortés.Oxford UniversityPress,NewYork,NewYork,USA.

Corben,C.2004.AnapocketAnabatonaPDA,v.2.34.Availableat: http://www.hoarybat.com .

Crawley,M.J.2005.Statistics:AnintroductionusingR.JohnWiley&Sons,Ltd, London,UK.

99 Diamond,J.M.1975.Assemblyofspeciescommunities.Pages342444 in J.M. DiamondandM.L.Cody,editors.Ecologyandevolutionofcommunities. BelknapPress,Cambridge,Massachusetts,USA.

Gaggiotti,O.E.,andI.Hanski.2004.Mechanismsofpopulationextinction.Pages337 366 in I.HanskiandO.E.Gaggiotti,editors.Ecology,Genetics,andEvolutionof Metapopulations.ElsevierAcademicPress,SanFrancisco,California,USA.

Gehrt,S.D.,andJ.E.Chelsvig.2004.Speciesspecificpatternsofbatactivityinan urbanlandscape.EcologicalApplications14:625635.

Gilpin,M.E.,andJ.M.Diamond.1981.Immigrationandextinctionprobabilitiesfor individualspecies:Relationtoincidencefunctionsandspeciescolonization curves.ProceedingsoftheNationalAcademyofSciencesUSA78:392396.

Hanski,I.1991.Singlespeciesmetapopulationdynamics:Concepts,modelsand observations.BiologicalJournaloftheLinneanSociety42:1738.

Hanski,I.,andO.E.Gaggiotti.2004.Metapopulationbiology:Past,present,andfuture. Pages322 in I.HanskiandO.E.Gaggiotti,editors.Ecology,Genetics,and EvolutionofMetapopulations.ElsevierAcademicPress,SanFrancisco, California,USA.

Hayes,J.P.1997.Temporalvaritioninactivityofbatsandthedesignofecholocation monitoringstudies.JournalofMammalogy78:514524.

Hinsley,S.A.,P.E.Bellamy,I.Newton,andT.H.Sparks.1996.Influencesof populationsizeandwoodlandareaonbirdspeciesdistributionsinsmallwoods. Oecologia105:100106.

Horner,M.A.,T.H.Fleming,andC.T.Sahley.1998.Foragingbehaviourandenergetics ofanectarfeedingbat, Leptonycteris curasoae (Chiroptera:Phyllostomidae). JournalofZoologicalSoceityofLondon244:575586.

Hosmer,D.W.,andS.Lemeshow.1989.Appliedlogisticregression.JohnWiley& Sons,NewYork,NewYork,USA.

100 Jenness,J.2004.Nearestfeatures(nearfeat.avx)extensionforArcView3.x,v.3.8a. JennessEnterprises.Availableat: http://www.jennessent.com/arcview/nearest_features.htm .

Jenness,J.2005.Path,withdistancesandbearings(pathfind.avx)extensionforArcView 3.x,v.3.2.JennessEnterprises.Availableathttp://www.jennessent.com/path.htm .

Lomolino,M.V.1986.Mammaliancommunitystructureonislands:Theimportanceof immigration,extinctionandinteractiveeffects.BiologicalJournaloftheLinnean Society28:121.

Lomolino,M.V.2000.Aspeciesbasedtheoryofinsularzoogeography.GlobalEcology andBiogeography9:3958.

Lomolino,M.V.,J.H.Brown,andR.Davis.1989.Islandbiogeographyofmontane forestmammalsintheAmericanSouthwest.Ecology70:180194.

MacArthur,R.H.,andE.O.Wilson.1963.Anequilibriumtheoryofinsular zoogeography.Evolution17:373387.

MacArthur,R.H.,andE.O.Wilson.1967.Thetheoryofislandbiogeography.Princeton UniversityPress,Princeton,NewJersey,USA.

Messina,T.2004.TheNevadabattechnicalnotesarchive:Remotetransducersfor Anabats,Availableat: http://home.earthlink.net/~nevadabat/Remote/ExtCableFab.html .

O’Farrell,M.J.,B.W.Miller,andW.L.Gannon.1999.Qualitativeidentificationof freeflyingbatsusingtheAnabatdetector.JournalofMammalogy80:1123.

Parsons,S.,A.M.Boonman,andM.K.Obrist.2000.Advantagesanddisadvantagesof techniquesfortransformingandanalyzingchiropteranecholocationcalls.Journal ofMammalogy81:927938.

Peltonen,A.,andI.Hanski.1991.Patternsofislandoccupancyexplainedbycolonization andextinctionratesinshrews.Ecology72:16981708.

101 Racey,P.A.1988.Reproductiveassessmentinbats. in T.H.Kunz,editor.Ecological andBehavioralMethodsfortheStudyofBats.SmithsonianInstitutePress, WashingtonD.C.,USA.

Rita,H.,andE.Ranta.1993.Onanalysingspeciesincidence.AnnalesZoologiciFennici 30:173176.

Robbins,C.S.,D.K.Dawson,andB.A.Dowell.1989.Habitatarearequirementsof breedingforestbirdsoftheMiddleAtlanticstates.WildlifeMonographs103:1 34.

Rosenzweig,M.L.1995.Speciesdiversityinspaceandtime.CambridgeUniversity Press,Cambridge,UK.

Sahley,C.T.,M.A.Horner,andT.H.Fleming.1993.Flightspeedsandmechanical poweroutputsofthenectarfeedingbat, Leptonycteris curasoae (Phyllostomidae: Glossophaginae).JournalofMammalogy74:594600.

Schnitzler,H.U.,andE.K.V.Kalko.2001.Echolocationbyinsecteatingbats. BioScience51:557.

Shreve,F.1951.ThevegetationoftheSonoranDesert.CarnegieInstituteofWashington Publications591:698700.

Taylor,B.1991.Investigatingspeciesincidenceoverhabitatfragmentsofdifferentareas alookaterrorestimation.BiologicalJournaloftheLinneanSociety42:177 191.

Thomas,J.A.,N.A.D.Bourn,R.T.Clarke,K.E.Stewart,D.J.Simcox,G.S.Pearman, R.Curtis,andB.Goodger.2001.Thequalityandisolationofhabitatpatchesboth determinewherebutterfliespersistinfragmentedlandscapes.Proceedingsofthe RoyalSocietyofLondonSeriesB:BiologicalSciences268:17911796.

Watson,J.E.M.,R.J.Whittaker,andD.Freudenberger.2005.Birdcommunityresponse tohabitatfragmentation:Howconsistentaretheyacrosslandscapes?Journalof Biogeography32:13531370.

102 Wiggins,I.L.1980.FloraofBajaCalifornia.StanfordUniversityPress,Stanford, California,USA.

103

Table4.1.Modelselectionresultsforfiveapriorimodelsonincidenceforsixspeciesof bat.ModelsarerankedbyAIC c.K=numberofmodelparameters.

Species Model i wi K Leptonycteris curasoae null 0.000 0.368 1 isolation 0.585 0.275 2 area+isolation 1.809 0.149 3 area 1.813 0.149 2 area*isolation 3.672 0.059 4 Pipistrellus hesperus area 0.000 0.340 2 area*isolation 0.027 0.335 4 area+isolation 0.164 0.313 3 null 7.363 0.009 1 isolation 9.467 0.003 2 Myotis californicus area+isolation 0.000 0.685 3 area*isolation 2.093 0.241 4 area 4.583 0.069 2 null 11.231 0.002 1 isolation 11.236 0.002 2 Macrotus californicus area+isolation 0.000 0.724 3 area*isolation 2.437 0.214 4 area 4.931 0.062 2 null 17.028 0.000 1 isolation 17.810 0.000 2 Antrozous pallidus area+isolation 0.000 0.507 3 area 0.802 0.339 2 area*isolation 2.406 0.152 4 isolation 13.297 0.001 2 null 13.759 0.001 1 Mormoops megalophylla area+isolation 0.000 0.583 3 area 1.820 0.235 2 area*isolation 2.601 0.159 4 null 7.422 0.014 1 isolation 8.399 0.009 2

104

Table4.2.Islandcharacteristicsof32islandsintheGulfofCalifornia,Mexicousedfor analyzingpatternsofspeciesincidence.

Area Isolation Island (ha) (km) Blanco 1.3 0.84 Bota 9.6 2.64 CabezoCaballo 71.0 1.89 Carmen 14,801.4 5.50 Cayo 6.7 6.22 Coronados 715.8 2.60 CoronadosSmith 852.1 2.22 Danzante 423.7 2.67 EspirituSanto/PartidaSur 10,367.1 6.21 GalerasEast 5.4 16.40 GalerasWest 3.2 16.77 Gallina 2.0 7.18 GemelitosEast 3.9 0.82 GemelitosWest 2.4 0.86 Islitas 3.3 0.41 LasAnimasSur 9.1 16.49 Monserrat 1,902.8 13.66 Pardo 4.3 0.36 PartidaNorte 94.0 17.84 Pata 14.5 2.57 Piojo 67.6 4.57 Rasa 59.2 20.75 Salsipuedes 102.6 17.70 SanDiego 62.9 19.06 SanFrancisco 419.0 7.16 SanIldefonso 104.2 10.01 SanJosé 18,494.5 4.75 SanLorenzo 3,632.3 16.31 SantaCatalina 3,995.6 25.06 SantaCruz 1,315.1 19.81 Tijeras 4.0 1.90 Ventana 128.2 3.09

105

Table4.3.Relativevariableimportanceforestimatedparametercoefficients(areaand isolation)basedonthesumof wivaluesofmodelsthatcontainagivenparameter.

Species Area Isolation Leptonycteris curasaoe 0.357 0.483 Pipistrellus hesperus 0.988 0.652 Myotis californicus 0.995 0.928 Macrotus californicus 0.999 0.938 Antrozous pallidus 0.999 0.660 Mormoops megalophylla 0.977 0.751

Table4.4.Modelaveragedparameterestimatesandassociated95%confidenceintervalsinparenthesesfortheeffectsofarea, isolation,andaninteractiontermonincidenceofbatspeciesonislandsinBajaCalifornia,Mexico.Parameterestimatesare reportedinlogits.

Species β0(Intercept) β1(logArea) β2(Isolation) β3(logArea*Isolation) Leptonycteris curasoae 1.39(0.13,2.91) 0.16(0.43,0.75) 0.04(0.15,0.08) 0.00(0.02,0.01) Pipistrellus hesperus 1.16(3.29,0.98) 0.95(0.24,2.14) 0.14(0.49,0.20) 0.04(0.11,0.20) Myotis californicus 2.77(5.28,0.26) 1.63(0.32,2.94) 0.15(0.43,0.13) 0.01(0.08,0.05) Macrotus californicus 5.28(10.34,0.23) 2.62(0.33,4.92) 0.32(0.93,0.29) 0.02(0.12,0.12) Antrozous pallidus 13.90(33.41,5.61) 3.41(1.09,7.92) 0.23(0.50,0.96) 0.02(0.15,0.11) Mormoops megalophylla 7.87(21.16,5.42) 2.98(2.46,8.43) 0.59(3.79,2.62) 0.03(0.54,0.47) 106

107

Table4.5.Traitsofbatspecies,includingforagingandroostingguildclassifications. ForagingguildclassificationsfollowSchnitzlerandKalko(2001).

No.Islands Roosting Species ForagingGuild Occupied Guild Myotis vivesi 31 piscivore crevice Leptonycteris curasoae 25 nectarivore caveobligate Pipistrellus hesperus 17 edge&gapinsectivore crevice Myotis californicus 10 edge&gapinsectivore crevice Macrotus californicus 8 narrowspaceinsectivore caveobligate Antrozous pallidus 5 narrowspaceinsectivore cave&crevice Mormoops megalophylla 3 edge&gapinsectivore caveobligate Lasiurus xanthinus 2 edge&gapinsectivore foliage

108

Figure4.1.Hypotheticaldistributionsofspeciescorrespondingtofivebiological hypothesesaboutpatternsofspeciesincidence(afterLomolino1986).Filledcircles representislandsoccupiedbyaspeciesandopencirclesrepresentunoccupiedislands. Valuesofareaandisolationarefromourdata,butoccupancyishypothetical.(a) Randomdistributionpatternwheretheprobabilityofoccurrenceisnotaffectedbyareaor isolation;(b)Minimumareapatternwhereoccurrenceisonlyonislandsgreaterthana minimumsizethreshold;(c)Maximumisolationpatternwhereoccurrenceisonlyon islandswithinsomedistancethreshold;(d)Noncompensatory(oradditive)patterns whereincidenceisaffectedbybothareaandisolationbyonlyoccurringonbig,close islands;(e)Compensatory(orinteractive)patternswheretherelationshipbetween probabilityofoccurrenceandareadependsontheisolationvalueandtherelationship betweenprobabilityofoccurrenceandisolationdependsonthesizeofanisland.

(a) Random pattern (b) Minimum area (c) Maximum isolation logArea(ha) logArea(ha) logArea(ha) 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 Isolation (km) Isolation (km) Isolation (km)

(d) Non-compensatory (e) Compensatory logArea(ha) logArea(ha) 0 1 2 3 4 0 1 2 3 4 0 5 10 15 20 25 0 5 10 15 20 25 Isolation (km) Isolation (km) Figure4.1. 109

110

Figure4.2.Insulardistributionsofeightspeciesofbaton32islandsintheGulfof California,BajaCalifornia,Mexico.Filledcirclesrepresentoccupiedislands,open circlesrepresentunoccupiedislands.Linesrepresentthepredictedthresholdabove whichprobabilityofoccurrenceis>50%basedonmodelaveragedparameter coefficientsfromlogisticregressionmodels.(a)Myotis vivesi ,afisheatingspecies, showsnorelationshipbetweenoccurrenceandareaandisolationasitoccurson31 islands;(b) Leptonycteris curasoae ;anectarfeedingspecies,occurson25islandsand hasarandompatternofdistributionwithnorelationshiptosizeandisolation;(c) Pipistrellus hesperus ,asmallbodiedinsectivore,displaysacompensatorypatternof distributionwiththerelationshipbetweenprobabilityofoccurrenceandisolation dependentonislandsize;(d) Myotis californicus ,asmallbodiedinsectivore,displaysa patternintermediatebetweenanadditiveandcompensatorypatterndemonstratingthat bothareaandisolationareassociatedwiththeprobabilityofoccurrence;(e) Macrotus californicus ,amediumbodiedinsectivore,displaysapatternverysimilarto My. californicus ,intermediatebetweennoncompensatoryandcompensatorypatterns;(f) Antrozous pallidus ,alargebodiedinsectivore,showsaminimumareaeffecton probabilityofoccurrence;(g) Mormoops megalophylla ,alargebodiedinsectivore,was onlydetectedonthreeislandsthatwerelargeandclosetothepeninsula;(h) Lasiurus xanthinus ,amediumbodiedinsectivore,wasonlydetectedontwoislands.Logistic regressionmodelswerenotfitforeither M. vivesi or L. xanthinus .

(a) Myotis vivesi (b) Leptonycteris curasoae (c) Pipistrellus hesperus (d) Myotis californicus logArea(ha) logArea(ha) logArea(ha) logArea(ha) 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 Isolation (km) Isolation (km) Isolation (km) Isolation (km)

(e) Macrotus californicus (f) Antrozous pallidus (g) Mormoops megalophylla (h) Lasiurus xanthinus logArea(ha) logArea(ha) logArea(ha) logArea(ha) 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 Isolation (km) Isolation (km) Isolation (km) Isolation (km) Figure4.2. 111

Probabilityofoccurrence

log 10 Area Figure4.3.Incidencefunctionsbasedonmodelaveragedparameterestimatesshowingtherelationshipbetweenprobabilityof occurrenceonislandsandislandsizeatfourvaluesofisolationforsixspecies: = L. curasoae ; = P. hesperus ; = My. californicus ; = Ma. californicus ; = A. pallidus ;and = M. mormoops .Pointsalonglinesareusedto distinguishspeciesanddonotrepresentobserveddatavalues.

112

Probabilityofoccurrence

Isolation(km) Figure4.4.Incidencefunctionsbasedonmodelaveragedparameterestimatesshowingtherelationshipbetweenprobabilityof occurrenceandislandisolationatfourvaluesofareaforsixspecies: = L. curasoae ; = P. hesperus ; = My. californicus ; = Ma. californicus ; = A. pallidus ;and = M. mormoops .Pointsalonglinesareusedtodistinguish speciesanddonotrepresentobserveddatavalues. 113

Figure4.5.Incidencegraphsforeachspeciesshowingtherelationshipbetweenprobabilityofoccurrenceandareaandisolationof islands.Modelpredictionsarebasedonmodelaveragedparameterestimates. 114

115

CHAPTER5:CONCLUSIONS

Inthisdissertation,Iinvestigatedtheinfluenceofareaandisolationofislandson communitystructureandinsulardistributionsofdesertbatsinBajaCalifornia,Mexico.

Myresearchrepresentsoneofthemoreextensivestudiesofislandbiogeographyofbats andcontributestoourknowledgeofbatecologybydemonstratingthatareaandisolation influencecompositionandrichnessofbatcommunities.Inaddition,areaandisolation appeartoinfluencetheprobabilityofoccurrenceonislandsforinsectivorousspecies.

Areahadastronginfluenceonrichness,nestedness,andincidenceofbatspecies, indicatingthatdesertbatslikelyhaveaminimumareaneededforpopulationstopersist.

Inthesecondchapter,Ishowedthathabitatdifferencesbetweentwosubarchipelagosalso influencedthenumberofspeciesoccurringonislands,demonstratingthatbotharea per se anddifferencesinhabitatdiversitymaycontributetospeciesarearelationshipsfor bats.Theinfluenceofareaonnestedsubsetstructureofcompositionofbatcommunities suggeststhereisagradientinextinctionvulnerabilitiesamongspecies.Inparticular, insectivorousbatsappearmoresensitivetominimumareathresholdsonpersistenceof populationsthaneitherawiderangingnectarivorousbat( Leptonycteris curasoae )oran endemicfisheatingbat( Myotis vivesi ).

Despitetheirvagility,batsappearsensitivetomodestdistancesofisolationin insularlandscapesasevidencedbythenegativeinfluenceofisolationfromtheBaja peninsulaonspeciesrichness,communitynestedness,andincidenceofsomespecies.

Potentialmechanismsforthisspeciesisolationrelationshipincludeprocessesofselection offoraginghabitatbyindividualsanddecliningimmigrationratesofspeciesasisolation

116 fromasourcepopulationincreases.Myresearchrevealedthissurprisingpatternof negativeinfluencesofisolationoncommunitystructureandoccurrenceofavagilegroup ofmammals,butmoreresearchisneededonthedispersalandmovementsofindividuals tofullyunderstandwhyfewerbatsoccuronisolatedislands.

AlthoughIamcautiousaboutmakingdirectinferencesforconservationbasedon ourresearch,myresultsraiseinterestingquestionsaboutthepotentialconnectivityand persistenceofpopulationsinisolatedhabitats,especiallyifpatchsizeissmall.

Nestednessanalysesshouldonlybeusedasinitialstepsinrobustconservationstrategies, aspatternsofnestednessmaybedetectedforbatassemblagesevenwhenclear mechanismsrelatingtoselectiveimmigrationandextinctionprobabilitiesarelacking.

Overall,myresearchdemonstratesthatbatsmaybemoresensitivetoareaandisolation thanpreviouslyexpectedbasedontheirvagilityandthereforemaybemoresensitiveto fragmentation.Myresearchprovidesavaluablebaselineforunderstandingfactors importantinshapingcommunitiesofbatsthatwillhopefullyaidinfutureeffortsand studiesofbatconservation.

Atthestartofmyresearch,verylittlewasknownaboutthedistributionofbatson islandsinBaja.NorthwestMexicoisconsideredaconservationpriorityarea(Aritaand

Ortega1998),butarecentvolumeonconservationofbiodiversityoftheregion(Cartron etal.2005)onlybrieflymentionsonespeciesofbat(theendemicfishingbat).The archipelagointheGulfofCaliforniahasservedasanaturallaboratoryforaplethoraof studiesonavarietyoftaxa,includingmostlandvertebrates(Case2002,Codyand

Velarde2002,Lawloretal.2002),severalarthropods(BoultonandWard2002,Piñero andAalbu2002),andplants(Codyetal.2002).Incontrast,onlyaccidentalandcasual

117 recordsofbatsexistedontheseotherwisewellstudiedislands(Lawloretal.2002).In additiontotheecologicalquestionsexploredinthisdissertation,myresearchadded138 newdistributionalrecordson33islandsfor12species(AppendixC),providingvaluable informationforpotentialmetaanalysesandforfutureconservationeffortsinthis ecologicallydiverseandfragilesystem.

118

LITERATURECITED

Adler,G.H.,andM.L.Wilson.1985.SmallmammalsonMassachusettsislands:Theuse ofprobabilityfunctionsinclarifyingbiogeographicrelationships.Oecologia 66:178186.

Ahlén,I.1983.ThebatfaunaofsomeisolatedislandsinScandinavia.Oikos41:352358.

Anthony,E.L.P.1988.Agedeterminationinbats.Pages4758 in T.H.Kunz,editor. Ecologicalandbehavioralmethodsforthestudyofbats.SmithsonianInstitution Press,Washington,D.C.,USA.

Arita,H.T.,andJ.Ortega.1998.ThemiddleAmericanbatfauna:Conservationinthe neotropicalnearcticborder.Pages295308 in T.H.KunzandP.A.Racey, editors.Batbiologyandconservation.SmithsonianInstitutionPress,Washington, D.C.,USA.

Arrhenius,O.1921.Speciesandarea.JournalofEcology9:9599.

Atmar,W.,andB.D.Patterson.1993.Themeasureoforderanddisorderinthe distributionofspeciesinfragmentedhabitats.Oecologia96:373382.

Avise,J.C.2000.Phylogeography:Thehistoryandformationofspecies.Harvard UniversityPress,Cambridge,Massachusetts,USA.

Bahre,C.J.,andL.Bourillón.2002.HumanimpactintheMidriffislands.Pages383406 in T.J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyof theSeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Bascompte,J.,P.Jordano,C.J.Melián,andJ.M.Olesen.2003.Thenestedassemblyof plantanimalmutualisticnetworks.ProceedingsoftheNationalAcademyof SciencesUSA100:93839387.

Bélisle,M.2005.Measuringlandscapeconnectivity:Thechallengeofbehavioral landscapeecology.Ecology86:19881995.

119 Bell,G.P.,G.A.Bartholomew,andK.A.Nagy.1986.Therolesofenergetics,water economy,foragingbehaviorandgeothermalrefugiainthedistributionofthebat, Macrotus californicus .JournalofComparativePhysiologyB156:441450.

Bender,D.J.,L.Tischendorf,andL.Fahrig.2003.Usingpatchisolationmetricsto predictanimalmovementinbinarylandscapes.LandscapeEcology18:1739.

Blood,B.R.,andM.K.Clark.1998. Myotis vivesi .MammalianSpecies588:15.

Boecklen,W.J.1997.Nestedness,biogeographictheory,andthedesignofnature reserves.Oecologia112:123142.

Bolger,D.T.,A.C.Alberts,andM.E.Soulé.1991.Occurrencepatternsofbirdspecies inhabitatfragments:Sampling,extinction,andnestedspeciessubsets.The AmericanNaturalist137:155166.

Boulton,A.M.,andP.S.Ward.2002.Ants.Pages112128 in T.J.Case,M.L.Cody, andE.Ezcurra,editors.ANewIslandBiogeographyoftheSeaofCortés.Oxford UniversityPress,NewYork,NewYork,USA.

Brown,J.H.1986.TwodecadesofinteractionbetweentheMacArthurWilsonmodel andthecomplexitiesofmammaliandistributions.BiologicalJournalofthe LinneanSociety28:231251.

Brown,J.H.,andA.KodricBrown.1977.Turnoverratesininsularbiogeography:Effect ofimmigrationonextinction.Ecology58:445449.

Brown,J.H.,andM.V.Lomolino.2000.Concludingremarks:Historicalperspectiveand thefutureofislandbiogeography.GlobalEcologyandBiogeography9:8792.

Brualdi,R.A.,andJ.G.Sanderson.1999.Nestedspeciessubsets,gaps,anddiscrepancy. Oecologia119:256264.

Burnham,K.,P.,andD.R.Anderson.2002.Modelselectionandmultimodelinference: Apracticalinformationtheoreticapproach,Secondedition.Springer,NewYork, NewYork,USA.

120 Búrquez,A.,A.MartínezYrízar,R.S.Felger,andD.Yetman.1999.Vegetationand habitatdiversityatthesouthernedgeoftheSonoranDesert.Pages3667 in R.H. Robichaux,editor.EcologyofSonoranDesertplantsandplantcommunities. UniversityofArizona,Tucson,Arizona,USA.

Calmé,S.,andA.Desrochers.1999.Nestedbirdandmicrohabitatassemblagesina peatlandarchipelago.Oecologia118:361370.

Cam,E.,J.D.Nichols,J.E.Hines,andJ.R.Sauer.2000.Inferencesaboutnestedsubsets structurewhennotallspeciesaredetected.Oikos91:428434.

Carpenter,R.E.1969.Structureandfunctionofthekidneyandthewaterbalanceof desertbats.PhysiologicalZoology42:288302.

Carreño,A.L.,andJ.Helenes.2002.Geologyandagesoftheislands.Pages1440 in T. J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyofthe SeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Cartron,J.L.E.,C.Ceballos,andR.S.Felger.2005.Biodiversity,ecosystems,and conservationinNorthernMexico.OxfordUniversityPress,NewYork,New York,USA.

Carvajal,A.,andG.H.Adler.2005.BiogeographyofmammalsontropicalPacific islands.JournalofBiogeography32:15611569.

Case,T.J.2002.Reptiles:Ecology.Pages221270in T.J.Case,M.L.Cody,andE. Ezcurra,editors.AnewislandbiogeographyoftheSeaofCortés.Oxford UniversityPress,NewYork,NewYork,USA.

Cody,M.L.1983.Thelandbirds.Pages210245 in T.J.CaseandM.L.Cody,editors. IslandBiogeographyintheSeaofCortéz.UniversityofCaliforniaPress, Berkeley,California,USA.

Cody,M.L.1989.Anintroductiontohabitatselectioninbirds.Pages458 in M.L. Cody,editor.Habitatselectioninbirds.AcademicPress,Inc.,Orlando,Florida, USA.

121 Cody,M.L.,R.Moran,J.Rebman,andH.Thompson.2002.Plants.Pages63111 in T. J.Case,M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyofthe SeaofCortés.OxfordUniversityPress,NewYork,NewYork,USA.

Cody,M.L.,andE.Velarde.2002.Landbirds.Pages271312 in T.J.Case,M.L.Cody, andE.Ezcurra,editors.ANewIslandBiogeographyoftheSeaofCortés.Oxford UniversityPress,NewYork,NewYork,USA.

Coleman,B.D.,M.A.Mares,M.R.Willig,andY.H.Hsieh.1982.Randomness,area, andspeciesrichness.Ecology63:11211133.

Connor,E.F.,andE.D.McCoy.1979.Thestatisticsandbiologyofthespeciesarea relationship.AmericanNaturalist113:791833.

Conroy,C.J.,J.R.Demboski,andJ.A.Cook.1999.Mammalianbiogeographyofthe AlexanderArchipelagoofAlaska:Anorthtemperatenestedfauna.Journalof Biogeography26:343352.

Cook,R.R.,P.L.Angermeier,D.S.Finn,N.L.Poff,andK.L.Krueger.2004. Geographicvariationinpatternsofnestednessamonglocalstreamfish assemblagesinVirginia.Oecologia140:639649.

Cook,R.R.,andJ.F.Quinn.1995.Theinfluenceofcolonizationinnestedspecies subsets.Oecologia102:413424.

Corben,C.2004.AnapocketAnabatonaPDA,v.2.34.Availableat: http://www.hoarybat.com .

Crawley,M.J.2005.Statistics:AnintroductionusingR.JohnWiley&Sons,Ltd, London,UK.

Cutler,A.1994.Nestedbiotasandbiologicalconservation:Metrics,mechanisms,and meaningofnestedness.LandscapeandUrbanPlanning28:7382.

Darlington,P.J.1957.Zoogeography:Thegeographicaldistributionofanimals.John Wiley&Sons,NewYork,NewYork,USA.

122 Davidar,P.,K.Yogananad,T.Ganesh,andS.Devy.2002.Distributionsofforestbirds andbutterfliesintheAndamanislands,BayofBengal:Nestedpatternsand processes.Ecography25:516.

Diamond,J.M.1975.Assemblyofspeciescommunities.Pages342444 in J.M. DiamondandM.L.Cody,editors.Ecologyandevolutionofcommunities. BelknapPress,Cambridge,Massachusetts,USA.

Doak,D.F.,andL.S.Mills.1994.Ausefulrolefortheoryinconservation.Ecology 75:615626.

Donlan,C.J.,J.Knowlton,D.F.Doak,andN.Biavaschi.2005.Nestedcommunities, invasivespeciesandHoloceneextinctions:Evaluatingthepowerofapotential conservationtool.Oecologia145:475485.

Fischer,J.,andD.B.Lindenmayer.2002.Treatingthenestednesstemperaturecalculator asa"blackbox"canleadtofalseconclusions.Oikos99:193199.

Fischer,J.,andD.B.Lindenmayer.2005.Nestednessinfragmentedlandscapes:Acase studyonbirds,arborealmarsupialsandlizards.JournalofBiogeography32:1737 1750.

Gaggiotti,O.E.,andI.Hanski.2004.Mechanismsofpopulationextinction.Pages337 366 in I.HanskiandO.E.Gaggiotti,editors.Ecology,Genetics,andEvolutionof Metapopulations.ElsevierAcademicPress,SanFrancisco,California,USA.

Gannon,W.L.,M.J.O'Farrell,C.Corben,andE.Bedrick.2004.Callcharacterlexicon andanalysisoffieldrecordedbatecholocationcalls.Pages478483 in J.A. Thomas,C.F.Moss,andM.V.Vater,editors.EcholocationinBatsand Dolphins.UniversityofChicago,Chicago,Illinois,USA.

Gaston,K.J.,andM.Blackburn.2000.Patternandprocessinmacroecology.Blackwell Publishing,Cambridge,UK.

Gehrt,S.D.,andJ.E.Chelsvig.2004.Speciesspecificpatternsofbatactivityinan urbanlandscape.EcologicalApplications14:625635.

123 Geluso,K.N.1978.Urineconcentratingabilityandrenalstructureofinsectivorousbats. JournalofMammalogy59:312323.

Gill,F.B.1995.Ornithology,2ndedition.W.H.FreemanandCompany,NewYork,New York,USA.

Gilpin,M.E.,andJ.M.Diamond.1981.Immigrationandextinctionprobabilitiesfor individualspecies:Relationtoincidencefunctionsandspeciescolonization curves.ProceedingsoftheNationalAcademyofSciencesUSA78:392396.

Gotelli,N.J.2001.Aprimerofecology.SinauerAssociates,Inc.,Sunderland, Massachusetts,USA.

Gotelli,N.J.,andR.K.Colwell.2001.Quantifyingbiodiversity:Proceduresandpitfalls inthemeasurementandcomparisonofspeciesrichness.EcologyLetters4:379 391.

Gotelli,N.J.,andG.R.Graves.1996.Nullmodelsinecology.SmithsonianInstitution Press,WashingtonD.C.,USA.

Greve,M.,N.J.M.Gremmen,K.J.Gaston,andS.L.Chown.2005.Nestednessof SouthernOceanislandbiotas:Ecologicalperspectivesonabiogeographical conundrum.JournalofBiogeography32:155168.

Hanski,I.1991.Singlespeciesmetapopulationdynamics:Concepts,modelsand observations.BiologicalJournaloftheLinneanSociety42:1738.

Hanski,I.1999.Metapopulationecology.OxfordUniversityPress,NewYork,New York,USA.

Hanski,I.,andO.E.Gaggiotti.2004.Metapopulationbiology:Past,present,andfuture. Pages322 in I.HanskiandO.E.Gaggiotti,editors.Ecology,Genetics,and EvolutionofMetapopulations.ElsevierAcademicPress,SanFrancisco, California,USA.

Hartley,S.,andW.E.Kunin.2003.Scaledependencyofrarity,extinctionrisk,and conservationpriority.ConservationBiology7:15591570.

124 Hausdor,B.,andC.Hennig.2003.NestednessofnorthwestEuropeanlandsnailranges asaconsequenceofdifferentialimmigrationfromPleistoceneglacialrefuges. Oecologia135:102109.

Hayes,J.P.1997.Temporalvaritioninactivityofbatsandthedesignofecholocation monitoringstudies.JournalofMammalogy78:514524.

Higgins,C.L.,M.R.Willig,andR.E.Strauss.2006.Theroleofstochasticprocessesin producingnestedpatternsofspeciesdistributions.Oikos114:159167.

Hinsley,S.A.,P.E.Bellamy,I.Newton,andT.H.Sparks.1996.Influencesof populationsizeandwoodlandareaonbirdspeciesdistributionsinsmallwoods. Oecologia105:100106.

Holland,R.A.,K.Thorup,M.J.Vonhof,W.W.Cochran,andM.Wikelski.2006.Bat orientationusingEarth'smagneticfield.Nature444:702.

Horner,M.A.,T.H.Fleming,andC.T.Sahley.1998a.Foragingbehaviourand energeticsofanectarfeedingbat, Leptonycteris curasoae (Chiroptera: Phyllostomidae).JournalofZoologicalSoceityofLondon244:575586.

Horner,M.A.,T.H.Fleming,andC.T.Sahley.1998b.Foragingbehaviourand energeticsofnectarfeedingbat,Leptonycteriscurasoae(Chiroptera: Phyllostomidae).JournalofZoology(London)244:575586.

Hosmer,D.W.,andS.Lemeshow.1989.Appliedlogisticregression.JohnWiley& Sons,NewYork,NewYork,USA.

Hutson,A.M.,S.P.Mickleburgh,andP.A.Racey.2001.Microchiropteranbats:global statussurveyandconservationactionplan.IUCN/SSCChiropteraSpecialist Group.InternationalUnionfortheConservationofNatureandNatural Resources,Gland,SwitzerlandandCambridge,UK.

Jenness,J.2004.Nearestfeatures(nearfeat.avx)extensionforArcView3.x,v.3.8a. JennessEnterprises.Availableat: http://www.jennessent.com/arcview/nearest_features.htm .

125 Jenness,J.2005.Path,withdistancesandbearings(pathfind.avx)extensionforArcView 3.x,v.3.2.JennessEnterprises.Availableathttp://www.jennessent.com/path.htm .

Jensen,M.E.,C.F.Moss,andA.Surlykke.2005.Echolocatingbatscanuseacoustic landmarksforspatialorientation.TheJournalofExperimentalBiology208:4399 4410.

Johansson,M.,andJ.deJong.1996.Batspeciesdiversityinalakearchipelagoincentral Sweden.BiodiversityandConservation5:12211229.

Jonsson,B.G.2001.Anullmodelforrandomizationtestsofnestednessinspecies assemblages.Oecologia127:309313.

Kadmon,R.1995.Nestedspeciessubsetsandgeographicisolation:Acasestudy. Ecology76:458465.

Kunz,T.H.,andL.F.Lumsden.2003.Ecologyofcavityandfoliageroostingbats. in T. H.KunzandM.B.Fenton,editors.BatEcology.TheUniversityofChicago Press,Chicago,Illinois,USA.

Kurta,A.,T.H.Kunz,andK.A.Nagy.1990.Energeticsandwaterfluxoffreeranging bigbrownbats( Eptesicus fuscus )duringpregnancyandlactation.Journalof Mammalogy71:5965.

Lawlor,T.E.1986.Comparativebiogeographyofmammalsonislands.Biological JournaloftheLinneanSociety28:99125.

Lawlor,T.E.,D.J.Hafner,P.Stapp,B.R.Riddle,andS.A.C.Ticul.2002.The mammals.Pages326361 in T.J.Case,M.L.Cody,andE.Ezcurra,editors.A NewIslandBiogeographyoftheSeaofCortes.OxfordUniversityPress,New York,NewYork,USA.

Lindell,J.,A.Ngo,andR.W.Murphy.2006.Deepgenealogiesandthemidpeninsular seawayofBajaCalifornia.JournalofBiogeography33:13271331.

Lomolino,M.V.1984.Mammalianislandbiogeography:Effectsofarea,isolationand vagility.Oecologia61:376382.

126 Lomolino,M.V.1986.Mammaliancommunitystructureonislands:Theimportanceof immigration,extinctionandinteractiveeffects.BiologicalJournaloftheLinnean Society28:121.

Lomolino,M.V.1996.Investigatingcausalityofnestednessofinsularcommunities: Selectiveimmigrationsorextinctions?JournalofBiogeography23:699703.

Lomolino,M.V.2000a.Acallforanewparadigmofislandbiogeography.Global EcologyandBiogeographyLetters9:16.

Lomolino,M.V.2000b.Aspeciesbasedtheoryofinsularzoogeography.Global EcologyandBiogeography9:3958.

Lomolino,M.V.,J.H.Brown,andR.Davis.1989.Islandbiogeographyofmontane forestmammalsintheAmericanSouthwest.Ecology70:180194.

Loo,S.E.,R.MacNally,andG.P.Quinn.2002.Anexperimentalexaminationof colonizationasageneratorofbioticnestedness.Oecologia132:118124.

MacArthur,R.H.,andJ.MacArthur.1961.Onbirdspeciesdiversity.Ecology42:594 598.

MacArthur,R.H.,andE.O.Wilson.1963.Anequilibriumtheoryofinsular zoogeography.Evolution17:373387.

MacArthur,R.H.,andE.O.Wilson.1967.Thetheoryofislandbiogeography.Princeton UniversityPress,Princeton,NewJersey,USA.

MacKenzie,D.I.,J.D.Nichols,G.B.Lachman,S.Droege,J.A.Royle,andC.a. Langtimm.2002.Estimatingsiteoccupancyrateswhendetectionprobabilitiesare lessthanone.Ecology83:22482255.

MacKenzie,D.I.,J.D.Nichols,J.A.Royle,K.H.Pollock,L.L.Bailey,andJ.E.Hines. 2006.Occupancyestimationandmodeling:Inferringpatternsanddynamicsof speciesoccurrence.Elsevier,Inc.,SanFrancisco,California,USA.

127 MartínezMorales,M.A.2005.Nestedspeciesassemblagesasatooltodetectsensitivity toforestfragmentation:Thecaseofcloudforestbirds.Oikos108:634642.

Matter,S.F.,T.Roslin,andJ.Roland.2005.Predictingimmigrationoftwospeciesin contrastinglandscapes:Effectsofscale,patchsizeandisolation.Oikos111:359 367.

McAbendroth,L.,A.Foggo,S.D.Rundle,andD.T.Bilton.2005.Unravelling nestednessandspatialpatterninpondassemblages.JournalofAnimalEcology 74:4149.

Medellín,R.A.,H.T.Arita,andÓ.H.Sánchez.1997.Identificacióndelosmurciélagos deMéxico:Clavedecampo.AsociaciónMexicanadeMastozoología,A.C., CiudadUniversitaria,México.

Messina,T.2004.TheNevadabattechnicalnotesarchive:Remotetransducersfor Anabats,Availableat: http://home.earthlink.net/~nevadabat/Remote/ExtCableFab.html .

Milner,J.,C.Jones,andJ.K.Jones,Jr.1990. Nyctinomops macrotis .Mammalian Species355:14.

Moilanen,A.,andM.Nieminen.2002.Simpleconnectivitymeasuresinspatialecology. Ecology83:11311145.

Neubaum,D.J.,T.J.O'Shea,andK.R.Wilson.2006.Autumnmigrationandselection ofrockcrevicesashibernaculabybigbrownbatsinColorado.Journalof Mammalogy87:470479.

Norberg,U.M.,andJ.M.V.Rayner.1987.Ecologicalmorphologyandflightinbats (Mammalia;Chiroptera):Wingadaptations,flightperformance,foragingstrategy andecholocation.PhilosophicalTransactionsoftheRoyalSocietyofLondonB BiologicalSciences316:335427.

O’Farrell,M.J.,B.W.Miller,andW.L.Gannon.1999.Qualitativeidentificationof freeflyingbatsusingtheAnabatdetector.JournalofMammalogy80:1123.

128 Parsons,S.,A.M.Boonman,andM.K.Obrist.2000.Advantagesanddisadvantagesof techniquesfortransformingandanalyzingchiropteranecholocationcalls.Journal ofMammalogy81:927938.

Patterson,B.D.1987.Theprincipleofnestedsubsetsanditsimplicationsforbiological conservation.ConservationBiology1:323334.

Patterson,B.D.,andW.Atmar.1986.Nestedsubsetsandthestructureofinsular mammalianfaunasandarchipelagos.BiologicalJournaloftheLinneanSociety 28:6582.

Patterson,B.D.,andW.Atmar.2000.Analyzingspeciescompositioninfragments. in G. Rheinwald,editor.IsolatedVertebrateCommunitiesintheTropics,Proc.4thInt. Symp.,Bonn.Zool.Monogr.46,pp.924.

Patterson,B.D.,M.R.Willig,andR.D.Stevens.2002.Trophicstrategies,niche partitioning,andpatternsofecologicalorganization.Pages536579 in T.H.Kunz andM.B.Fenton,editors.BatEcology.TheUniversityofChicagoPress, Chicago,Illinois,USA.

Peltonen,A.,andI.Hanski.1991.Patternsofislandoccupancyexplainedbycolonization andextinctionratesinshrews.Ecology72:16981708.

Piñero,F.S.,andR.L.Aalbu.2002.Tenebrionidbeetles.Pages129153 in T.J.Case, M.L.Cody,andE.Ezcurra,editors.ANewIslandBiogeographyoftheSeaof Cortés.OxfordUniversityPress,NewYork,NewYork,USA.

Preston,F.W.1962.Thecanonicaldistributionofcommonnessandrarity:Part1. Ecology43:185215.

Racey,P.A.1988.Reproductiveassessmentinbats. in T.H.Kunz,editor.Ecological andBehavioralMethodsfortheStudyofBats.SmithsonianInstitutePress, WashingtonD.C.,USA.

Racey,P.A.,andA.C.Entwistle.2003.Conservationecologyofbats. in T.H.Kunzand M.B.Fenton,editors.BatEcology.TheUniversityofChicagoPress,Chicago, Illinois,USA.

129 Ricklefs,R.E.,andI.J.Lovette.1999.Therolesofislandarea per se andhabitat diversityinthespeciesarearelationshipsoffourLesserAntilleanfaunalgroups. JournalofAnimalEcology68:11421160.

Ricklefs,R.E.,andD.Schluter.1993.Speciesdiversityinecologicalcommunities: Historicalandgeographicperspectives.TheUniversityofChicagoPress, Chicago,Illinois,USA.

Riddle,B.R.,D.J.Hafner,L.F.Alexander,andJ.R.Jaeger.2000.Crypticvicariancein thehistoricalassemblyofaBajaCaliforniaPeninsularDesertbiota.Proceedings oftheNationalAcademyofSciencesUSA97:1443814443.

Rita,H.,andE.Ranta.1993.Onanalysingspeciesincidence.AnnalesZoologiciFennici 30:173176.

Robbins,C.S.,D.K.Dawson,andB.A.Dowell.1989.Habitatarearequirementsof breedingforestbirdsoftheMiddleAtlanticstates.WildlifeMonographs103:1 34.

RodríguezGironés,M.A.,andL.Santamaría.2006.Anewalgorithmtocalculatethe nestednesstemperatureofpresenceabsencematrices.JournalofBiogeography 33:924935.

Rosenzweig,M.L.1995.Speciesdiversityinspaceandtime.CambridgeUniversity Press,Cambridge,UK.

Royle,J.A.,andW.A.Link.2006.Generalizedsiteoccupancymodelsallowingforfalse positiveandfalsenegativeerrors.Ecology87:835841.

Russell,G.J.,J.M.Diamond,T.M.Reed,andS.L.Pimm.2006.Breedingbirdson smallislands:Islandbiogeographyoroptimalforaging?JournalofAnimal Ecology75:324339.

Sahley,C.T.,M.A.Horner,andT.H.Fleming.1993.Flightspeedsandmechanical poweroutputsofthenectarfeedingbat, Leptonycteris curasoae (Phyllostomidae: Glossophaginae).JournalofMammalogy74:594600.

130 Schnitzler,H.U.,andE.K.V.Kalko.2001.Echolocationbyinsecteatingbats. BioScience51:557.

Sfenthourakis,S.,S.Giokas,andE.Tzanatos.2004.Fromsamplingstationsto archipelagos:Investigatingaspectsoftheassemblageofinsularbiota.Global EcologyandBiogeography13:2335.

Shipley,B.2000.Causeandcorrelationinbiology:Auser'sguidetopathanalysis, structrualequations,andcausalinference.CambridgeUniversityPress, Cambridge,UK.

Shreve,F.1951.ThevegetationoftheSonoranDesert.CarnegieInstituteofWashington Publications591:698700.

Simberloff,D.,andJ.L.Martin.1991.Nestednessofinsularavifaunas:Simplesummary statisticsmaskingcomplexspeciespatterns.OrnisFennica68:178192.

Taylor,B.1991.Investigatingspeciesincidenceoverhabitatfragmentsofdifferentareas alookaterrorestimation.BiologicalJournaloftheLinneanSociety42:177 191.

Taylor,P.D.,L.Fahrig,andK.A.With.2006.Landscapeconnectivity:Areturntothe basics.Pages2943 in K.CrooksandM.A.Sanjayan,editors.Connectivity Conservation.CambridgeUniversityPress,NewYork,NewYork,USA.

Thomas,J.A.,N.A.D.Bourn,R.T.Clarke,K.E.Stewart,D.J.Simcox,G.S.Pearman, R.Curtis,andB.Goodger.2001.Thequalityandisolationofhabitatpatchesboth determinewherebutterfliespersistinfragmentedlandscapes.Proceedingsofthe RoyalSocietyofLondonSeriesB:BiologicalSciences268:17911796.

Tomoff,C.S.1977.Avianspeciesdiversityindesertscrub.Ecology55:396403.

Tyre,A.J.,B.Tenhumberg,S.A.Field,D.Niejalke,K.Parris,andH.P.Possingham. 2003.Improvingprecisionnandreducingbiasinbiologicalsurveys:Estimating falsenegativeerrorrates.EcologicalApplications13:17901801.

131 Watson,J.E.M.,R.J.Whittaker,andD.Freudenberger.2005.Birdcommunityresponse tohabitatfragmentation:Howconsistentaretheyacrosslandscapes?Journalof Biogeography32:13531370.

Webb,P.I.,P.A.Racey,andS.M.Swift.1995.Thecomparativeecophysiologyofwater balanceinmicrochiropteranbats.Pages203218 in P.A.RaceyandS.M.Swift, editors.Ecology,evolution,andbehaviorofbats.SymposiaoftheZoological SocietyofLondonNo.67.

Wethered,R.,andM.J.Lawes.2005.Nestednessofbirdassemblagesinfragmented Afromontaneforest:Theeffectofplantationforestryinthematrix.Biological Conservation123:125137.

Wiens,J.1989.Spatialscalinginecology.Functionalecology3:385397.

Wiggins,I.L.1980.FloraofBajaCalifornia.StanfordUniversityPress,Stanford, California,USA.

Williams,C.B.1943.Areaandthenumberofspecies.Nature152:264267.

Wright,D.H.,B.D.Patterson,G.M.Mikkelson,A.Cutler,andW.Atmar.1998.A comparativeanalysisofnestedsubsetpatternsofspeciescomposition.Oecologia 113:120.

Wright,D.H.,andJ.H.Reeves.1992.Onthemeaningandmeasurementofnestedness ofspeciesassemblages.Oecologia92:416428.

Wright,S.J.1981.Intraarchipelagovertebratedistributions:Theslopeofthespecies arearelation.AmericanNaturalist118:726748.

132

APPENDICES

133 APPENDIXA:ANABATECHOLOCATIONCALLIDENTIFICATIONKEY

Introduction:

Characteristicsofecholocationcallsarebasedonrecordingsfromactive monitoringoffreeflyingbatsandrecordingsofhandreleasedindividualsmadewitha handheldPDArunningAnapocket(Corben2004)inBajaCalifornia,Mexicoaswellas callsequencesavailableontheUniversityofNewMexicobatdatabase

(http://www.msb.unm.edu/mammals/batcall/html/calllibrary.html)andcallsrecorded fromhandreleasedindividualsbyChrisCorbenorPaulHeadyinthewesternU.S.All fileswereanalyzedinAnalookWv.3.2(www.hoarybat.com).Thespeciescall characterizationdiscussionsandfiguresarebasedonplottingcalltracesaslog 10 frequencyversustimeandcallslopesaslog 10 rateofchange(inoctaves/second)versus time.Figuresofspeciescallsequencesarecompressedbyremovingtimeintervals betweencalls.

Callparameterssuchascharacteristicfrequency(flattestpartofthecall), minimumandmaximumfrequency,characteristicslope(slopeoftheflattestpartofthe call),callduration,interpulseinterval,andshapeofthebodyofthecallweremeasured fromknownreferencecallsandusedtocharacterizecallsequencesofspecies(O’Farrell etal.1999,Gannonetal.2004).

134 GeneralApproach: Callsequenceswereplacedinto5categories.

Species ID category. Onlysequencesthatmetdiagnosticstandardswithmeasurable parameterswereidentifiedtospecies(seeSpeciesIDkeybelow).Sequencesconsisted of2ormorecallsthatmetcriteriaforspeciesidentification.Aconservativeapproach aimedatlimitingfalseidentificationwasusedsuchthatcriteriaaredefinedtoensure positiveidentificationofspecies.Calldescriptionsforspeciesprovidedinthiskeydo notnecessarilyrepresenttheirentireecholocationrepertoires.

Phonic group category .Callsequenceswithconsiderableoverlapinparametervalues amongspeciesandlittlebasisforidentifyingtospeciesweregroupedintodefinedphonic groups.Phonicgroupswerebasedonmeasurablecallparameters.

Frag--frequency category (fragmentary calls). Sequenceswithatleast2distinctcalls, butnodiagnosticcallsbecauseofpoorqualitywereclassifiedasFragfrequency.There were2predefinedFragfrequencycategories(Frag45,Frag<20),butobserverscould createadditionalcategories,usingminimumfrequencies,ifneeded.Poorcallqualityis recognizedassufficientnoise(scattereddots)toobscuredeterminationofcall characteristics.

Q-frequency category (unknown calls). Qfrequencylabelswerebasedonminimum frequenciesandusedtolabelunusualsequencesthatdidnotfitindefinedcategories.

Other. Filesequencesgeneratedbywind,insects,birdsormicewerenotlabeled.

135 Definitions:

Call :Singleecholocationpulseseparatedfromotherpulsesbysilence.

CF: Constantfrequency.CallsdescribedasCFuseaconstantfrequencyfortheduration

ofthecall(oraportionofit)andappearasflatornearlyflat.

Distinct call: Adistinctcallisdefinedasalineorcurvethatismadeofmorethan6

smoothlyconnecteddotsandisseparatedbyregularlyspacedintervals(silence).A

callcanbe distinct withoutbeing diagnostic ,butitcannotbe diagnostic without

being distinct .

Diagnostic call: Adiagnosticcallhascharacteristicsthatcorrespondtothoseinthe

samplefilesorkeydescription.Callcharacteristicsinclude,shape,minimum

frequency,maximumfrequency,characteristicfrequency,frequencyoftheknee(the

startofthebodyofthecall),pulseduration,andslope.

File Sequence: ArelatedstringofcallsrecordedinasingleAnabatfile.Filesequences

receivedlabelsbasedonidentificationofthecallscontainedinthesequence.Ifcalls

generatedbymultiplespecieswereidentifiedwithinafilesequence,multiplelabels

wereappliedtothatfilesequence.

FM: Frequencymodulated.FMcallsarethosethatmodulatefrequencyovertime,

appearingassteeporverticalsweeps.

136 SpeciesIdentificationandLabelCriteria:

Species Labels:

ANPA: Antrozous pallidus sequencesareidentifiabletospeciesif2ormoreconsecutive callsdisplayshortduration,steepFMsweepswithminimumfrequenciesbetween3035 kHz.Slopesarestraightorslightlymodulatedandbetween12080octaves/second.

ANPAsocialcallsaretypicallysteep,oftenirregularFMsweepsstartingbetween2530 kHzandendingat1012kHzorbelow(seeFigureA.1).Socialcallsareusuallyin groupsofseveralpulsesatveryshortinterpulseintervals.Descriptionandreferencefiles arebasedonhandreleaseandactivemonitoringrecordingsmadebyW.FrickinBaja

CaliforniaSur,Mexico.

EPFU: Eptesicus fuscus sequencesareidentifiabletospeciesif2ormoreconsecutive callsdisplayminimumfrequenciesnear30kHzandaresteeptoshallowFMsweepsof longduration(611ms).Aslopechangeplotismostlylinearwithsomevariation, descendingfrom200to20octaves/second.Thebodyofthecallismorecurvedthanthe steepFMsweepofanANPAcall.EPFUcallscanhaveminimumfrequenciesnear25 kHzbutcanbedistinguishedfromTABRbydifferencesinshapeofcallbodyand characteristicfrequenciesabove25kHz.Descriptionandreferencefilesarebasedon activemonitoringrecordingsmadebyW.FrickinBajaCaliforniaSur,Mexico.

EUSP: Eumops spp. sequencesareidentifiabletospeciesif2ormoreconsecutivecalls areveryshallowFMsweeptoCFcallsatverylowfrequencies:maximumfrequencies near1314kHzandminimumfrequenciesnear910kHz.Thesecallsmaybeeither

137 Eumops perotis (seeFigureA.3)orpossibly Eumops underwoodi (notshown).Call descriptionbasedonAdams(2003)andreferencefileprovidedbytheUNMdatabase

(http://www.msb.unm.edu/mammals/batcall/).

LABL: Lasiurus blossevilli sequencesareidentifiabletospecieswhen2ormore consecutivecallsinasequencehaveundulatingminimumfrequenciesbetween50and40 kHzandcallsdisplaymoderatelysloping,FMsweepsthatendwithaCFcomponent, producinga“scooped”shape.LABLcallsaretypicallydistinguishedfromPIHEby longerpulsedurations(longerthan8ms)andminimumfrequenciesvaryingsubstantially frompulsetopulse.PIHEsequencesusuallymaintainfairlyconsistentminimum frequenciesnear45kHz.Descriptionandreferencefilesarebasedonhandrelease recordingsbyPaulHeadyinCalifornia,USA.

LACI: Lasiurus cinereus sequencesareidentifiabletospecieswhen2ormore consecutivecallsdisplayshallowFMsweepsendinginaCFcomponent,creatingalazy backwardsJ“scoop”.Callsarelongduration(8ms)andminimumfrequenciesundulate near20kHz.The“undulating”minimumfrequencyandtheJshapedistinguishLACI callsfromNYFE.SomeopenairLACIcallscanbeaflatCFcallnear1816kHz,but duetoconfirmationofNYFEbeingabundantlycommoninthearea(fromvisual confirmationandnetting)andnocapturerecordsorvisualconfirmationrecordsofLACI, onlyifacallseemsdistinctlyLasiurinebythe“undulating”minimumfrequencyandJ shapewillitbeidentifiedasLACI.WerecognizethatsomeLACIcallsmaynotbe positivelyidentified,becauseoftheprevalenceofandsimilaritytoNYFEcalls.

138 DescriptionandreferencefilesarebasedonhandreleaserecordingsbyPaulHeadyin

California,USA.

LAXA: Lasiurus xanthinus sequencesareidentifiabletospecieswhen2ormore consecutivecallsdisplaytypicalLasiurineundulatingminimumfrequency(seeLACIor

LABL)near30kHzandFMsweepsthatendinaCFcomponentandanupward frequencysweepattheendofthecall(creatinganupwardhookshape).Aslopechange plotismostlylinear,descendingfrom300to10or20octaves/second.Descriptionand referencefilesarebasedonhandreleaserecordingstakenintheSouthwesternUSAby

ChrisCorben.

LECU: Leptonycteris curasoae sequencesareidentifiedtospeciesif2ormore consecutivecallsdisplayashortCFcomponentatthemaximumfrequency(near70kHz, butvariable)followedbyasteepFMsweepthatflattensslightlyinthemiddleofthecall andisfollowedbyanothersteepFMsweeptoaminimumfrequencynear4530kHz, creatinga“hookedtop”and“elbowed”FMsweepshape(seeFigureA.7).Minimum frequenciesarevariableandrangefrom3045kHz.Thepulseslopechangeplotis sinusoidal,withincreasingslope(sometimesdramatically,startingfromcloseto0) crestingbetween150300octaves/second(commonlyabove200octaves/second)and thendescendingtoward100octaves/secondandascendingagainattheend.Notall

LECUcallshavethe“hookedtop”shapedescribedabove,butareidentifiableasanFM sweepthatflattensslightlyinthemiddletolowerthirdofthecallfollowedbyanother steepFMsweepattheend.Incontrast,ANPAcallsaresteeperFMsweepswith

139 sometimesflattenedportionsattheveryend(reverseJ).Descriptionandreferencefiles arebasedonhandreleaseandactivemonitoringrecordingsmadebyW.FrickinBaja

CaliforniaSur,Mexico.

MACA: Macrotus californicus sequencesareidentifiabletospecieswhen2ormore consecutivecallsdisplayshortduration(2ms),steepFMsweepsthatareshapedlikea forwardslash(e.g.\)withlittleornocurvatureinthebodyofthecall.Minimum frequencyisnear50kHz(mayterminateaslowas48kHz).Tobeidentifiedtospecies, slopesofcallsshouldbesplitbetweenbeingnegative(lessthan1octaves/second)and beingpositive(greaterthan150octaves/second).Somecallshaveanadditional harmonicvisible,around4035kHz,withagapbetweenthemainsequenceandthe harmonic.MACAcallsaredistinguishedfromMYCAcallsbylackofanycurvature duringthesteepFMsweep(MACAcallsaremorevertical)andbylackofa flattening/curvingattheterminus.Referencefilesarebasedonhandreleaserecordings andactivemonitoringinBajaCaliforniaSur,MexicobyW.Frick.

MOME: Mormoops megalophylla sequencesareidentifiedtospeciesif2ormore consecutivecallsdisplayalongduration,CFcomponentat5550kHzfollowedbya gradualFMsweepto5045kHz.NootherspeciesintheregionproducesaCFtoFM callstructuresimilartoMOME.Descriptionandreferencefilesarebasedonactive monitoringrecordingsmadebyW.FrickinBajaCaliforniaSur,Mexico.

140 MYCA: Myotis californicus sequencesareidentifiabletospeciesif2ormore consecutivecallsthatarehighFMcallsthatsweepsteeplytominimumfrequenciesof50 to43kHz.ThesteepFMsweepoftenhasaslightrightwardcurve,sometimeswithsmall

Jhookattheend.Slopesaregenerallygreaterthan150octaves/second.MYCAcalls aretypicallylongerdurationthanMACA(approx.4ms)andgenerallyhaveahigher maximumfrequency(10070kHz),butcanbeconfusedwithmanyMACAcalls.

MYCAcallstypicallyhaveslightlymorecurvaturetotheFMsweepthanthestraight

“forwardslash”shapeofMACAcalls.Descriptionandreferencefilesarebasedon handreleaseandactivemonitoringrecordingsmadebyW.FrickinBajaCaliforniaSur,

Mexico.

MYEV: Myotis evotis sequencesareidentifiabletospeciesif2ormoreconsecutivecalls displayshortduration(ca.4ms),steepFMsweepswithmaximumfrequenciesbetween

10060kHzandminimumfrequenciesnear3530kHz.Slopesareveryhigh(greater than200octaves/secondandcanbegreaterthan300octaves/second).MYEVcallsare distinguishablefromANPAcallsbythesteepnessoftheFMsweepanduniformlyhigh slope.DescriptionandreferencefilesarebasedonhandreleaserecordingsmadebyPaul

HeadyinCalifornia,USA.

MYVI: Myotis vivesi sequencesareidentifiabletospeciesif2ormoreconsecutivecalls displayshortduration(ca.5ms),steepFMsweepsthatterminateataminimum frequencynear1820kHz.Slopesaresteep,typicallygreaterthan100octaves/second.

141 Descriptionandreferencefilesarebasedonhandreleaseandactivemonitoring recordingsmadebyW.FrickinBajaCaliforniaSur,Mexico.

MYVO: Myotis volans sequencesareidentifiabletospeciesif2ormoreconsecutivecalls displayFMsweepsfrommaximumfrequenciesnear70kHzandterminatingatminimum frequenciesnear40kHz.Slopesaretypicallygreaterthan80octaves/second,descending from300octaves/second.SeveralotherMyotisspecies(including, M. ciliolabrum , M. lucifugus ,and M. velifer )producesimilar“40kHz”calls,butnoneoftheseotherspecies areknowntooccurontheBajapeninsula(Medellínetal.1997),whereasdistributional rangemapsfor Myotis volans extendthelengthoftheBajapeninsulaandmistnet surveysincoastalpeninsularhabitatsconfirmedpresenceof M. volans inthestudy region.DescriptionandreferencefilesarebasedonhandreleaserecordingsbyPaul

HeadyinCalifornia,USA.

NYFE: Nyctinomops femorosaccus sequencesareidentifiabletospeciesif2ormore consecutivecallsareshallowFMtoCFcalls,startingatmaximumfrequenciesnear23 kHzandterminatingatminimumfrequenciesbetween18and16kHz.NYFEwill occasionallydoa“signature”pulsethathasaslightlyhigherminimumfrequencythan themaintrendofthesequence.NYFEalsoproducesflatCFcallsnear1516kHz.Some

NYFEcallscanbeconfusedwithLACIcalls(seeLACIdescriptionfordetails)and

TABRcalls.Forspeciesidentificationpurposes,NYFEcanbeseparatedfromTABRby havingaconsistentlylowerminimumfrequency(below20kHz)(seeMOLphonicgroup andTABRdescriptionsformoredetails).Descriptionandreferencefilesarebasedon

142 handreleaseandactivemonitoringrecordingsmadebyW.FrickinBajaCaliforniaSur,

Mexico.

NYMA: Nyctinomops macrotis sequencesareidentifiabletospeciesif2ormore consecutivecallsdisplayshallowFMtoCFsweepswithmaximumfrequenciesat1816 kHzandterminatingatminimumfrequenciesnear1412kHz.Calldescriptionbasedon

Adams(2003)andreferencefileprovidedbytheUNMdatabase

(http://www.msb.unm.edu/mammals/batcall/).

PIHE: Pipistrellus hesperus sequencesareidentifiabletospeciesif2ormore consecutivecallsthathaveashortFMsweepfollowedbyCFcomponentat45kHz, creatinga“backwardscomma”shape.Pulsedurationisusuallyshort(ca.4ms)andcalls areeasilydistinguishablebytheirregularityofshapeandminimumfrequency.

Descriptionandreferencefilesarebasedonhandreleaseandactivemonitoring recordingsmadebyW.FrickinBajaCaliforniaSur,Mexico.

TABR: Tadarida brasiliensis sequencesareidentifiabletospeciesif2ormore consecutivecallsdisplaysteeptoshallowFMsweepswithCFcomponentsthatterminate atminimumfrequenciesnear25kHz.TABRcanproduceCFcallsat25kHz.For speciesidentification,TABRandNYFEcallsaredistinguishablebyminimumfrequency, suchthatcallsidentifiedasTABRhaveminimumfrequenciesnear25kHzandcalls identifiedasNYFEhaveminimumfrequenciesnear1816kHz.Thereismorphological overlapbetweenTABRandNYFEcallsthatdisplayminimumfrequenciesinthe2319

143 kHzrange;thesesequencesarelabeledwithaMOLphonicgroupclassification.Call descriptionbasedonAdams(2003)andreferencefileprovidedbytheUNMdatabase

(http://www.msb.unm.edu/mammals/batcall/).

MYYU: Myotis yumanensis sequencesareidentifiabletospeciesif2ormoreconsecutive pulsesdisplayhighfrequencyFMsweepsthatterminateatminimumfrequenciesnear50 kHz.CallsarenotassteepMYCAcallsandmayhaveaflatteninginthemiddleofthe callcreatingreversesigmoidshape.Slopesdescendfrom300octaves/secondtoaslow as60or40octaves/second.Descriptionandreferencefilesarebasedonhandrelease recordingsbyPaulHeadyinCalifornia,USA.

Phonic Groups:

MOL:TheMolossidphonicgroupconsistsofanycallthathasatleast2distinctcallsthat

areshallow,slopedFMsweepswithminimumfrequenciesbelow25kHz.

G30:Shortduration,steepFMcallsthatterminate<35and>25.

G40:Shortduration,steepFMcallsthatterminate<45and>35

G50:Shortduration,steepFMcallsthatterminate<55and>45

G60:FMcallsthatterminate<65and>55

Frag-Freq:

Frag45:Sequenceswithatleast2distinctcallsnear45kHz,butcallqualityistoopoor

(duetonoiseorechoesobscuringthepulses)todeterminespeciesidentification.

144 Frag<20:Sequenceswithatleast2distinctcalls,butcallqualityistoopoortodetermine speciesidentification.

Other:

Rodent:Ultrasoniccommunicationsinrodents(likely Peromyscus spp. )appearaslong durationpulsesthatappearlikewavylinesnear20kHz.

Bird:Birdcallsarelongdurationcallsthatlooklikehighlypatterned“songs”thatoccur below15kHzandcanusuallybeidentifiedbylookingatthetimestampofthecall

(usuallyappearafter6:30am).

Insects:Insectsproducefuzzy“noise”filledscreensthatusuallyfilluptheentire15s recordingwindow.

SampleFilesofSpecies:

Asamplereferencefilefromeachspeciesdescribedinthekeyisprovided.Observers wereprovidedabookletwithmultiplesamplesofeachspecies.

145

LITERATURECITED

Corben,C.2004.AnapocketAnabatonaPDA,v.2.34.Availableat: http://www.hoarybat.com .

Gannon,W.L.,M.J.O'Farrell,C.Corben,andE.Bedrick.2004.Callcharacterlexicon andanalysisoffieldrecordedbatecholocationcalls.Pages478483 in J.A. Thomas,C.F.Moss,andM.V.Vater,editors.EcholocationinBatsand Dolphins.UniversityofChicago,Chicago,Illinois,USA.

Medellín,R.A.,H.T.Arita,andÓ.H.Sánchez.1997.Identificacióndelosmurciélagos deMéxico:Clavedecampo.AsociaciónMexicanadeMastozoología,A.C., CiudadUniversitaria,México.

O’Farrell,M.J.,B.W.Miller,andW.L.Gannon.1999.Qualitativeidentificationof freeflyingbatsusingtheAnabatdetector.JournalofMammalogy80:1123. .

Pallidbat( Antrozous pallidus ) ANPA

FigureA.1.Echolocationcallsequenceby A. pallidus ,displayingcharacteristiccallwithdiagnosticsocialchirpattheendofthe sequence.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyactivemonitoring. 146

Bigbrownbat(Eptesicus fuscus ) EPFU

FigureA.2.Echolocationcallsequenceby E. fuscus .Lefthandscreendisplaysecholocationpulses;righthandscreendisplays associatedslopesofpulses.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyactivemonitoring. 147

Westernmastiffbat(Eumops perotis ) EUPE

FigureA.3.Echolocationcallsequenceby E. perotis .ReferencecallavailablefromtheUniversityofNewMexicoBatCall Library(http://www.msb.unm.edu/mammals/batcall/html/calllibrary.html). 148

Westernredbat(Lasiurus blossevillii ) LABL

FigureA.4.Echolocationcallsequenceby L. blossevillii .Lefthandscreendisplaysecholocationpulses;righthandscreen displaysassociatedslopesofpulses.RecordedbyP.HeadyinCaliforniabyhandrelease. 149

Hoarybat(Lasiurus cinereus ) LACI

FigureA.5.Echolocationcallsequenceby L. cinereus .Lefthandscreendisplaysecholocationpulses;righthandscreendisplays associatedslopesofpulses.RecordedbyP.HeadyinCaliforniabyhandrelease. 150

Westernyellowbat(Lasiurus xanthinus ) LAXA

FigureA.6.Echolocationcallsequenceby L. xanthinus .Lefthandscreendisplaysecholocationpulses;righthandscreendisplays associatedslopesofpulses.ReferencecallprovidedbyChrisCorben;recordedinNevadabyhandrelease. 151

Lesserlongnosedbat(Leptonycteris curasoae ) LECU

FigureA.7.Echolocationcallsequenceby L. curasoae .Lefthandscreendisplaysecholocationpulses;righthandscreendisplays associatedslopesofpulses.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyactivemonitoring. 152

Californialeafnosedbat(Macrotus californicus ) MACA

FigureA.8.Echolocationcallsequenceby M. californicus .Lefthandscreendisplaysecholocationpulses;righthandscreen displaysassociatedslopesofpulses.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyhandrelease. 153

Ghostfacedbat(Mormoops megalophylla ) MOME

FigureA.9.Echolocationcallsequenceby M. mormoops.Lefthandscreendisplaysecholocationpulses;righthandscreen displaysassociatedslopesofpulses.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyactivemonitoring. 154

Californiamyotis(Myotis californicus ) MYCA

FigureA.10.Echolocationcallsequenceby M. californicus .Lefthandscreendisplaysecholocationpulses;righthandscreen displaysassociatedslopesofpulses.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyhandrelease. 155

Westernlongearedmyotis(Myotis evotis ) MYEV

FigureA.11.Echolocationcallsequenceby M. evotis .Lefthandscreendisplaysecholocationpulses;righthandscreendisplays associatedslopesofpulses.RecordedbyP.HeadyinCaliforniabyhandrelease. 156

Fisheatingbat(Myotis vivesi ) MYVI

FigureA.12.Echolocationcallsequenceby M. vivesi. Lefthandscreendisplaysecholocationpulses;righthandscreendisplays associatedslopesofpulses.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyactivemonitoring. 157

Longleggedmyotis(Myotis volans ) MYVO

FigureA.13.Echolocationcallsequenceby M. volans .Lefthandscreendisplaysecholocationpulses;righthandscreendisplays associatedslopesofpulses.RecordedbyP.HeadyinCaliforniabyhandrelease. 158

Yumamyotis(Myotis yumanensis ) MYYU

FigureA.14.Echolocationcallsequenceby M. yumanensis. Lefthandscreendisplaysecholocationpulses;righthandscreen displaysassociatedslopesofpulses.RecordedbyP.HeadyinCaliforniabyhandrelease. 159

Pocketedfreetailbat(Nyctinomops femorosaccus ) NYFE

FigureA.15.Echolocationcallsequenceby N. femorosaccus. Lefthandscreendisplaysecholocationpulses;righthandscreen displaysassociatedslopesofpulses.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyactivemonitoring. 160

Bigfreetailedbat(Nyctinomops macrotis ) NYMA

FigureA.16.Echolocationcallsequenceby N. macrotis. ReferencecallavailablefromtheUniversityofNewMexicoBatCall

Library(http://www.msb.unm.edu/mammals/batcall/html/calllibrary.html). 161

Westernpipistrelle(Pipistrellus hesperus ) PIHE

FigureA.17.Echolocationcallsequenceby P. hesperus. Lefthandscreendisplaysecholocationpulses;righthandscreen displaysassociatedslopesofpulses.RecordedbyW.FrickinBajaCaliforniaSur,Mexicobyhandrelease. 162

Mexicanfreetailedbat(Tadarida brasiliensis ) TABR

FigureA.18.Echolocationcallsequenceby T. brasiliensis. ReferencecallavailablefromtheUniversityofNewMexicoBatCall Library(http://www.msb.unm.edu/mammals/batcall/html/calllibrary.html). 163

164 APPENDIXB:SPECIESACCUMULATIONCURVES

FigureB.1.Speciesaccumulationcurvesgeneratedfromacousticsamplingforbatsfrom

2 4 6 8 2 4 6 8 Blanco Bota Cabezo Caballo Carmen 10 8 6 4 2 Cayo Coronados Coronados Smith Danzante 10 8 6 4 2 Espiritu Santo Galeras East Galeras West Gallina 10 8 6 4 2 Gemelitos East Gemelitos West Islitas Las Animas 10 8 6 4 2 Monserrat Pardo Partida Norte Pata 10 8 6 4 2 Piojo Rasa Salsipuedes San Diego 10 8 6 Cumulative No. of SpeciesDetected of No. Cumulative 4 2 San Francisco San Ildefonso San José San Lorenzo 10 8 6 4 2 Santa Catalina Santa Cruz Tijeras Ventana 10 8 6 4 2

2 4 6 8 2 4 6 8 Number of Nights Sampled April1 toJune1,20042006on32islandsintheGulfofCalifornia,Mexico.Most islands(n=21)weresampledforfiveconsecutivenights.Tenislandsweresampledfor greaterthanfivenights(68nights)andtwoislandsweresampledforthreenights.

APPENDIXC:PRESENCEOFBATSONISLANDSINTHEGULFOFCALIFORNIA,MEXICO

TableC.1.Distributionof12batson34islandsintheGulfofCalifornia,Mexico.Twoislands(initalics)weresampledforbats butwereexcludedfromfinalanalysesastheywereoutliersduetoextremevaluesofisolationandgeographiclocations.

Area Isolation Total Island (ha) (km) Richness Tadarida brasiliensis brasiliensis Tadarida Antrozous pallidus Antrozous perotis Eumops Lasiurusxanthinus curasoae Leptonycteris californicus Macrotus megalophylla Mormoops californicus Myotis vivesi Myotis femorosaccus Nyctinomops macrotis Nyctinomops hesperus Pipistrellus Blanco 1.3 0.84 0 0 0 1 0 0 0 1 1 0 1 0 4 Bota 9.6 2.64 0 0 0 0 0 0 0 1 1 0 0 0 2 CabezoCaballo 71.0 1.89 0 0 0 1 1 0 1 1 1 0 0 0 5 Carmen 14,801.4 5.50 1 0 0 1 1 1 1 1 1 1 1 0 9 Cayo 6.7 6.22 0 0 0 1 0 0 0 1 1 0 0 1 4 Coronados 715.8 2.60 0 0 0 1 1 0 1 1 1 0 1 1 7 CoronadosSmith 852.1 2.22 0 0 0 1 0 0 0 1 1 0 1 0 4 Danzante 423.7 2.67 0 0 0 1 1 1 1 1 1 1 1 0 8 EspirituSanto 10,367.1 6.21 0 0 0 1 1 0 1 1 1 1 1 1 8 GalerasEast 5.4 16.40 0 0 0 1 0 0 0 1 1 0 0 1 4 GalerasWest 3.2 16.77 0 0 0 1 0 0 0 1 1 0 0 0 3 Gallina 2.0 7.18 0 0 0 1 0 0 1 1 1 0 1 1 6 GemelitosEast 3.9 0.82 0 0 0 1 0 0 0 1 1 1 0 1 5 GemelitosWest 2.4 0.86 0 0 0 1 0 0 0 1 0 0 0 0 2 165

TableC.1.Continued.

Area Isolation Total Island (ha) (km) Richness Tadarida brasiliensis brasiliensis Tadarida Antrozous pallidus Antrozous perotis Eumops Lasiurusxanthinus curasoae Leptonycteris californicus Macrotus megalophylla Mormoops californicus Myotis vivesi Myotis femorosaccus Nyctinomops macrotis Nyctinomops hesperus Pipistrellus Islitas 3.3 0.41 0 0 0 0 0 0 0 1 1 0 1 1 4 LasAnimasSur 9.1 16.49 0 0 0 1 0 0 0 1 1 0 0 0 3 Monserrat 1,902.8 13.66 1 0 0 1 0 0 0 1 1 1 1 0 6 Pardo 4.3 0.36 0 0 0 1 0 0 0 1 1 0 1 1 5 PartidaNorte 94.0 17.84 0 0 0 0 0 0 0 1 0 0 0 0 1 Pata 14.5 2.57 0 0 0 0 0 0 0 1 1 0 0 0 2 Piojo 67.6 4.57 0 0 0 1 0 0 0 1 0 0 0 0 2 Rasa 59.2 20.75 0 1 0 0 0 0 0 0 0 0 0 0 1 Salsipuedes 102.6 17.70 0 0 0 1 0 0 0 1 0 0 0 0 2 SanDiego 62.9 19.06 0 0 0 0 0 0 0 1 1 0 1 0 3 SanFrancisco 419.0 7.16 0 0 0 1 1 0 1 1 1 1 1 1 8 SanIldefonso 104.2 10.01 0 0 0 1 0 0 0 1 1 0 0 1 4 SanJosé 18,494.5 4.75 1 1 1 1 1 1 1 1 1 1 1 1 12 SanLorenzo 3,632.3 16.31 0 0 0 1 1 0 1 1 0 0 1 1 6

166

TableC.1.Continued.

Area Isolation Total Island (ha) (km) Richness Tadarida brasiliensis brasiliensis Tadarida Antrozous pallidus Antrozous perotis Eumops Lasiurusxanthinus curasoae Leptonycteris californicus Macrotus megalophylla Mormoops californicus Myotis vivesi Myotis femorosaccus Nyctinomops macrotis Nyctinomops hesperus Pipistrellus San Pedro Mártir 259.3 50.13 0 0 0 1 0 0 0 1 0 0 0 1 3 SantaCatalina 3,995.6 25.06 1 0 0 1 0 0 0 1 0 1 1 0 5 SantaCruz 1,315.1 19.81 1 0 1 0 0 0 0 1 1 0 1 0 5 Tijeras 4.0 1.90 0 0 0 1 0 0 0 1 1 0 0 1 4 Tortuga 1,141.2 35.64 0 0 0 1 1 0 0 1 0 0 0 1 4 Ventana 128.2 3.09 0 0 0 1 0 0 1 1 1 0 1 0 5 TotalNumberofOccurrences: 5 2 2 27 9 3 10 33 25 8 17 15 167