AS 7711 Signalling Principles Draft

Total Page:16

File Type:pdf, Size:1020Kb

Load more

AS 7711:2018 Signalling Principles Train Control Systems Standard Please note this is a RISSB Australian Standard™ Draft Document content exists for RISSB product development purposes only and should not be relied upon or considered as final published content. Any questions in relation to this document or RISSB’s accredited development process should be referred to RISSB. AS 7711 Signalling Principles – Public Comment Draft Standard Development Manager: Email: James Campbell [email protected] RISSB Office Phone: Email: Web: (02) 6270 4523 [email protected] www.rissb.com.au Overseas: +61 2 6270 4523 AS 7711:2018 Signalling Principles This Australian Standard® AS 7711Signalling Principles was prepared by a Rail Industry Safety and Standards Board (RISSB) Development Group consisting of representatives from the following organisations: RioTinto BHP Transport for NSW Metro Trains Melbourne VicTrack Aurizon Arc Infrastructure KiwiRail Wabtec Queensland Rail ARTC ONRSR Passenger Transport Authority of Western Australia The Standard was approved by the Development Group and the Train Control Systems Standing Committee in Select SC approval date. On Select Board approval datethe RISSB Board approved the Standard for release. Choose the type of review Development of the Standard was undertaken in accordance with RISSB’s accredited process. As part of the approval process, the Standing Committee verified that proper process was followed in developing the Standard. RISSB wishes to acknowledge the positive contribution of subject matter experts in the development of this Standard. Their efforts ranged from membership of the Development Group through toPrinciples individuals providing comment on a draft of the Standard during the open review. I commend this Standard to the Australasian rail industry as it represents industry good practice and has been developed through a rigorous process. Comment Paul Daly Chief Executive Officer Rail Industry Safety and Standards BoardSignalling Public Keeping Standards up-to-date Australian Standards developed by RISSBfor are living documents that reflect progress in science, technology and systems. To maintain7711 their currency, Australian Standards developed by RISSB are periodically reviewed, and new editions published when required. Between editions, amendments may be issued. Australian Standards developed by RISSB may also be withdrawn. It is important that readers assure themselves they are using a current Australian Standard developed by RISSB, which should include any amendments that may have been issued since the Standard was published. Information aboutAS Australian StandardsDraft developed by RISSB, including amendments, can be found by visiting www.rissb.com.au. RISSB welcomes suggestions for improvements, and asks readers to notify us immediately of any apparent inaccuracies or ambiguities. Members are encouraged to use the change request feature of the RISSB website at: http://www.rissb.com.au/products/. Otherwise, please contact us via email at [email protected] or write to Rail Industry Safety and Standards Board, PO Box 4271, Kingston ACT 2604, Australia. RISSB ABN 58 105 001 465 Page1 Accredited Standards Development Organisation AS 7711:2018 Signalling Principles AS 7711:2018 Signalling Principles Document details First published as: Enter first publication identifier (AS XXXX:yyyy) Principles ISBN Enter ISBN. Published by SAI Global Limited under licence from the Rail Industry Safety and Standards Board, PO Box 4271, Kingston ACT 2604, Australia Copyright Comment ©RISSB All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of RISSB, unless otherwise permitted under the Copyright Act 1968. Signalling Public for Notice to users7711 This RISSB product has been developed using input from rail experts from across the rail industry and represents good practice for the industry. The reliance upon or manner of use of this RISSB product is the sole responsibility of the ASuser who shall assess whether it meets their organisation’s operational environment and risk profile. Draft RISSB ABN 58 105 001 465 Page2 Accredited Standards Development Organisation AS 7711:2018 Signalling Principles 1.1 Document control Document identification Designation / Title AS 7711:2018Signalling Principles Document history Publication Version Effective Date Reason for and Extent of Change(s) 2018 Select Board approval date Principles Draft history Version Date Change(s) 1.2 16 March 2017 First populated draft for reviewComment 1.2.4 Revision following DG meeting 30/3/17 2.0 Revised format following DG meeting 30/3/2017 2.3 Revised heading structure following DG meeting 04/07/17 2.4 10 August 2017Signalling Included DG comments as agreed at DG meeting 25/07/17 2.5 4 December 2017 IncludedPublic DG comments as agreed at DG meeting 4/12/17 2.6 8 December 2017 Draft for approval for public consultation for Approval 7711 Name Date Rail Industry Safety and Standards Board Select Board approval date AS Draft RISSB ABN 58 105 001 465 Page3 Accredited Standards Development Organisation AS 7711:2018 Signalling Principles 1.2 Contents 1 Introduction ................................................................................................................... 5 2 Signalling system .......................................................................................................... 8 3 Movement authorities ................................................................................................... 8 4 Prevent rail traffic from colliding with other rolling stock .............................................. 11 5 Prevent rail traffic from derailing ................................................................................. 14 6 Prevent rail traffic from colliding with road users or vehicles at railway crossings ....... 18 7 Prevent rail traffic from being incompatible with the infrastructure .............................. 23 8 Prevent rail traffic from colliding with rail safety workers or equipment in the rail corridor ....................................................................................................................... 28 9 Safety in design .......................................................................................................... 32 10 Efficiency ................................................................................................Principles.................... 49 Appendix A Hazard Register .......................................................................................... 55 Appendix B Overlaps ..................................................................................................... 56 Appendix C Route locking .............................................................................................. 63 Appendix D Enforcement systems ................................................................Comment................. 65 Appendix E Route locking .............................................................................................. 84 Appendix F Approach locking ........................................................................................ 86 Appendix G Route releasing ........................................................................................... 87 Appendix H Aspect clearanceSignalling and lamp proving ................................ ............................ 89 Appendix I Single lines and bi-directional Publicsignalling ................................ ......................... 91 Bibliography ......................................................................................................................... 93 for 7711 AS Draft RISSB ABN 58 105 001 465 Page4 Accredited Standards Development Organisation AS 7711:2018 Signalling Principles 1 Introduction 1.1 Purpose The objective of this Standard is to provide the Australasian rail industry with a set of mandatory and recommended signalling principles to be incorporated in the design of new signalling systems. Major modifications to signalling systems shall consider the principles of this Standard so far as is reasonably practicable. These signalling principles support the safe application of a Rail Transport Operator’s (RTO) signalling-based safeworking system, promote a consistent application of signalling principles throughout Australasia and should– (a) detail the underlying principles of signalling system design; (b) be independent of specific RTO’s requirements; (c) be independent of technology used; and (d) identify the risks (hazards) being controlled. Principles 1.2 Scope This Standard provides details on underlying signalling principles commonly used to control rolling stock operational risk. It does not preclude the application of higher performance standards (e.g. based on local experience and good engineeringComment practice which may be contained in the management of Standards, Codes, Guidelines and procedures of individual Australia States or RTOs). This Standard covers the engineering controls for signalled movement authorities. It does not cover procedural controls in yard working areas. 1.3 Exclusions Signalling This Standard is not specifically intended toPublic cover urban on-street tramway or light rail networks, cane railways, or heritage railways operating on private reservation, but items from this Standard may be applied to such systems as deemed appropriate by the relevant RTO.
Recommended publications
  • 2.2 Pointwork Configurations in the Following Paragraphs Some of the More Maintenance Is Straightforward

    2.2 Pointwork Configurations in the Following Paragraphs Some of the More Maintenance Is Straightforward

    Part 2 Section 2 POINTWORK Issued February 2001 2.2 Pointwork configurations In the following paragraphs some of the more maintenance is straightforward. However, in a common pointwork configurations are shown restricted space it may be necessary to together with the accepted terminology used to superimpose one turnout upon another, which describe them. When planning track layouts the introduces additional crossings and timbering and preference is to use a combination of single may, in bullhead track, involve the use of special turnouts as these require the minimum of special chairs. chairs and timbers to construct them and 2.2.1 Single turnouts These follow the pattern described in 2.1 and are illustrated in Figure 2-9. RH Turnout LH Turnout RH Crossover LH Crossover Split or Equilateral Turnout Figure 2-9 Single turnouts 2.2.2 Tandem or double turnout This uses one set of switches immediately after form part of a continuous curve but this would another and before the crossing, which introduces require movements to be carried out at low speed. a third crossing and crowded timbering. Where (Figure 2-10 and Photo 2.2) space is particularly crowded the crossing may Figure 2-10 Tandem turnout 2-2-9 2.2.3 Three-throw turnout Photo 2.2 A double tandem turnout leading off from a double There is a nomenclature problem here slip at Stowmarket Goods Yard. as the 3-throw yields the same outcome (NRM Windwood Collection GE1005) as the double turnout. It uses a left hand and a right hand set of switches that are superimposed to divide three ways together in symmetrical form.
  • Metro Rail Design Criteria Section 10 Operations

    Metro Rail Design Criteria Section 10 Operations

    METRO RAIL DESIGN CRITERIA SECTION 10 OPERATIONS METRO RAIL DESIGN CRITERIA SECTION 10 / OPERATIONS TABLE OF CONTENTS 10.1 INTRODUCTION 1 10.2 DEFINITIONS 1 10.3 OPERATIONS AND MAINTENANCE PLAN 5 Metro Baseline 10- i Re-baseline: 06/15/10 METRO RAIL DESIGN CRITERIA SECTION 10 / OPERATIONS OPERATIONS 10.1 INTRODUCTION Transit Operations include such activities as scheduling, crew rostering, running and supervision of revenue trains and vehicles, fare collection, system security and system maintenance. This section describes the basic system wide operating and maintenance philosophies and methodologies set forth for the Metro Rail Projects, which shall be used by designer in preparation of an Operations and Maintenance Plan. An initial Operations and Maintenance Plan (OMP) is developed during the environmental phase and is based on ridership forecasts produced during this early planning phase of a project. From this initial Operations and Maintenance plan, headways are established that are to be evaluated by a rail operations simulation upon which design and operating headways can be established to confirm operational goals for light and heavy rail systems. The Operations and Maintenance Plan shall be developed in order to design effective, efficient and responsive transit system. The operations criteria and requirements established herein represent Metro’s Rail Operating Requirements / Criteria applicable to all rail projects and form the basis for the project-specific operational design decisions. They shall be utilized by designer during preparation of Operations and Maintenance Plan. Any proposed deviation to Design Criteria cited herein shall be approved by Metro, as represented by the Change Control Board, consisting of management responsible for project construction, engineering and management, as well as daily rail operations, planning, systems and vehicle maintenance with appropriate technical expertise and understanding.
  • Objects from the National Railway Museum Collection

    Objects from the National Railway Museum Collection

    The Science Museum Group: Science Museum, London National Railway Museum, York Museum of Science and Industry, Manchester National Science and Media Museum, Bradford Locomotion, Shildon Objects Available for Transfer October-December 2018 The objects listed on the following pages have been approved for transfer and are currently available. The closing date for applications is Friday 14 December 2018. If you would like more information or are interested in acquiring an object from the Transfers list, please email us at [email protected] and include the following information: • The object number and description • A description of how you intend to use the object(s) and how this will benefit the public • An explanation of how you will ensure the long-term care of the object(s) • The organisation that you are representing, including the type of organisation (i.e. accredited museum, charitable trust) • Full contact details 1/66 The Science Museum Group: Science Museum, London National Railway Museum, York Museum of Science and Industry, Manchester National Science and Media Museum, Bradford Locomotion, Shildon Transfers from the Railway Museum Collection Object Description Image Number Visual display unit, British Rail, Total Operations Processing System, for use in control E2018.0514.1 office, Datapoint 8600, model number 97-3601-001 (9), serial number 10603, unknown provenance. Thyristor dimmer unit for lighting, high voltage, by Industrolite Ltd, Croydon Airport, serial number 686- E2018.0515.1 6057/8, with ‘DIAGRAM LIGHTING’ printed on Dymo tape label, unknown provenance. Teleprinter, Creed system, model no. 3D, serial no. 6028, by Creed & Co. Ltd., London, British patent numbers 228610, 228842 and others, E2018.0517.1 motor reference no.
  • Northeast Corridor Chase, Maryland January 4, 1987

    Northeast Corridor Chase, Maryland January 4, 1987

    PB88-916301 NATIONAL TRANSPORT SAFETY BOARD WASHINGTON, D.C. 20594 RAILROAD ACCIDENT REPORT REAR-END COLLISION OF AMTRAK PASSENGER TRAIN 94, THE COLONIAL AND CONSOLIDATED RAIL CORPORATION FREIGHT TRAIN ENS-121, ON THE NORTHEAST CORRIDOR CHASE, MARYLAND JANUARY 4, 1987 NTSB/RAR-88/01 UNITED STATES GOVERNMENT TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2.Government Accession No. 3.Recipient's Catalog No. NTSB/RAR-88/01 . PB88-916301 Title and Subtitle Railroad Accident Report^ 5-Report Date Rear-end Collision of'*Amtrak Passenger Train 949 the January 25, 1988 Colonial and Consolidated Rail Corporation Freight -Performing Organization Train ENS-121, on the Northeast Corridor, Code Chase, Maryland, January 4, 1987 -Performing Organization 7. "Author(s) ~~ Report No. Performing Organization Name and Address 10.Work Unit No. National Transportation Safety Board Bureau of Accident Investigation .Contract or Grant No. Washington, D.C. 20594 k3-Type of Report and Period Covered 12.Sponsoring Agency Name and Address Iroad Accident Report lanuary 4, 1987 NATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20594 1*+.Sponsoring Agency Code 15-Supplementary Notes 16 Abstract About 1:16 p.m., eastern standard time, on January 4, 1987, northbound Conrail train ENS -121 departed Bay View yard at Baltimore, Mary1 and, on track 1. The train consisted of three diesel-electric freight locomotive units, all under power and manned by an engineer and a brakeman. Almost simultaneously, northbound Amtrak train 94 departed Pennsylvania Station in Baltimore. Train 94 consisted of two electric locomotive units, nine coaches, and three food service cars. In addition to an engineer, conductor, and three assistant conductors, there were seven Amtrak service employees and about 660 passengers on the train.
  • Communication Technologies Support to Railway Infrastructure and Operations

    Communication Technologies Support to Railway Infrastructure and Operations

    Downloaded from orbit.dtu.dk on: Oct 06, 2021 Communication Technologies Support to Railway Infrastructure and Operations Sniady, Aleksander Link to article, DOI: 10.11581/DTU:00000010 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Sniady, A. (2015). Communication Technologies Support to Railway Infrastructure and Operations. DTU Fotonik. https://doi.org/10.11581/DTU:00000010 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Communication Technologies Support to Railway Infrastructure and Operations Aleksander Sniady Ph.D. Thesis May 2015 Communication Technologies Support to Railway Infrastructure and Operations Aleksander Sniady´ Ph.D. Thesis Networks Technology & Service Platforms DTU Fotonik Technical University of Denmark May 2015 To my parents and grandparents. Supervisors: José Soler Lars Dittmann Technical University of Denmark DTU Fotonik Department of Photonics Engineering This thesis is a part of RobustRailS project, Ørsteds Plads, Building 343, which is funded by The Danish Council for 2800 Kongens Lyngby, Denmark Strategic Research.
  • Electric Railway Engineering

    Electric Railway Engineering

    UNIVERSITY OF ILLINOIS LIBRARY Volume Class Book i^LL fTir^fa '"-^alljf' Return this book on or before the Latest Date stamped below. A charge is made on all overdue ^°°^^S- U. of I. Library ^tMK xb iS'- ^^^, i€ i^l; .^!^ 1762S-S ELECTRK^ RAILA\ AY ENGINEERING ELECTEIC KAILWAY ENGINEERING BY C. FRANCIS HARDING, E. E. professor, electrical engineering; director, electrical laboratories, purdue universitt; associate American institute electrical engineers; asso- ciate AMERICAN electric RAILWAY ASSOCIATION ; MEMBER SOCIETY FOR promotion OF ENGINEERING EDUCATION McGRAW-HILL BOOK COMPANY 239 WEST 39TH STREET. NEW YORK 6 BOUVERIE STREET, LONDON, E. C. 1911 Copyright, 1911 BY McGraw-Hill Book Company Prhited and Eleclrolyped by The Maple Press York. Fa. PREFACE. To students in technical universities who wish to specialize in the subject of electrical railway engineering and to those who understand the fundamental principles of electrical engineering and are interested in their application to electric railway practice it is hoped that this book may be of value. While it is planned primarily for a senior elective course in a technical university, it does not involve higher mathematics and should therefore be easily understood by the undergraduate reader. The volume does not purport to present any great amount of new material nor principles, but it does gather in convenient form present day theory and practice in all important branches of electric railway engineering. No apology is deemed necessary for the frequent quotations from technical papers and publications in engineering periodicals, for it is only from the authorities and specialists in particular phases of the profession that the most valuable information can be obtained, and it is believed that a thorough and unprejudiced summary of the best that has been written upon the various aspects of the subject will be most welcome when thus combined into a single volume.
  • T HR TR 25000 ST Buffer Stops, Version 1.0

    T HR TR 25000 ST Buffer Stops, Version 1.0

    Technical Note – TN 033: 2018 For queries regarding this document [email protected] www.transport.nsw.gov.au Technical Note – TN 033: 2018 Issue date: 21 December 2018 Effective date: 21 December 2018 Subject: Amendments to T HR TR 25000 ST Buffer Stops, version 1.0 This technical note is issued by the Asset Standards Authority (ASA) to notify amendments to T HR TR 25000 ST Buffer stops, v1.0. 1. Background This technical note explains the speed related risk criteria to be considered during the buffer stop design stage. It provides amendments to the maximum allowable deceleration rate for lighter weight rolling stock while complying with the allowable impact force requirements. This technical note also provides amended maximum allowable impact force that the newer generation trains can accommodate without any damage. These figures shall be used by all parties undertaking review or design of new buffer stops across the Metropolitan Rail Area. 2. Section 12 Risk assessment Insert the following after the third paragraph: In order to establish the nature and extent of damage upon collision, the risk assessment for a buffer stop design shall consider the possibility of a train travelling at a speed higher than the design speed and the expected consequential damage upon collision. In the SFAIRP justification, an indication shall be provided to indicate the following: • Up to the design speed that no permanent damage will occur to the train. The buffer stop will be fully recoverable, either automatically or within simple maintenance actions. • Up to the 'worst case speed' that the damage will be easily reparable; for example, easy repair or replacement of buffer stop parts.
  • Deliverable D3.1 Virtual Coupling Communication Solutions Analysis

    Deliverable D3.1 Virtual Coupling Communication Solutions Analysis

    Ref. Ares(2020)7880497 - 22/12/2020 Deliverable D3.1 Virtual Coupling Communication Solutions Analysis Project Acronym: MOVINGRAIL Starting Date: 01/12/2018 Duration (Months): 25 Call (part) Identifier: H2020-S2R-OC-IP2-2018 Grant Agreement No.: 826347 Due Date of Deliverable: Month 10 Actual Submission Date: 25-09-2020 Responsible/Author: Bill Redfern (PARK) Dissemination Level: Public Status: Issued Reviewed: No G A 8 2 6 3 4 7 P a g e 1 | 63 Document history Revision Date Description 0.1 03-07-2020 First draft for comments and internal review 0.2 24-09-2020 Second draft 1.0 25-09-2020 Issued 1.1 22-12-2020 Update following comments from the Commission, added new section 4.2.1 Report contributors Name Beneficiary Details of contribution Short Name John Chaddock PARK Primary Curation. Identification and collation of source documentation. Document review. Bill Redfern PARK Literature review and solutions research. Requirements identification. Analysis of requirements and potential solutions. Descriptions and conclusions. John Marsden PARK Literature review and solutions research. Michael Duffy PARK Literature review and solutions research. Mark Cooper PARK Literature review and solutions research. Analysis. Format/editing. Andrew Wright PARK Document review. Lei Chen UoB Document review. Mohamed Samra UoB Document review. Paul van Koningsbruggen Technolution Document review. Rob Goverde TUD Document review, quality check and final editing. Funding This project has received funding from the Shift2Rail Joint Undertaking (JU) under grant agreement No 826347. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and the Shift2Rail JU members other than the Union.
  • Australasian TETRA Forum

    Australasian TETRA Forum

    TETRA & CRITICAL COMMUNICATIONS ASSOCIATION Study on the relative merits of TETRA, LTE and other broadband technologies for critical communications markets Final version 1.1: February 2015 P3 communications GmbH Am Kraftversorgungsturm 3 (Alter Schlachthof) 52070 Aachen Germany www.p3-group.com/en/communications-gmbh-46867.html Version 1.1 P3 communications GmbH February 2015 Page 1 of 29 TCCA study on TETRA, LTE and other broadband technologies for critical communications markets Table of contents 1 Executive summary .............................................................................................. 4 2 Introduction .......................................................................................................... 8 2.1 Background .................................................................................................. 8 2.2 Study objectives ............................................................................................ 8 2.3 Scope ........................................................................................................... 8 3 The Critical Communications market by sector ...................................................10 3.1 PPDR / Public Safety ...................................................................................10 3.2 Transport .....................................................................................................10 3.3 Utilities .........................................................................................................12 3.4 Industrial
  • Approved Signalling Items for the ARTC Network ESA-00-01

    Approved Signalling Items for the ARTC Network ESA-00-01

    Division / Business Unit: Corporate Services & Safety Function: Signalling Document Type: Catalogue Approved Signalling Items for the ARTC Network ESA-00-01 Applicability ARTC Network Wide SMS Publication Requirement Internal / External Primary Source Existing ARTC Type Approvals Document Status Version # Date Reviewed Prepared by Reviewed by Endorsed Approved 1.3 03 May 2021 Standards Stakeholders Manager General Manager Signalling Technical Standards Standards 03/05/2021 Amendment Record Amendment Date Reviewed Clause Description of Amendment Version # 1.0 23 Mar 20 First issue of catalogue that lists signalling items and communication items related to signalling systems approved for use on the ARTC network. 1.1 26 Jun 20 New approved items added based on type approval and compliance to ARTC specification 1.2 24 Nov 20 New approved items added based on type approval and compliance to ARTC specification © Australian Rail Track Corporation Limited (ARTC) Disclaimer This document has been prepared by ARTC for internal use and may not be relied on by any other party without ARTC’s prior written consent. Use of this document shall be subject to the terms of the relevant contract with ARTC. ARTC and its employees shall have no liability to unauthorised users of the information for any loss, damage, cost or expense incurred or arising by reason of an unauthorised user using or relying upon the information in this document, whether caused by error, negligence, omission or misrepresentation in this document. This document is uncontrolled when printed. Authorised users of this document should visit ARTC’s extranet (www.artc.com.au) to access the latest version of this document.
  • Conception of Buffer Stop Blocks Miguel R

    Conception of Buffer Stop Blocks Miguel R

    Conception of buffer stop blocks Miguel R. Bugarín PhD - Civil Engineer – Assoc. Professor School of Civil Engineering UNIVERSITY OF LA CORUÑA Campus de Elviña, s/n - E 15071 La Coruña (Spain) Tfno: +34 (9)81 167000 Fax: +34 (9)81 167170 E-mail: [email protected] José-Manuel García Díaz-de-Villegas PhD – Mechanical Engineer - Professor School of Civil Engineering University of Cantabria Avda. de los Castros, s/n - E 39005 Santander (Spain) Tfno: +34 (9)42 201759 Fax: +34 (9)42 201703 1. SAFETY ON TERMINAL TRACKS Accidents in terminals seriously affect public confidence and following an accident it is vital to provide clear proof that safety measures have been improved in order to regain that confidence. Human and technical errors occur for a variety of reasons, and unfortunately, such events can lead to an accident. The objective is to find a means of reducing the likelihood of an accident occurring, or in the event of an accident, to reduce its impact. In other words, when all else fails, there has to be a means of stopping the train. Such measures have to be applied without producing any of the following: Serious injury to passengers and drivers. Serious injury to passengers or the general public in the arrival area of the train suffering from deficient braking. Excessive damage to the locomotive and rolling stock. Excessive damage to the station infrastructure and services, as well as to the arrival track. This document offers a summary of the projects carried out by the authors for Renfe and TIFSA (Tecnología e Investigación Ferroviaria, S.A.), aimed at developing a standard buffer stop pre-design capable of stopping a train on terminal tracks with complete safety and without causing damage, thereby preventing a catastrophe and the costs for the damage caused, as well as the expense and time involved in repairing equipment.
  • Rawie 16ZEB/28A Friction Arresting Buffer Stop at Freight Link Headshunt in Melbourne Only

    Rawie 16ZEB/28A Friction Arresting Buffer Stop at Freight Link Headshunt in Melbourne Only

    Engineering Procedure- Form New Equipment & System Approval Proforma Form number: EGP2101F-01 NEW EQUIPMENT & SYSTEM APPROVAL PROFORMA Ref: 14/19018 Note: the prompts given below are only a guide to the information required for approval. Dependent on the type of equipment or system that requires approval delete any section that is not applicable or include additional information if necessary. Mandatory fields are marked with an asterisk (*). 1 Equipment or System to be approved * Rawie 16ZEB/28a Friction Arresting Buffer Stop at Freight Link Headshunt in Melbourne only 2 Originator * Name: Patrick Gray Company: ARTC/RRL 3 Introduction * A new dual gauge freight headshunt was proposed by the Victorian Regional Rail Link Project to replace the previous freight headshunt over the North Melbourne Flyover in order to make way for the new Regional Rail Link Track use of the Flyover to access Southern Cross Station. The new headshunt is comprised of a Section of the new Freight Link Track and the Freight Link Headshunt which branches off the Freight Link Track. To control the risk of rolling stock overrun at the end of the headshunt it was determined through a risk assessment process that a friction buffer stop would be provided with capacity to safely bring a maximum freight train of 4500t to a stand from 15 km/h. The Rawie 16ZEB/28a Friction Arresting Buffer Stop is a non-insulated device capable of arresting centre coupled freight vehicles through a friction shoe braking mechanism that allows impact energy to be dissipated over the nominated length of track. This type of equipment provides enhanced rail safety over traditional fixed buffer stops by providing controlled speed reduction and reduces likelihood of destructive impact and the potential for rolling stock to override the buffer.