Oup Raddos Ncw107 158..164 ++

Total Page:16

File Type:pdf, Size:1020Kb

Oup Raddos Ncw107 158..164 ++ Radiation Protection Dosimetry (2016), Vol. 169, No. 1–4, pp. 158–164 doi:10.1093/rpd/ncw107 14C BOMB-PULSE DATING AND STABLE ISOTOPE ANALYSIS FOR GROWTH RATE AND DIETARY INFORMATION IN BREAST CANCER? K. Lång1,*,†, K. Eriksson Stenström2,†, A. Rosso3, M. Bech4, S. Zackrisson1, D. Graubau5 and S. Mattsson6 1Department of Translational Medicine, Division of Diagnostic Radiology, Lund University, Malmö, Sweden 2Department of Physics, Division of Nuclear Physics, Lund University, Lund, Sweden 3Epidemiology and Register Centre South, Skåne University Hospital, Lund, Sweden 4Department of Clinical Sciences, Division of Medical Radiation Physics, Lund University, Lund, Sweden 5Department of Clinical Sciences, Division of Pathology, Lund University, Lund, Sweden 6Department of Translational Medicine, Division of Medical Radiation Physics, Lund University, Malmö, Sweden *Corresponding author: [email protected] The purpose of this study was to perform an initial investigation of the possibility to determine breast cancer growth rate with 14C bomb-pulse dating. Tissues from 11 breast cancers, diagnosed in 1983, were retrieved from a regional biobank. The esti- mated average age of the majority of the samples overlapped the year of collection (1983) within 3σ. Thus, this first study of tumour tissue has not yet demonstrated that 14C bomb-pulse dating can obtain information on the growth of breast cancer. However, with further refinement, involving extraction of cell types and components, there is a possibility that fundamental knowledge of tumour biology might still be gained by the bomb-pulse technique. Additionally, δ13C and δ15N analyses were performed to obtain dietary and metabolic information, and to serve as a base for improvement of the age determination. INTRODUCTION using the 14C bomb-pulse technique, with 14C mea- surements on e.g. gallstones(14) and Alzheimer pla- Large amounts of the radioactive carbon isotope 14C ques(15). A common denominator for these studies is were produced during atmospheric testing of nuclear slow turnover (years). Another example is Gonçalves weapons in the late 1950s and early 1960s. As a con- et al.(16), who demonstrated that human atheroscler- sequence, the concentration of 14C in air was almost otic plaques, known to cause e.g. heart attacks and doubled by 1963. Since the 14C produced was incor- strokes, develop slowly (mean biological ages 5–15 porated in atmospheric CO and introduced into the 2 years). Quantification of the age of various struc- global carbon cycle, all organisms living during the tures in the plaque has gained a better understanding bomb-pulse era, including humans, have been – of the development of the plaque and opened for labelled with bomb-14C(1 3). When the Limited Test improved treatment methods. Ban Treaty from 1963 was implemented, the atmos- The bomb-pulse technique has to the present pheric 14C concentration commenced decreasing authors’ knowledge not yet been used to study mainly due to uptake of 14CO into the oceans and 2 cancer. Understanding of the time cause for the also into the biosphere (see Figure 1). development of human cancer tissue is of utmost Already in the early 1970s, Harkness and importance for improved prevention and treatment Walton(8) realised the potential of using bomb-14C strategies. So far, certain assumptions have had to as a kinetic tracer in humans. Since then, the well- be made in order to estimate how long a cancer has known decreasing atmospheric 14C concentration grown. There are theoretical models to describe has provided useful information in several fields in tumour growth rates, such as an exponential growth the medical sciences, see e.g. Falso and Buchholz(9) model or the Gompertz Model, where the latter and Spalding et al.(10). For instance, this so called takes into consideration a slower growth rate as the 14C bomb pulse has served in studies of turnover (11) tumour size increases. These models have been rates in human cells and tissues (e.g. in eye lenses , (17) (12) (13) applied to cancer in general and to breast cancer fat cells and Achilles tendon ). The develop- – in particular(18 20). These models have been shown ment of various diseases has also been investigated to fit experimental and clinical data, such as obser- vations of the doubling of tumour volume on serial †These authors contributed equally to this work. mammograms. From these studies, the average © The Author 2016. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 14C AND STABLE ISOTOPES IN BREAST CANCER tumour volume doubling time for human breast can- cer has been estimated to be between 105 and 327 days(21–29). Theoretically, this means that a breast can- cer that is 10-mm large at detection (30 volume dou- blings) has been growing for 9–27 years. However, these studies are limited due to the lack of direct observations of tumour age. The main purpose of this study was to perform an initial investigation of the possibility to determine the growth rate of breast cancer with 14C bomb-pulse dating. An additional aim was to highlight the limita- tions of the 14C bomb-pulse technique of human tis- sues due to dietary variations. Furthermore, the paper pays attention to how dietary information can be obtained from stable isotope ratio analysis of carbon and nitrogen, also providing means to increase the accuracy of bomb-pulse dating. Stable isotope ratio 14 Figure 1. C specific activity in atmospheric CO2 and analysis may also give important information relating oceans representative for the northern hemisphere cancer development to diet. (expressed in units of Fraction Modern, F14C(4);F14Cis ~1.0 before the nuclear weapons tests, corresponding to the natural 14C/12C ratio of about 10−10%(5–7)). Bomb-pulse dating and stable isotope analysis The 14C bomb-pulse technique uses 14Cdatafrom 14 14 fi atmospheric clean-air CO2 to translate the C spe- having lower Cspeci c activity than clean air, thus cific activity of the sample into a calendar date (so contributing to producing too young CaliBomb dates (33) called CaliBomb dates, see ‘Material and Methods’ (at the declining bomb-pulse curve) . 14 section). For humans, carbon enters the body mainly C bomb-pulse dates reported in the literature 14 through the diet. Thus, C data from clean-air CO2 usually do not take into account that there is a delay may not be fully representative for humans. time between production and consumption of the (33, 34) A previous study by Georgiadou et al.(30) used food . Neither is it commonly considered that human blood serum samples from a biobank to esti- marine foodstuffs can influence the accuracy of the mate the accuracy of bomb-pulse dating on human calibration (see the difference in marine and atmos- material. Blood serum samples collected from residents pheric calibration curve in Figure 1). However, since of Malmö (Sweden) in 1978 exhibited CaliBomb dates a large consumption of marine foodstuffs has the between 3.0 ± 0.4 years before the collection date and potential to affect the calibration curve (see Figure 1) 0.2 ± 0.5 years after the collection date (the average on an individual basis, information about the diet deviation from collection date was −1.5 ± 0.7 years). may be important in bomb-pulse dating of human tis- Two major effects associated with the age deviation, sue samples. Additionally, the individual diet is of competing in opposite directions, were identified: (1) interest for studies of the development of various dis- (35) delay time between production and consumption eases, including breast cancer . of foodstuffs, which can explain CaliBomb dates One technique to assess the diet of an organism obtained before the collection date and (2) excessive is analysis of the ratios of stable isotopes of carbon 13 15 consumption of marine food products, which has the and nitrogen (expressed as δ Candδ Nin‰, δ = − × potential of producing CaliBomb dates after the col- where X [(Rsample/Rstandard) 1] 1000, and R 13 12 lection date. is the ratio of heavy to light isotope, i.e. C/ Cor 15 14 (36) 13 15 As discussed in the study by Georgiadou et al.(30), N/ N) (see e.g. Schoeller ). δ Candδ Npro- there are also other factors that have the possibility to vide dietary information since the stable isotope influence the obtained CaliBomb date, however, for ratios in tissues and organs of the consumer reflect the majority of the population probably to a more those of the diet with a small shift. This discrimin- limited extent than delay time and marine food con- ation of one of the stable isotopes occurs in each sumption. Anthropogenic 14C released from nuclear step of the food chain. The difference in δ-value power plants or from research laboratories, industry between an organism and its diet, referred to as the 13 or hospitals using 14C as a tracer has the potential of discrimination factor, is generally about 1‰ for δ C 15 (37) producing too old CaliBomb dates (at the declining and 3‰ for δ N . The discrimination factor, bomb-pulse curve)(31, 32). On the other hand, fossil however, also depends on various factors such as fuel-based products in food industry (e.g. in CO used species, age, metabolic processes and environmental 2 (37) in cultivation in greenhouses) as well as food grown conditions (see e.g. Caut et al. and O’Connell (38) in heavily industrialised areas may lead to foodstuffs et al. ). Thus, different trophic levels (positions in 159 K. LÅNG ET AL.
Recommended publications
  • Impact of Alcohol and Drug Abuse on Hippocampal Neurogenesis in Humans
    From Department of Oncology-Pathology Karolinska Institutet, Stockholm, Sweden IMPACT OF ALCOHOL AND DRUG ABUSE ON HIPPOCAMPAL NEUROGENESIS IN HUMANS Gopalakrishnan Dhanabalan Stockholm 2018 Cover image: A glimpse of the granular cell layer and the subgranular zone in human hippocampus with a positive staining for doublecortin (DCX) and the neuronal nuclear marker (NeuN), markers for immature and mature neurons respectively. All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-print AB 2018 © Gopalakrishnan Dhanabalan, 2018 ISBN 978-91-7831-267-2 Impact of Alcohol and Drug Abuse on Hippocampal Neurogenesis in Humans THESIS FOR DOCTORAL DEGREE (Ph.D.) By Gopalakrishnan Dhanabalan Principal Supervisor: Opponent: Professor Henrik Druid Professor Hans-Georg Kuhn Karolinska Institutet University of Gothenburg Department of Oncology-Pathology Institute of Neuroscience and Physiology Division of Forensic Medicine Department of Clinical Neuroscience Co-supervisor(s): Examination Board: Professor Nenad Bogdanovic Professor Johan Franck Karolinska University Hospital Karolinska Institute Department of Neurobiology, Care Department of Clinical Neuroscience Sciences and Society Center for Psychiatry Research Division of Clinical Geriatrics Professor David Engblom Professor Deborah C. Mash Linköping University University of Miami Department of Clinical and Experimental Department of Neurology Medicine Division of Miller School of Medicine Center for Social and Affective Neuroscience Dr. Kanar Alkass Professor Lars Olson Karolinska Institutet Karolinska Institutet Department of Oncology-Pathology Department of Neuroscience Division of Forensic Medicine To my beloved family, “ேநா$நா% ேநா$&த( நா% அதண,-./ வாநா வா$1ப3 ெசய(” – (தி8-.ற: ⋍ 5 BC) “Diagnosing the disease, detecting its root cause, discerning its cure and then act aptly” – (Thirukkural ⋍ 5 BC) ABSTRACT Hippocampus is one of the few brain regions in which adult neurogenesis is known to occur.
    [Show full text]
  • Analytical Applications of Nuclear Techniques
    ANALYTICAL APPLICATIONS OF NUCLEAR TECHNIQUES ANALYTICAL APPLICATIONS OF NUCLEAR TECHNIQUES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA PERU ALBANIA HAITI PHILIPPINES ALGERIA HOLY SEE POLAND ANGOLA HONDURAS PORTUGAL ARGENTINA HUNGARY QATAR ARMENIA ICELAND REPUBLIC OF MOLDOVA AUSTRALIA INDIA ROMANIA AUSTRIA INDONESIA AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BANGLADESH IRAQ SAUDI ARABIA BELARUS IRELAND SENEGAL BELGIUM ISRAEL SERBIA AND MONTENEGRO BENIN ITALY SEYCHELLES BOLIVIA JAMAICA SIERRA LEONE BOSNIA AND HERZEGOVINA JAPAN SINGAPORE BOTSWANA JORDAN SLOVAKIA BRAZIL KAZAKHSTAN SLOVENIA BULGARIA KENYA SOUTH AFRICA BURKINA FASO KOREA, REPUBLIC OF SPAIN CAMEROON KUWAIT CANADA KYRGYZSTAN SRI LANKA CENTRAL AFRICAN LATVIA SUDAN REPUBLIC LEBANON SWEDEN CHILE LIBERIA SWITZERLAND CHINA LIBYAN ARAB JAMAHIRIYA SYRIAN ARAB REPUBLIC COLOMBIA LIECHTENSTEIN TAJIKISTAN COSTA RICA LITHUANIA THAILAND CÔTE D’IVOIRE LUXEMBOURG THE FORMER YUGOSLAV CROATIA MADAGASCAR REPUBLIC OF MACEDONIA CUBA MALAYSIA TUNISIA CYPRUS MALI TURKEY CZECH REPUBLIC MALTA DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA OF THE CONGO MAURITIUS UKRAINE DENMARK MEXICO UNITED ARAB EMIRATES DOMINICAN REPUBLIC MONACO UNITED KINGDOM OF ECUADOR MONGOLIA GREAT BRITAIN AND EGYPT MOROCCO NORTHERN IRELAND EL SALVADOR MYANMAR UNITED REPUBLIC ERITREA NAMIBIA OF TANZANIA ESTONIA NETHERLANDS UNITED STATES OF AMERICA ETHIOPIA NEW ZEALAND URUGUAY FINLAND NICARAGUA UZBEKISTAN FRANCE NIGER GABON NIGERIA VENEZUELA GEORGIA NORWAY VIETNAM GERMANY PAKISTAN YEMEN GHANA PANAMA ZAMBIA GREECE PARAGUAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’.
    [Show full text]
  • Simulating Oceanic Radiocarbon with the FAMOUS GCM: Implications for Its Use As a Proxy for Ventilation and Carbon Uptake Jennifer E
    https://doi.org/10.5194/bg-2019-365 Preprint. Discussion started: 7 October 2019 c Author(s) 2019. CC BY 4.0 License. Simulating oceanic radiocarbon with the FAMOUS GCM: implications for its use as a proxy for ventilation and carbon uptake Jennifer E. Dentith1, Ruza F. Ivanovic1, Lauren J. Gregoire1, Julia C. Tindall1, Laura F. Robinson2, and Paul J. Valdes3 5 1School of Earth and Environment, University of Leeds, Leeds, UK, LS2 9JT 2School of Earth Sciences, University of Bristol, Bristol, UK, BS8 1RJ 3School of Geographical Sciences, University of Bristol, Bristol, UK, BS8 1SS Correspondence to: Jennifer E. Dentith ([email protected]) 1 https://doi.org/10.5194/bg-2019-365 Preprint. Discussion started: 7 October 2019 c Author(s) 2019. CC BY 4.0 License. Abstract. Constraining ocean circulation and its temporal variability is crucial for understanding changes in surface climate and the carbon cycle. Radiocarbon (14C) is often used as a geochemical tracer of ocean circulation, but interpreting ∆14C in geological archives is complex. Isotope-enabled models enable us to directly compare simulated ∆14C values to Δ14C measurements and investigate plausible mechanisms for the observed signals. We have added three new tracers (water age, 5 abiotic 14C, and biotic 14C) to the ocean component of the FAMOUS General Circulation Model to study large-scale ocean circulation and the marine carbon cycle. Following a 10,000 year spin-up, we prescribed the Suess effect (the isotopic imprint of anthropogenic fossil fuel burning) and the bomb pulse (the isotopic imprint of thermonuclear weapons testing) in a transient simulation spanning 1765 to 2000 CE.
    [Show full text]
  • 1273 Review of Tropospheric Bomb 14C Data for Carbon
    RADIOCARBON, Vol 46, Nr 3, 2004, p 1273–1298 © 2004 by the Arizona Board of Regents on behalf of the University of Arizona REVIEW OF TROPOSPHERIC BOMB 14C DATA FOR CARBON CYCLE MODELING AND AGE CALIBRATION PURPOSES Quan Hua Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234, Australia. Corresponding author. Email: [email protected]. Mike Barbetti NWG Macintosh Centre for Quaternary Dating, Madsen Building F09, University of Sydney, New South Wales 2006, Australia. Also: Advanced Centre for Queensland University Isotope Research Excellence (ACQUIRE), Richards Building, University of Queensland, Brisbane, Queensland 4072, Australia. ABSTRACT. Comprehensive published radiocarbon data from selected atmospheric records, tree rings, and recent organic matter were analyzed and grouped into 4 different zones (three for the Northern Hemisphere and one for the whole Southern Hemisphere). These 14C data for the summer season of each hemisphere were employed to construct zonal, hemispheric, and global data sets for use in regional and global carbon model calculations including calibrating and comparing carbon cycle models. In addition, extended monthly atmospheric 14C data sets for 4 different zones were compiled for age calibration pur- poses. This is the first time these data sets were constructed to facilitate the dating of recent organic material using the bomb 14C curves. The distribution of bomb 14C reflects the major zones of atmospheric circulation. INTRODUCTION A large amount of artificial radiocarbon was injected mostly into the stratosphere in the late 1950s and early 1960s by atmospheric nuclear detonations (Enting 1982). As a result, the concentration of 14C in the troposphere dramatically increased in these periods, as depicted in Figure 1.
    [Show full text]
  • Radiation / Radioactivity / Radioactive Decay Radioactive Particles
    Radiation / Radioactivity / Radioactive Decay Radioactive Particles / Common Isotopes Counting History – Discovery of X-rays / Radioactivity / Nuclear atom Radioactive Decay – particles, half-life and equations Radioactivity – the Nuclear atom / trip to the “Particle Zoo” Counting: Film / Geiger Counter / LSC / PI Common Radio isotopes / C Isotopes – C-12 / C-13 / C-14 C-14 and radiocarbon dating Nuclear Energy - fission and fusion Terms: Radioactivity / Exposure / Dose Hackert – CH370 Sept. 1895 - Marconi (radio waves / wireless) Nov. 8, 1895 - Rontgen (discovery of X-rays) Feb. 24, 1896 – Becquerel (U luminesce”) (Feb. 26, 27 - cloudy days) (Mar. 1 - “radioactivity”) 1897 - JJ Thomson (discovery of electrons) 1898 – Pierre & Marie Curie (Po, Ra) 1898 – Rutherford (a and b radiation) 1902 – Rutherford (disintegration of elements) 1911 – Rutherford (Au foil exp. / nuclear atom) 1912 – von Laue (X-rays as waves) 1913 Braggs – 1st crystal structure 1920 – Rutherford (predicts neutron) Sept. 1895 - Marconi (radio waves / wireless) Nov. 8, 1895 - Rontgen (discovery of X-rays) Feb. 24, 1896 – Becquerel (U luminesce”) (Feb. 26, 27 - cloudy days) (Mar. 1 - “radioactivity”) 1897 - JJ Thomson (discovery of electrons) 1898 – Pierre & Marie Curie (Po, Ra) 1898 – Rutherford (a and b radiation) 1902 – Rutherford (disintegration of elements) 1911 – Rutherford (Au foil exp. / nuclear atom) 1912 – von Laue (X-rays as waves) 1913 Braggs – 1st crystal structure 1920 – Rutherford (predicts neutron) - l t Rutherford – quantitative I = Io e measurements Nuclear Wall Chart – Lawrence Berkeley Natl. Laboratory Protons and Neutrons (Hadrons) are both made up of Quarks. In the Quark Model the only difference between a Proton and a Neutron is that an “up” Quark has been replaced by a “down” Quark.
    [Show full text]
  • Cosmogenic Radionuclides
    Physics of Earth and Space Environments Cosmogenic Radionuclides Theory and Applications in the Terrestrial and Space Environments Bearbeitet von Jürg Beer, Ken McCracken, Rudolf von Steiger 1. Auflage 2012. Buch. XVI, 428 S. Hardcover ISBN 978 3 642 14650 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 824 g Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Umweltpoltik, Umwelttechnik > Umweltüberwachung, Umweltanalytik, Umweltinformatik Zu Leseprobe schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Contents Part I Introduction 1 Motivation .................................................................. 3 2 Goals ........................................................................ 7 Reference ... ................................................................. 9 3 Setting the Stage and Outline ............................................ 11 Part II Cosmic Radiation 4 Introduction to Cosmic Radiation ....................................... 17 5 The Cosmic Radiation Near Earth ...................................... 19 5.1 Introduction and History of Cosmic Ray Research ................... 19 5.2 The “Rosetta Stone” of Paleocosmic Ray Studies .................... 21
    [Show full text]
  • Potential Influence of Diet on Bomb-Pulse Dating of Human Plaque Samples
    POTENTIAL INFLUENCE OF DIET ON BOMB-PULSE DATING OF HUMAN PLAQUE SAMPLES Elisavet Andersson Georgiadou1,2 • Isabel Gonçalves3,4 • Cintia Bertacchi Uvo5 • Jan Nilsson4 • Göran Skog6 • Sören Mattsson7 • Luis M Pedro8 • José Fernandes e Fernandes8 • Kristina Eriksson Stenström1 ABSTRACT. The radiocarbon concentration of different atherosclerotic plaque fragments obtained from 20 patients in Por- tugal, operated in 2000–2001, has been measured in order to define the year of plaque formation. A difference of 1.8–15 yr was observed, with the mean and median both 9 yr, between the bomb-pulse date estimated with the CALIBomb software and the operation date. Stable isotope (13C and 15N) analysis was also performed and provides insight to the diet of the subjects. The wide range of measured stable isotope values could indicate that the subjects’ diet varied, including an abundance of marine foodstuffs. It could also mean a different isotope fractionation process for the different plaque fragments (cap, core, interface to media) and a possible difference in tissues in which the various fragments are formed. Analysis of 13C and 15N values of each patient separately revealed subjects considered more influenced by marine foodstuffs consumption. INTRODUCTION The concentration of radiocarbon in the atmosphere dramatically increased during the late 1950s and early 1960s, reaching a maximum in 1963 due to testing of nuclear weapons in the atmosphere. The Limited Test Ban Treaty, signed in 1963, assured a significant reduction of nuclear weapon test- ing in the atmosphere. Consequently, atmospheric 14C began to decrease quickly, principally because of its mixture with other large 14C reservoirs, mainly the oceans and the biosphere.
    [Show full text]
  • APPLICATIONS of ACCELERATOR MASS SPECTROMETRY in ANALYSIS of TRACE ISOTOPES and ELEMENTS (Technical Report)
    Pure & Appl. Chem., Vol. 66, No. 2, pp. 305-334, 1994. Printed in Great Britain. @ 1994 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON RADIOCHEMISTRY AND NUCLEAR TECHNIQUES" APPLICATIONS OF ACCELERATOR MASS SPECTROMETRY IN ANALYSIS OF TRACE ISOTOPES AND ELEMENTS (Technical Report) Prepared for publication by LIU YUANFANG', GUO ZHIYU2, LIU XINQUI', QU TONG' and XIE JINGLIN' 'Department of Technical Physics and 21nstitute of Heavy Ion Physics Peking University, Beijing 100871, China *Membership of the Commission during the period (1991-1993) when this report was prepared was as follows: Chairman: 1987-93 J.-P. Adloff (France); Vice-Chairman: 1987,93 Y.-F. Liu (China); Secretary: 1987-93 H.R. von Gunten (Switzerland); Titular Members: J.-P. Adloff (France; 1987-95); Y.-F. Liu (China; 1987-95); H. R. von Gunten (Switzerland; 1987-93); J. Foos (France; 1985-93); P. Karol (USA; 1991-95); K. S. Kasprzak (USA; 1983-93); I. Zvara (USSR; 1985-93); Associate Members: H. A. Das (Netherlands; 1985-93); D. C. Hoffman (USA; 1991-95); V. P. Kolotov (Russia; 1991-95); J. V. Kratz (Germany; 1991-95); J. Madic (France; 1991-95); W. Maenhaut (Belgium; 1985-93); H. Nakahara (Japan; 1988-93); Y. Zhu (China; 1991-95); National Representatives: J. J. Fardy (Australia; 1989-93); Carol Hollingworth Collins (Brazil; 1991-93); P. Benes (Czechoslovakia; 1989-93); E. Roth (France; 1985-93); A. P. Grimanis (Greece; 1991-93); A. Vertes (Hungary; 1991-93); E. Steinnes (Norway; 1985-93); A. Ponka (Poland; 1991-93); J. N. Peixoto de Cabral (Portugal; 1991-93); C. Lee (Republic of Korea; 1991-93); M.
    [Show full text]
  • Results of Research on Dating Ground Water from High Level
    r \~f "_ •r UNITED STATES .'.. NUCLEAR REGULATORY COMMISSION WASHINGTON,.D. C. 20555 APR 2 ~ 1988 MEMORANDUM FOR: Hugh Thompson, Director Office of Nuclear Material Safety and Safeguards FROM: Eric S. Beckjord, Director Office of Nuclear Regulatory Research SUBJECT: RESEARCH INFORMATION LETTER NUMBER 15.2, RESULTS OF RESEARCH ON DATING GROUND WATER FOR HIGH LEVEL WASTE REPOSITORY SITE CHARACTERIZATION This research information letter presents a synopsis of ten years of research on ground water dating by Professor Stanley N. Davis of the University of Arizona and his students and other recent contributions to the literature on ground-water dating. The final report of the project (enclosed) is an extended review article which presents both the results of research investigations ·rand an assessment of the state-of-the-art of ground water dating. An ongoing · assessment of the state-of-the-art was an integral part of the research. This letter is intended to transmit and briefly explain the research results and the state-of-the-art review, and also to sugges_t how ground water dating met~ods can be applied to licensing needs for high-level waste repositories such:as calculations of ground water travel times. For completeness and to prese~~e a. record of the research, this letter discusses a 11 three media then being ;, - considered by the DOE when this work was begun. In addition, a section has been included to describe the applicability of ground water dating techniques to regulating LLW disposal. All of the site specific analysis and regulatQry analysis were prepared by Dr. G. F.
    [Show full text]
  • The Remarkable Metrological History of Radiocarbon Dating [II]
    Volume 109, Number 2, March-April 2004 Journal of Research of the National Institute of Standards and Technology J. Res. Natl. Inst. Stand. Technol. 109, 185-217 (2004)] The Remarkable Metrological History of Radiocarbon Dating [II] Volume 109 Number 2 March-April 2004 Lloyd A. Currie This article traces the metrological history cipated metrological advances in their own of radiocarbon, from the initial break- chosen fields, and unanticipated anthro- National Institute of Standards through devised by Libby, to minor (evolu- pogenic or natural chemical events in the tionary) and major (revolutionary) environment, can spawn new areas of and Technology, 14 Gaithersburg, MD 20899-8370 advances that have brought C measure- research having exciting theoretical and ment from a crude, bulk [8 g carbon] dating practical implications. U.S.A. tool, to a refined probe for dating tiny amounts of precious artifacts, and for “molecular dating” at the 10 µg to 100 µg Key words: accelerator mass spectro- [email protected] level. The metrological advances led to metry; apportionment of fossil and biomass opportunities and surprises, such as the carbon; “bomb” 14C as a global tracer; dual non-monotonic dendrochronological cali- isotopic authentication; metrological bration curve and the “bomb effect,” that history; molecular dating; radiocarbon gave rise to new multidisciplinary areas of dating; the Turin Shroud; SRM 1649a. application, ranging from archaeology and anthropology to cosmic ray physics to oceanography to apportionment of anthro- pogenic pollutants to the reconstruction of environmental history. Accepted: February 11, 2004 Beyond the specific topic of natural 14C, it is hoped that this account may serve as a metaphor for young scientists, illustrating that just when a scientific discipline may appear to be approaching maturity, unanti- Available online: http://www.nist.gov/jres Contents 1.
    [Show full text]
  • 1 Forensic Radiocarbon Dating of Human Remains
    Forensic Radiocarbon Dating of Human Remains: The past, the present, and the future Fiona Brock1 & Gordon T Cook2 1. Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Oxon, SN6 8LA, UK. 2. Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF, UK. Abstract Radiocarbon dating is a valuable tool for the forensic examination of human remains in answering questions as to whether the remains are of forensic or medico-legal interest or archaeological in date. The technique is also potentially capable of providing the year of birth and/or death of an individual. Atmospheric radiocarbon levels are currently enhanced relative to the natural level due to the release of large quantities of radiocarbon (14C) during the atmospheric nuclear weapons testing of the 1950s and 60s. This spike, or ‘bomb-pulse’, can, in some instances, provide precision dates to within 1-2 calendar years. However, atmospheric 14C activity has been declining since the end of atmospheric weapons testing in 1963 and is likely to drop below the natural level by the mid- 21st century, with implications for the application of radiocarbon dating to forensic specimens. Keywords: radiocarbon, dating, human remains, forensic science, forensic anthropology 1. Introduction Radiocarbon dating is most routinely applied to archaeological and environmental studies, but in some instances can be a very powerful tool for forensic specimens. Radiocarbon (14C) is produced naturally in the upper atmosphere by the interaction of cosmic rays on nitrogen-14 (14N). The 14C produced is rapidly oxidised to carbon dioxide, which then either enters the 1 terrestrial biosphere via photosynthesis and proceeds along the food chain via herbivores and omnivores, and subsequently carnivores, or exchanges into marine reservoirs where it again enters the food chain by photosynthesis.
    [Show full text]
  • Measuring Atomic Bomb-Derived 14C Levels in Human Remains to Determine Year of Birth And/Or Year of Death
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Measuring atomic bomb-derived 14C levels in human remains to determine Year of Birth and/or Year of Death Author: Gregory W. L. Hodgins Document No.: 227839 Date Received: August 2009 Award Number: 2005-IJ-CX-K013 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant final report available electronically in addition to traditional paper copies. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Measuring atomic bomb-derived 14C levels in human remains to determine Year of Birth and/or Year of Death Award Number: 2005-IJ-CX-K013 Author(s): Gregory W. L. Hodgins Abstract Between 1955 and 1963 above-ground nuclear testing generated high concentrations of radioactive carbon (14C) in the earth’s atmosphere. After a 1964 moratorium on above ground testing, atmospheric levels of 14C began falling as the radioactivity passed from the atmosphere into the oceans and the biosphere. Virtually every organism living since the 1950’s is labeled with higher than normal levels of 14C, including humans. The rapid year-to-year changes in atmospheric levels of 14C within this time frame, combined with rapid transfer of atmospheric 14C into the food chain via photosynthesis, mean that the distribution of bomb-derived 14C within the humans depends upon birth year, diet, and the dynamics of tissue replacement within the human body.
    [Show full text]