Pathogenesis of Chiari Malformation: a Morphometric Study of the Posterior Cranial Fossa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prognostic Implications of Total Hemispheric Glucose Metabolism
Journal of Nuclear Medicine, published on October 27, 2016 as doi:10.2967/jnumed.116.180398 Prognostic Implications of Total Hemispheric Glucose Metabolism Ratio in Cerebro-Cerebellar Diaschisis *Eivind Antonsen Segtnan1,2, Peter Grupe1, Jens Ole Jarden3, Oke Gerke1,4,Jana Ivanidze5 Sofie Bæk Christlieb1, Caius Constantinescu1, John Erling Pedersen1, Sina Houshmand6, Søren Hess1,7,8 Mojtaba Zarei9, Albert Gjedde2,10, Abass Alavi6, Poul F. Høilund-Carlsen1,8 1Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark 2 University of Southern Denmark, Odense, Denmark 3Department of Neurology, Herlev University Hospital, Copenhagen, Denmark 4Centre of Health Economics Research, Odense, University of Southern Denmark, Denmark 5Department of Diagnostic Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, NY, United States 6Division of Nuclear Medicine, Department of Radiology, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA 7Department of Radiology and Nuclear Medicine, Hospital of Southwest Jutland, Esbjerg, Denmark 8Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark 9National Brain Mapping Centre, Shahid Beheshti University (Medical and General Campus), Tehran, Iran. 10Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark 1 *Corresponding author Eivind Antonsen Segtnan ( Medicin student) , Allegade 34, 2.tv, 5000 Odense C, Denmark, Tel: +45 3044 8498, e-mail: [email protected] 2 Abstract Purpose: Diaschisis denotes brain dysfunction remote from a focal brain lesion. We have quantified diaschisis and investigated its prognostic value in glioma. Methods and material: We compared 50 18F-FDG-PET-CT studies collected prospectively from 14 patients with supratentorial glioma (5 men and 9 women aged 35-77 years) with 10 single scans from healthy controls aged 43-75 years. -
The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2
667 The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2. The Cerebellar Hemispheres Gary A. Press 1 Thin (5-mm) sagittal high-field (1 .5-T) MR images of the cerebellar hemispheres James Murakami2 display (1) the superior, middle, and inferior cerebellar peduncles; (2) the primary white Eric Courchesne2 matter branches to the hemispheric lobules including the central, anterior, and posterior Dean P. Berthoty1 quadrangular, superior and inferior semilunar, gracile, biventer, tonsil, and flocculus; Marjorie Grafe3 and (3) several finer secondary white-matter branches to individual folia within the lobules. Surface features of the hemispheres including the deeper fissures (e.g., hori Clayton A. Wiley3 1 zontal, posterolateral, inferior posterior, and inferior anterior) and shallower sulci are John R. Hesselink best delineated on T1-weighted (short TRfshort TE) and T2-weighted (long TR/Iong TE) sequences, which provide greatest contrast between CSF and parenchyma. Correlation of MR studies of three brain specimens and 11 normal volunteers with microtome sections of the anatomic specimens provides criteria for identifying confidently these structures on routine clinical MR. MR should be useful in identifying, localizing, and quantifying cerebellar disease in patients with clinical deficits. The major anatomic structures of the cerebellar vermis are described in a companion article [1). This communication discusses the topographic relationships of the cerebellar hemispheres as seen in the sagittal plane and correlates microtome sections with MR images. Materials, Subjects, and Methods The preparation of the anatomic specimens, MR equipment, specimen and normal volunteer scanning protocols, methods of identifying specific anatomic structures, and system of This article appears in the JulyI August 1989 issue of AJNR and the October 1989 issue of anatomic nomenclature are described in our companion article [1]. -
Basal Ganglia & Cerebellum
1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte. -
Crossed Cerebellar Atrophy in Patients with Precocious Destructive Brain Insults
ORIGINAL CONTRIBUTION Crossed Cerebellar Atrophy in Patients With Precocious Destructive Brain Insults Ricardo A. Teixeira, MD; Li M. Li, MD, PhD; Sergio L. M. Santos, MD; Veronica A. Zanardi, MD, PhD; Carlos A. M. Guerreiro, MD, PhD; Fernando Cendes, MD, PhD Objective: To analyze the frequency and pathogenetic ciated with the extent of the supratentorial lesion (6 from factors of crossed cerebellar atrophy (CCA) in adult pa- group A, 1 from group B, and none from group C; tients with epilepsy secondary to destructive brain in- PϽ.001). Status epilepticus was present in 6 patients from sults of early development. group A and in none from the other groups. There was an association between the antecedent of status epilep- Methods: We studied 51 adult patients with epilepsy ticus and CCA (PϽ.001). All patients had atrophy of the and precocious destructive lesions. Patients were cerebral peduncle ipsilateral to the supratentorial lesion divided into 3 groups according to the topographic dis- and 4 had contralateral atrophy of the middle cerebellar tribution of their lesions on magnetic resonance imag- peduncle. The duration of epilepsy was not associated ing: group A, hemispheric (n=9); group B, main arterial with the presence of CCA (P=.20). territory (n=25); and group C, arterial border zone (n=17). We evaluated the presence of CCA visually and Conclusions: Our data suggest that in patients with epi- with cerebellar volumetric measurement, correlating it lepsy and destructive insults early in life, the extent of with the clinical data. Other features shown on mag- the supratentorial lesion as well as the antecedent of sta- netic resonance imaging, such as the thalamus, brain- tus epilepticus play a major role in the pathogenesis of stem, and middle cerebellar peduncle, were also care- CCA. -
Bilateral Cerebellar Dysfunctions in a Unilateral Meso-Diencephalic Lesion
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.44.4.361 on 1 April 1981. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1981, 44, 361-363 Short report Bilateral cerebellar dysfunctions in a unilateral meso-diencephalic lesion D VON CRAMON From the Max-Planck-Institute for Psychiatry, Munich, Germany SUMMARY The clinical syndrome of a 65-year-old patient with a slit-shaped right-sided meso- diencephalic lesion was analysed. A cerebellar syndrome with limb-kinetic ataxia, intention tremor and hypotonicity in all extremities as well as ataxic dysarthria was found. The disruption of the two cerebello-(rubro)-thalamic pathways probably explained the signs of bilateral cere- bellar dysfunction. The uncrossed ascending limb of the right, and the crossed one of the left brachium conjunctivum may have been damaged by the unilateral lesion extending between caudal midbrain and dorsal thalamus. Protected by copyright. Most of the fibres which constitute the superior general hospital where neurological examination cerebellar peduncle leave the cerebellum and showed bilateral miosis, convergent strabism, vertical originate in cells of the dentate nucleus but also gaze paresis on upward gaze with gaze-paretic nystag- arise from neurons of the globose and emboli- mus, flaccid sensori-motor hemiparesis with increased stretch reflexes and Babinski sign on the left side, forme nuclei. The crossed ascending fibres of the and dysmetric movements of the right upper extremity. brachia conjunctiva constitute the major outflow The CT scan showed an acute haemorrhage in the from the cerebellum, they form the cerebello- right mesodiencephalic area. On 19 February 1979 (rubro)-thalamic and dentato-thalamic tracts.' the patient was admitted to our department. -
Associations of Pathological Diagnosis and Genetic Abnormalities In
www.nature.com/scientificreports OPEN Associations of pathological diagnosis and genetic abnormalities in meningiomas with the embryological origins of the meninges Atsushi Okano1, Satoru Miyawaki1*, Hiroki Hongo1, Shogo Dofuku1, Yu Teranishi1, Jun Mitsui2, Michihiro Tanaka3, Masahiro Shin1, Hirofumi Nakatomi1 & Nobuhito Saito1 Certain driver mutations and pathological diagnoses are associated with the anatomical site of meningioma, based on which the meninges have diferent embryological origins. We hypothesized that mutations and pathological diagnoses of meningiomas are associated with diferent embryological origins. We comprehensively evaluated associations among tumor location, pathological diagnosis (histological type), and genetic alterations including AKT1, KLF4, SMO, POLR2A, and NF2 mutations and 22q deletion in 269 meningioma cases. Based on the embryological origin of meninges, the tumor locations were as follows: neural crest, paraxial mesodermal, and dorsal mesodermal origins. Tumors originating from the dura of certain embryologic origin displayed a signifcantly diferent pathological diagnoses and genetic abnormality ratio. For instance, driver genetic mutations with AKT1, KLF4, SMO, and POLR2A, were signifcantly associated with the paraxial mesodermal origin (p = 1.7 × 10−10). However, meningiomas with NF2-associated mutations were signifcantly associated with neural crest origin (p = 3.9 × 10–12). On analysis of recurrence, no diference was observed in embryological origin. However, POLR2A mutation was a risk factor for the tumor recurrence (p = 1.7 × 10−2, Hazard Ratio 4.08, 95% Confdence Interval 1.28–13.0). Assessment of the embryological origin of the meninges may provide novel insights into the pathomechanism of meningiomas. Meningiomas are the most common primary intracranial tumors accounting for 20% of all such tumors. -
Anatomy of Cerebellum Rajasekhar Sajja Srinivasa Siva Naga
Chapter Anatomy of Cerebellum Rajasekhar Sajja Srinivasa Siva Naga Abstract The cerebellum receives inputs from spinal cord, cerebrum, brainstem, and sensory systems of the body and controls the motor system of the body. The Cerebellum harmonizes the voluntary motor activities such as maintenance of posture and equilibrium, and coordination of voluntary muscular activity including learning of the motor behaviours. Cerebellum occupies posterior cranial fossa, and it is relatively a small part of the brain. It weighs about one tenth of the total brain. Cerebellar lesions do not cause motor or cognitive impairment. However, they cause slowing of movements, tremors, lack of equilibrium/balance. Complex motor action becomes shaky and faltering. Keywords: Cerebellum, Spinocerebellar ataxia, Cortex, Medulla, Peduncles, Nuclei 1. Introduction The Cerebellum is the largest part of the hindbrain and develops from the alar plates (rhombic lips) of the metencephalon. It lies between the temporal and occipital lobes of cerebrum and the brainstem in the posterior cranial fossa. It is attached to the posterior surface of the brainstem by three large white fibre bundles. It is attached to the midbrain by superior cerebel- lar peduncle, pons by middle cerebellar peduncle, and medulla by inferior cerebellar peduncle. Cerebellum is concerned with three primary functions: a) coordination of voluntary motor functions of the body initiated by the cerebral cortex at an uncon- scious level, b) maintenance of balance, and posture, c) Maintenance of muscle tone. It receives and integrates the sensory inputs from the cerebrum and the spinal cord necessary for a planning and smooth coordination of the movements [1]. Cerebellar lesions result in irregular and uncoordinated, awkward intentional muscle movements. -
Cerebellum and Thalamus Glioblastoma Multicêntrico Originado Em Dois Locais Incomuns: Cerebelo E Tálamo
J Bras Patol Med Lab, v. 49, n. 2, p. 134-138, abril 2013 CASE REPORT Multicentric glioblastoma arising in two unusual sites: cerebellum and thalamus Glioblastoma multicêntrico originado em dois locais incomuns: cerebelo e tálamo Eduardo Cambruzzi1; Karla Lais Pêgas2; Mariana Fernandez Simão3; Guilherme Stüker3 ABSTRACT Multicentric glioblastomas (MGBM) arising in infra/supratentorial regions are uncommon lesions. The authors report a case of MGBM in a 61 year-old female patient, who presented a sudden onset of left hemiplegia. The magnetic resonance imaging (MRI) showed two expansive large lesions affecting cerebellum and thalamus, with strong contrast enhancement. The patient underwent resection of the cerebellar lesion. Microscopy revealed a high grade glial neoplasm exhibiting high mitotic index, areas of necrosis and microvascular proliferation. The neoplastic cells showed positive immunoexpression for glial fibrillary acidic protein (GFAP). The morphological findings were consistent with glioblastoma (GBM). The patient was referred to radiotherapy, with discrete signs of tumor regression after a 60-day clinical follow-up. Key words: glioblastoma; central nervous system neoplasms; pathology; brain neoplasms; cerebellum; thalamus. INTRODUCTION CASE REPORT Glioblastomas (GBM) are the most frequent primary brain tumors, A 61 year-old female patient was admitted at the emergency accounting for approximately 12%-15% of all intracranial neoplasms service presenting a sudden onset of left hemiplegia. On physical and 60%-75% of astrocytic tumors(8, 10, 14). The process affects mainly examination, the other organs and systems did not show any adults with a peak incidence within 45 and 75 years of age. Most GBM changes, as there was no previous history of relevant disease. -
Study of the Brain ...Pdf
Sudan University of Sciences and Technology College of Graduate Studies Study of the Brain Structures Development During Childhood Using Magnetic Resonance Imaging دراسة تطورتركيب الذماغ في مرحلة الطفولة باستخذام التصوير بالرنين المغناطيسي A Thesis submitted for Fulfillment of the Requirement of Master Degree (M. Sc) in Diagnostic Radiological Technology By: Suhair Talha Ibrahim Shaheen Supervisor: Prof. Caroline Edward Ayad Khilla (2019) I اٜٚخ الْشَأْثِبسْىِ سَثِّكَ انّزِ٘ خَهَكَ * خَهَ كَ اﻹَِْسَبٌَ يٍِْ عَهَكٍ * الْشَأَْٔسَثُّكَ اﻷَكْشَوُ * انّزِ٘ عَهّىَ ثِبنْمَهَىِ * عَهّىَ اﻹَِْسَبٌ َيَبنَى َْٚعْهَىْ )سٕسحانعهك: -1.5) صذق اهلل انعظٛى I Dedication To my parents To my family To all my friends To colleagues for their love and support. II Acknowledgment First of all, I thank Allah the Almighty for helping me complete this study. I thank Professor Caroline Edward Ayad Khilla, my supervisor, for her help and guidance. Thanks a lot, and all grateful for her. I would like to express my gratitude to Doctor Heba Tolab a medical radiologist at the Saudi Germen hospital. She lent a hand to getting samples Attention to the importance of research and what they aspire to, and all research samples were diagnosed as normal by her. I would like to thank Doctor Khalid Abdlhafith head of the of Radiology Technicians Department at the International Medical Center hospital by extending a helping hand to provide me samples for research. Finally I would like to thank everybody who helped me prepare and finish this study. III Abstract This is a descriptive analytical study, the study population composed of normal brain patients presenting to the Magnetic resonance unit. -
Malignant CNS Solid Tumor Rules
Malignant CNS and Peripheral Nerves Equivalent Terms and Definitions C470-C479, C700, C701, C709, C710-C719, C720-C725, C728, C729, C751-C753 (Excludes lymphoma and leukemia M9590 – M9992 and Kaposi sarcoma M9140) Introduction Note 1: This section includes the following primary sites: Peripheral nerves C470-C479; cerebral meninges C700; spinal meninges C701; meninges NOS C709; brain C710-C719; spinal cord C720; cauda equina C721; olfactory nerve C722; optic nerve C723; acoustic nerve C724; cranial nerve NOS C725; overlapping lesion of brain and central nervous system C728; nervous system NOS C729; pituitary gland C751; craniopharyngeal duct C752; pineal gland C753. Note 2: Non-malignant intracranial and CNS tumors have a separate set of rules. Note 3: 2007 MPH Rules and 2018 Solid Tumor Rules are used based on date of diagnosis. • Tumors diagnosed 01/01/2007 through 12/31/2017: Use 2007 MPH Rules • Tumors diagnosed 01/01/2018 and later: Use 2018 Solid Tumor Rules • The original tumor diagnosed before 1/1/2018 and a subsequent tumor diagnosed 1/1/2018 or later in the same primary site: Use the 2018 Solid Tumor Rules. Note 4: There must be a histologic, cytologic, radiographic, or clinical diagnosis of a malignant neoplasm /3. Note 5: Tumors from a number of primary sites metastasize to the brain. Do not use these rules for tumors described as metastases; report metastatic tumors using the rules for that primary site. Note 6: Pilocytic astrocytoma/juvenile pilocytic astrocytoma is reportable in North America as a malignant neoplasm 9421/3. • See the Non-malignant CNS Rules when the primary site is optic nerve and the diagnosis is either optic glioma or pilocytic astrocytoma. -
Imaging Features, Clinicopathological Analysis and Diagnostic Strategy of Igg4-Related Hypertrophic Pachymeningitis
2558 Original Article Imaging features, clinicopathological analysis and diagnostic strategy of IgG4-related hypertrophic pachymeningitis Yilei Zhao, Jingfeng Xu Department of Radiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China Contributions: (I) Conception and design: Y Zhao; (II) Administrative support: All authors; (III) Provision of study materials or patients: Y Zhao; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Yilei Zhao. Department of Radiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, No.79, Qingchun Road, Hangzhou 310003, China. Email: [email protected]. Background: This study was conducted to summarize the clinical, magnetic resonance imaging (MRI) and pathological features of IgG4-realated hypertrophic pachymeningitis (IgG4-RHP) and its differential diagnosis from similar diseases. Methods: Data of IgG4-RHP patients admitted to Department of Neurology, Neurosurgery and Infection, the First Affiliated Hospital of Medical School of Zhejiang University from January 1, 2015 to July 31, 2019 were collected and their clinical symptoms, laboratory examinations, imaging and pathological features were investigated. At the same time, the clinicopathological and imaging findings of other dura thickening diseases diagnosed in our hospital were compared and analyzed. Results: The clinical symptoms of 4 IgG4-RHP patients include chronic headache and cranial nerves injury, etc. Levels of serum IgG4 and cerebrospinal fluid (CSF) IgG4 increased in all patients. Focal enhancement of dura mater could be seen on plain and enhanced cranial MRI. Pathological results were consistent with IgG4-RHP symptoms. Among other diseases that cause dural thickening, the content of serum C-reactive protein in patients with Rosai-Dorfman disease declined. -
Prezentace Aplikace Powerpoint
MENINGES AND CEREBROSPINAL FLUID Konstantinos Choulakis Konstantinos Choulakis Meninges • Dura Mater • Aracnoid Mater • Pia Mater Dura Mater Spinal Dura mater Cranial Dura mater It forms a tube (saccus durrae matris spinalis) which start It is firmly attached to the periostium of the skull from which it receives from foramen magnus and extends to second segment of small blood vessels, branches of meningeal vessels (inappropriate name) the sacrum. It is pierced by spinal nerve roots. The spinal which occur in periostium. canal wall is coverd by periostium, then there is dura mater. The cranial dura mater has several features of importance especially, Between dura mater and periostium there is a , so called especially the dural reflections (derivatives) and the dural venous epidural space, which is filled with adipose tissue and a sinuses(see blood supply) venous plexus , the plexus venosi vertebrales interni Dura mater is attached to avascular arachnoid mater. Between them there is a potential space, so called subdural space which contains a small amount of interstitial fluid. Enables arachnoid mater to slide against dura mater. Dural Reflections The dura separates into two layers at dural reflections (also known as dural folds), places where the inner dural layer is reflected as sheet-like protrusions into the cranial cavity. There are two main dural reflections: • The tentorium cerebelli exists between and separates the cerebellum and • The falx cerebri, which separates the two hemispheres of the brain, is located in the brainstem from the occipital lobes of the cerebrum. The peripheral border of longitudinal cerebral fissure between the hemispheres. Its free edge is close to corpus tentorium is attached to the upper edges of the petrous bones and to the calosum.