To Multimodality: Towards an Integrative View on Anuran Communication

Total Page:16

File Type:pdf, Size:1020Kb

To Multimodality: Towards an Integrative View on Anuran Communication J Comp Physiol A DOI 10.1007/s00359-014-0923-1 REVIEW From uni- to multimodality: towards an integrative view on anuran communication Iris Starnberger · Doris Preininger · Walter Hödl Received: 25 March 2014 / Revised: 6 June 2014 / Accepted: 8 June 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Undeniably, acoustic signals are the predomi- Introduction nant mode of communication in frogs and toads. Acousti- cally active species are found throughout the vast diversity A great diversity of signalling strategies and behaviours of anuran families. However, additional or alternative sig- can be observed during animal communication shaped nal modalities have gained increasing attention. In several by sexual selection and the environmental constraints anurans, seismic, visual and chemical communications (Narins and Zelick 1988; Endler 1992; Endler and Thery have convergently evolved due to ecological constraints 1996; Leal and Fleishman 2004; Bradbury and Vehren- such as noisy environments. The production of a visual camp 2011). In several species, not only one communi- cue, like the inevitably moving vocal sac of acoustically cation mode, but two or more are used simultaneously or advertising males, is emphasized by conspicuously col- sequentially across multiple sensory components (Partan oured throats. Limb movements accompanied by dynamic and Marler 1999; reviewed in Candolin 2003; Hebets and displays of bright colours are additional examples of strik- Papaj 2005; Otovic and Partan 2009). Multimodal commu- ing visual signals independent of vocalizations. In some nication is discussed for a wide range of species includ- multimodal anuran communication systems, the acoustic ing spiders (e.g. Uetz et al. 2009), fish (e.g.V an Staaden component acts as an alert signal, which alters the receiver and Smith 2011), reptiles (reviewed in Hews and Martins attention to the following visual display. Recent find- 2013), birds (e.g. Wiley 1973) and mammals (e.g. Bro- ings of colourful glands on vocal sacs, producing volatile Jorgensen and Dabelsteen 2008), but has been difficult to species-specific scent bouquets suggest the possibility of test until recently. Complex signalling repertoires are chal- integration of acoustic, visual and chemical cues in species lenging to investigate and valid hypotheses testing remains recognition and mate choice. The combination of signal difficult in scientific experiments (Leger 1993; Partan and components facilitates a broadened display repertoire in Marler 2005; Rosenthal 2007). However, advances in con- challenging environmental conditions. Thus, the complex- ceptual framework and technical equipment have greatly ity of the communication systems of frogs and toads may improved research in this field. In anuran amphibians, calls have been underestimated. are the predominant signals in inter- and intrasexual com- munication (Ryan 1985; Gerhardt and Huber 2002; Dor- Keywords Bioacoustics · Visual signals · Chemical cas et al. 2010). Vocalizations are the most conspicuous signals · Frogs · Toads · Signal modalities display to human observers and as a consequence other signal modalities have traditionally received less atten- tion (Waldman and Bishop 2004; Coleman 2009) or may I. Starnberger (*) · D. Preininger · W. Hödl have been misjudged, e.g. due to experimenters’ lack of Department of Integrative Zoology, University of Vienna, visual sensitivity at night (Buchanan 1993). Amphibians in Althanstraße 14, 1090 Vienna, Austria general and frogs in particular are excellent model organ- e-mail: [email protected] isms to experimentally investigate communication strate- D. Preininger gies both in the laboratory and under natural conditions, Vienna Zoo, Maxingstraße 13b, 1130 Vienna, Austria as they are hardly disturbed by observers and can be easily 1 3 J Comp Physiol A manipulated (Narins et al. 2003; Hirschmann and Hödl have evolved to match the tuning of the receiver’s auditory 2006; Taylor et al. 2007). system (Gerhardt and Schwarz 2001). This review highlights anuran signalling strategies in Any message needs to be successfully transmitted to addition to calling to promote an integrative multimodal elicit the intended response in the receiver (Shannon 1948); view on anuran communication. clear reception is a minimum requirement for a successful communication system (Shannon 1948; Endler 1993). The most basic requirement for a call is to be detectable against Anurans are born to call background noise and to minimize transmission degrada- tion and attenuation of the environment. High levels of “Frogs enjoy life and express their joy by song” (Dickerson biotic and abiotic environmental noise may mask calls and 1908). Much has changed since these lines were written, hamper accurate detection, discrimination and localiza- and due to numerous studies on acoustic signals in anu- tion (or increase response latency) by receivers (Bee 2008; rans, we have a very different albeit less romantic opinion Vélez et al. 2012, 2013; Caldwell and Bee 2014). However, on signal content and function. The male advertisement signal properties and strategies have been shaped over evo- call attracts conspecific females and signals the readiness lutionary time to enhance transmission in their respective to defend territories and calling sites to rival males; hence acoustic environments by preferences of receivers. calling behaviour plays a vital role in reproductive success To improve signalling effectiveness, anuran species and is essential for sexual selection (Narins et al. 2007). organize calling periods temporally (Klump and Ger- Many frogs and toads have more than one species-specific hardt 1992), adjust their calls to random intercall intervals call type. In addition to the prominent advertisement call (Zelick and Narins 1985) or inhibit calling heterospecif- a variety of discrete or continuous call types correspond ics (Schwartz and Wells 1983). In dense breeding aggre- to specific functions, such as the encounter call (McDiar- gations, concurrently chorusing conspecifics can achieve mid and Adler 1974), the courtship call, the territorial call, release from masking interference by spatial separation the distress call, and the release call (all reviewed in Wells from the biotic sound source (Grafe 1996; Bee 2008). In 1977). the presence of continuous background noise, the recog- nition and detection of acoustic signals can be impaired How frogs and toads get their acoustic message across dependent on the relative noise level and frequency (Feng and Schul 2006). In torrent frogs, high-frequency and in In numerous species, audio-spectral and temporal call char- some cases even ultrasonic calls enhance the signal-to- acteristics and their function as static or dynamic signal noise ratio relative to low-frequency stream noise and are properties were investigated during the last decades (Ger- suggested to be an adaptive strategy in the presence of con- hardt and Huber 2002). Robert R. Capranica was the first tinuous noise (Narins et al. 2004; Feng et al. 2006; Boeckle to combine electrophysiological analyses, behavioural data et al. 2009). For example, stream-associated species of the and synthetic playback calls to study “what the frog’s ear genus Staurois emit higher pitched calls than other ranid tells the frog’s brain” (Capranica and Moffat 1983; and see species of comparable body size (Fig. 1). Simmons 2012). As a mentor, he inspired future genera- Acoustic adaptations to overcome signalling constraints tions to study animal communication by means of integra- are limited and often opposed by morphological and phylo- tive research in the lab and also in the field and opened-up genetic constraints—but most importantly by sexual selec- a new field which likewise attracted bioacousticians and tion (e.g. Ryan and Rand 2003). In many cases, species evolutionary biologists. As a consequence, anuran vocal develop new, often spectacular ways of communication in signals and their perception are nowadays an exceptionally which the production of acoustic signals is of less impor- well-understood subject in biology. Anuran call characteris- tance or even completely abandoned (Rödel et al. 2003; tics correlate with body size and mass across species (Ryan Hirschmann and Hödl 2006; Preininger et al. 2009). 1988; Gingras et al. 2013) and within species (e.g. Narins and Smith 1986; Robertson 1990) a pattern described as the Deep croak hypothesis by Davies and Halliday (1979); When calling is not enough: from single and see Gingras et al. (2013). Furthermore, call parameters to multimodality signal species identity (e.g. Blair 1958; Hödl 1977), and in some species exhibit “individual” distinctive signatures “Compared to salamanders, olfactory cues and visual dis- (Bee and Gerhardt 2001a, b; Gasser et al. 2009), but not in plays seem to be unimportant to preamplectic courtship others (Bee 2003). Advertisement calls also regulate male in most anurans, but some tactile cues are used by certain spacing (e.g. Brenowitz 1989), increase the male’s attrac- species.” Duellman and Trueb (1986) wrote in their widely tiveness to females (e.g. Ryan and Keddy-Hector 1992) and used textbook “Biology of Amphibians” published almost 1 3 J Comp Physiol A 9500 9000 y = 8688.4+(-1650.6)*ln x 8500 r ² = 0.325 8000 SD = 1151.4 7500 7000 n = 76 6500 6000 5500 5000 4500 4000 3500 3000 2500 Dominant frequency (Hz) 2000 1500 1000 500 0 0 50 100 150 200 250 SVL (mm) Fig. 1 Logarithmic regression of call
Recommended publications
  • Morphological and Cytological Observations on Iwo Opalinid Endocommensals of Acanthixalus Spinosus (Amphibia, Anura)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/238037392 Morphological and cytological observations on two opalinid endocommensals of Acanthixalus spinosus (Amphibia, Anura) Article in Canadian Journal of Zoology · February 2011 DOI: 10.1139/z96-171 CITATIONS READS 2 133 3 authors, including: Félix-Marie Affa'a RAPPAUC 21 PUBLICATIONS 98 CITATIONS SEE PROFILE All content following this page was uploaded by Félix-Marie Affa'a on 23 January 2015. The user has requested enhancement of the downloaded file. 1573 Morphological and cytological observations on Iwo opalinid endocommensals of Acanthixalus spinosus (Amphibia, Anura) Félix-Marie Affa'a, Jean-Pierre Mignot, and Jean-Louis Amiet Abstract: The morphology and cytology of two new opalinid species were studied using silver impregnation and fixation, which preserves the microfibrils. Both species, commensal on Acanthixalus spinosus, are hast-specifie. Light microscopy showed the existence of a posterior secant system in Opalina proteus n.sp. and its absence in Cepedea couillardi n.sp. (in agreement with the differences presently recognised between the two genera). At the ultrastructural level, however, bath species present a posterior fibrillar zone that seems to be homologous with the secant system. This apparent contradiction may be explained by the fact that the secant system is visible under light microscopy only in O. proteus because its fibrillar zone is more developed than in C. couillardi. The life cycle of C. couillardi spans stages from the tadpole to the adult; in contrast, O. proteus completes its cycle before metamorphosis of the hast. Résumé: Les auteurs ont étudié la morphologie et l'ultrastructure de deux nouvelles opalines par imprégnation à l'argent en microscopie optique et en microscopie électronique, après fixation par une technique réputée préserver les microfibrilles.
    [Show full text]
  • High Species Turnover Shapes Anuran Community Composition in Ponds Along an Urban-Rural Gradient
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.276378; this version posted September 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 High species turnover shapes anuran community composition in ponds along an urban-rural 2 gradient 3 4 Carolina Cunha Ganci1*, Diogo B. Provete2,3, Thomas Püttker4, David Lindenmayer5, 5 Mauricio Almeida-Gomes2 6 7 1 Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, 8 Campo Grande, Mato Grosso do Sul, 79002-970, Brazil. 9 2 Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato 10 Grosso do Sul, 79002-970, Brazil. 11 3 Göthenburg Global Biodiversity Centre, Göteborg, SE-450, Sweden. 12 4 Departamento de Ciências Ambientais, Universidade Federal de São Paulo - UNIFESP, São 13 Paulo, 09913-030, Brazil. 14 5 Fenner School of Environment and Societ, Australian National University, Canberra, ACT, 15 Australia. 16 17 * Corresponding author: [email protected] 18 19 Carolina Ganci orcid: 0000-0001-7594-8056 20 Diogo B. Provete orcid: 0000-0002-0097-0651 21 Thomas Püttker orcid: 0000-0003-0605-1442 22 Mauricio Almeida-Gomes orcid: 0000-0001-7938-354X 23 David Lindenmayer orcid: 0000-0002-4766-4088 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.01.276378; this version posted September 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Congolius, a New Genus of African Reed Frog Endemic to The
    www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera.
    [Show full text]
  • Western Ghats & Sri Lanka Biodiversity Hotspot
    Ecosystem Profile WESTERN GHATS & SRI LANKA BIODIVERSITY HOTSPOT WESTERN GHATS REGION FINAL VERSION MAY 2007 Prepared by: Kamal S. Bawa, Arundhati Das and Jagdish Krishnaswamy (Ashoka Trust for Research in Ecology & the Environment - ATREE) K. Ullas Karanth, N. Samba Kumar and Madhu Rao (Wildlife Conservation Society) in collaboration with: Praveen Bhargav, Wildlife First K.N. Ganeshaiah, University of Agricultural Sciences Srinivas V., Foundation for Ecological Research, Advocacy and Learning incorporating contributions from: Narayani Barve, ATREE Sham Davande, ATREE Balanchandra Hegde, Sahyadri Wildlife and Forest Conservation Trust N.M. Ishwar, Wildlife Institute of India Zafar-ul Islam, Indian Bird Conservation Network Niren Jain, Kudremukh Wildlife Foundation Jayant Kulkarni, Envirosearch S. Lele, Centre for Interdisciplinary Studies in Environment & Development M.D. Madhusudan, Nature Conservation Foundation Nandita Mahadev, University of Agricultural Sciences Kiran M.C., ATREE Prachi Mehta, Envirosearch Divya Mudappa, Nature Conservation Foundation Seema Purshothaman, ATREE Roopali Raghavan, ATREE T. R. Shankar Raman, Nature Conservation Foundation Sharmishta Sarkar, ATREE Mohammed Irfan Ullah, ATREE and with the technical support of: Conservation International-Center for Applied Biodiversity Science Assisted by the following experts and contributors: Rauf Ali Gladwin Joseph Uma Shaanker Rene Borges R. Kannan B. Siddharthan Jake Brunner Ajith Kumar C.S. Silori ii Milind Bunyan M.S.R. Murthy Mewa Singh Ravi Chellam Venkat Narayana H. Sudarshan B.A. Daniel T.S. Nayar R. Sukumar Ranjit Daniels Rohan Pethiyagoda R. Vasudeva Soubadra Devy Narendra Prasad K. Vasudevan P. Dharma Rajan M.K. Prasad Muthu Velautham P.S. Easa Asad Rahmani Arun Venkatraman Madhav Gadgil S.N. Rai Siddharth Yadav T. Ganesh Pratim Roy Santosh George P.S.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Reassessment of the Taxonomic Status Of
    European Journal of Taxonomy 679: 1–36 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.679 www.europeanjournaloftaxonomy.eu 2020 · Andrade F.S. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:CF5B7C1B-E51C-4147-ABF1-4B17A54C8067 Reassessment of the taxonomic status of Pseudopaludicola parnaiba (Anura, Leptodactylidae, Leiuperinae), with the description of a new cryptic species from the Brazilian Cerrado Felipe Silva de ANDRADE 1,*, Isabelle Aquemi HAGA 2, Mariana Lúcio LYRA 3, Thiago Ribeiro de CARVALHO 4, Célio Fernando Baptista HADDAD 5, Ariovaldo Antonio GIARETTA 6 & Luís Felipe TOLEDO 7 1,7 Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil. 1,2,6 Laboratório de Taxonomia e Sistemática de Anuros Neotropicais (LTSAN), Instituto de Ciências Exatas e Naturais do Pontal (ICENP), Universidade Federal de Uberlândia (UFU), Ituiutaba, Minas Gerais, Brazil. 1 Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil. 3,4,5 Laboratório de Herpetologia, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 4 Email: [email protected]
    [Show full text]
  • Visual Signaling in Anuran Amphibians
    .. Hödl, W. and Amezquita, A. (2001). Visual signaling in anuran amphibians. In: Anuran communication, (M.J. Ryan, ed.). .. Smithsonian lust. Press, Washington. Pp. 121-141. 10 WALTER HÖDL AND ADOLFO AMEZQUITA Visual Signaling in Anuran Amphibians lntroduction cation. social behavior, or natural history. visual signaling was either not considered or was treated as a minor subject Acoustic communication plays a fundamental role in an- (Wells 1977a, 1977b; Arak 1983; Duellman and Trueb 1986; uran reproduction and thus is involved in evolutionary Rand 1988; Halliday and Tejedo 1995; Stebbins and Cohen processes such as mate recognition. reproductive isolation. 1995; Sullivan et al. 1995). The most detailed review ofthe speciation. and character displacement (Wells 1977a. 1977b. subject is now more than 20 years old (Wells 1977b). Never- 1988;Rand 1988;Gerhardt and Schwartz 1995;Halliday and theless some authors have discussed the possible evolution- Tejedo 1995;Sullivan et al. 1995).Visual cues. however. have ary link between visual signaling and the reproductive ecol- been thought to function only during dose-range inter- ogy of species, such as reproduction associated with streams actions (Wells 1977c; Duellman and Trueb 1986). Visual sig- (Heyer et aI. 1990; Lindquist and Hetherington 1996. 1998; naling is predicted to be predominantly employed by diur- Hödl et al. 1997;Haddad and Giaretta 1999) or reproduction nal species at sites with an unobstructed view (Endler 1992). within feeding territories (Wells 1977c). Diurnality. however. is not common for the majority offrog Our aim in this review is (1) to propose a dassmcation of species. Thus vocalizations. which are highly efficient for reported behavioral patterns of visual signaling in frags; (2) communicating at night or in dense vegetation, are by far to describe the diversity of visual signals among living an- the best studied anuran signals (Duellman and Trueb 1986; uran taxa; and (3) to apply a comparative approach to explor- Fritzsch et aI.
    [Show full text]
  • Goliath Frogs Build Nests for Spawning – the Reason for Their Gigantism? Marvin Schäfera, Sedrick Junior Tsekanéb, F
    JOURNAL OF NATURAL HISTORY 2019, VOL. 53, NOS. 21–22, 1263–1276 https://doi.org/10.1080/00222933.2019.1642528 Goliath frogs build nests for spawning – the reason for their gigantism? Marvin Schäfera, Sedrick Junior Tsekanéb, F. Arnaud M. Tchassemb, Sanja Drakulića,b,c, Marina Kamenib, Nono L. Gonwouob and Mark-Oliver Rödel a,b,c aMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany; bFaculty of Science, Laboratory of Zoology, University of Yaoundé I, Yaoundé, Cameroon; cFrogs & Friends, Berlin, Germany ABSTRACT ARTICLE HISTORY In contrast to its popularity, astonishingly few facts have become Received 16 April 2019 known about the biology of the Goliath Frog, Conraua goliath.We Accepted 7 July 2019 herein report the so far unknown construction of nests as spawning KEYWORDS sites by this species. On the Mpoula River, Littoral District, West Amphibia; Anura; Cameroon; Cameroon we identified 19 nests along a 400 m section. Nests Conraua goliath; Conrauidae; could be classified into three types. Type 1 constitutes rock pools parental care that were cleared by the frogs from detritus and leaf-litter; type 2 constitutes existing washouts at the riverbanks that were cleared from leaf-litter and/or expanded, and type 3 were depressions dug by the frogs into gravel riverbanks. The cleaning and digging activ- ities of the frogs included removal of small to larger items, ranging from sand and leaves to larger stones. In all nest types eggs and tadpoles of C. goliath were detected. All nest types were used for egg deposition several times, and could comprise up to three distinct cohorts of tadpoles.
    [Show full text]
  • Antipredator Mechanisms of Post-Metamorphic Anurans: a Global Database and Classification System
    Utah State University DigitalCommons@USU Ecology Center Publications Ecology Center 5-1-2019 Antipredator Mechanisms of Post-Metamorphic Anurans: A Global Database and Classification System Rodrigo B. Ferreira Utah State University Ricardo Lourenço-de-Moraes Universidade Estadual de Maringá Cássio Zocca Universidade Vila Velha Charles Duca Universidade Vila Velha Karen H. Beard Utah State University Edmund D. Brodie Jr. Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/eco_pubs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Ferreira, R.B., Lourenço-de-Moraes, R., Zocca, C. et al. Behav Ecol Sociobiol (2019) 73: 69. https://doi.org/ 10.1007/s00265-019-2680-1 This Article is brought to you for free and open access by the Ecology Center at DigitalCommons@USU. It has been accepted for inclusion in Ecology Center Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 1 Antipredator mechanisms of post-metamorphic anurans: a global database and 2 classification system 3 4 Rodrigo B. Ferreira1,2*, Ricardo Lourenço-de-Moraes3, Cássio Zocca1, Charles Duca1, Karen H. 5 Beard2, Edmund D. Brodie Jr.4 6 7 1 Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Vila Velha, ES, 8 Brazil 9 2 Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, United 10 States of America 11 3 Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual 12 de Maringá, Maringá, PR, Brazil 13 4 Department of Biology and the Ecology Center, Utah State University, Logan, UT, United States of 14 America 15 16 *Corresponding author: Rodrigo B.
    [Show full text]
  • Ecology and Evolution of Phytotelm- Jreeding Anurans
    * ECOLOGY AND EVOLUTION OF PHYTOTELM- JREEDING ANURANS Richard M. Lehtinen Editor MISCELLANEOUS PUBLICATIONS I--- - MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 193 Ann Ahr, November, 2004 PUBLICATIONS OF THE MUSEUM OF ZQOLOGY, UNIVERSITY OF MICHIGAN NO. 192 J. B. BURCII,Editot* Ku1.1: SI.EFANOAND JANICEPAPPAS, Assistant Editoras The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series-the Miscellaneous P~rhlicationsand the Occasional Papers. Both serics were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of thesc series; beginning in 1990 these are titled Special Publications and are numbered. All s~tbmitledmanuscripts to any of the Museum's publications receive external review. The Occasiontrl Papers, begun in 1913, sellie as a mcdium for original studies based prii~cipallyupon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Mi.scelluneous Puhlicutions, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are publislled separately. It is not intended that they bc grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Mammals, Birds, Reptiles and Amphibians, Fishes, Insects, Mollusks, and other topics is avail- able. Address inquiries to Publications, Museum of Zoology, The University of Michigan, Ann Arbor, Michigan 48 109-1079.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • Instituto Amigos Da Reserva Da Biosfera Da Mata Atlântica
    INSTITUTO AMIGOS DA RESERVA DA BIOSFERA DA MATA ATLÂNTICA Realização Execução Apoio INSTITUTO AMIGOS DA RESERVA DA BIOSFERA DA MATA ATLÂNTICA PROJETO TCCA/FF MOSAICO PARANAPIACABA 5.1.2. Estudo técnico especializado com indicação de proposta para ampliação, adequação ou criação de áreas naturais protegidas Gleba Lageado - Jeremias Produto II – Relatório Consolidado e Proposta IA-RBMA Março 2014 Realização Execução Apoio INSTITUTO AMIGOS DA RESERVA DA BIOSFERA DA MATA ATLÂNTICA Realização: Fundação para a Conservação e a Produção Florestal do Estado de São Paulo – Fundação Florestal Secretaria de Meio Ambiente do Estado de São Paulo - SMA Execução: Instituto Amigos da Reserva da Biosfera da Mata Atlântica – IA-RBMA Coordenação Geral: Fundação Florestal Jeannette Vieira Geenen – coordenação Kátia Regina Pisciotta Ivaldo José Santos Braz Maria Aparecida Resende Gestores das UC´s do Mosaico de Paranapiacaba: PEI, PETAR, PECB, PENAP, EE Xituê e APA dos Quilombos do Médio Ribeira IA - RBMA Clayton Ferreira Lino – Presidente e Coordenação Geral Nelson Antônio Calil Filho – Coordenação Técnica Nilson Máximo de Oliveira – Coordenação Executiva Realização Execução Apoio INSTITUTO AMIGOS DA RESERVA DA BIOSFERA DA MATA ATLÂNTICA Consultorias Técnicas Especializadas envolvidas nos Projetos: PROJETO MOSAICO PARANAPIACABA – TCCA/FF: Coordenação Geral: Clayton Ferreira Lino – Presidente IA-RBMA Coordenação Técnica: Nelson Antonio Calil Filho Coordenação Temática: Kátia Carolino – Sistema Fundiário José Antonio Basso Scaleante – Uso Público Kátia Mazzei - Geoprocessamento Marcos Melo – Ocupação Antrópica Nelson Antonio Calil Filho – Meio Biótico Nilson Máximo de Oliveira – Mosaicos Sérgio Serafini Júnior – Meio Físico Carlos Eduardo Martins - Meio Físico - Aspectos do Carste Equipe executora: Meio Biótico - Meio Ambiente Consult Msc. Nelson Antônio Calil Filho – coordenador Dr.
    [Show full text]