Park Paleontology 7(3)

Total Page:16

File Type:pdf, Size:1020Kb

Park Paleontology 7(3) National Park Service U.S. Department of the Interior Volume 7 Number 3 Park Paleontology Winter 2 0 0 3 Geologic Resources Division, Paleontology Program Zion National Park Paleontological Survey Table of Contents Zion National Park Paleontological Survey .1 Donald D. DeBlieux the Cretaceous Cedar Mountain and James I. Kirkland Dakota Formations, and Quaternary lake The Centennial Site, a Significant Discovery Utah Geological Survey deposits. While the eye of the visitor to in Wind Cave National Park ................... 2 Zion National Park is drawn to the POB 146100 Paleontology Internship Report – Wind Cave spectacular cliffs of Navajo Sandstone, Salt Lake City, UT 84114-6100 National Park and Mammoth Site of Hot the eye of the paleontologist is drawn to Springs .................................................4 The spectacular rocks exposed in Zion the strata exposed as slopes and ledges National Park, Utah, include many below the cliffs - those of the Kayenta, Dinosaur Depot Prepares Dinosaur Bones fossiliferous units ranging in age from Moenave, and Chinle Formations that are from Curecanti National Recreation Area Permian through Holocene. In known to contain significant vertebrate ........................................................... 5 cooperation with the Utah Geological fossils. Survey (UGS), National Park Service (NPS) Modern Forests of Mexico: An Analog to interns have been inventorying The most common vertebrate fossils the Ancient Forest at Florissant? ............. 6 paleontological resources within the found in Zion National Park are dinosaur park. The goal of this work is to identify tracks that are concentrated primarily in Recent Literature on Park Paleontology Resources ............................................ 8 new fossil localities and to assess the the Whitmore Point Member of the distribution of fossils within formations Moenave Formation, at the top of the to establish baseline paleontological Springdale Sandstone Member of the track record of Zion National Park is also resource data to support the Moenave Formation, and in the Kayenta pertinent to the investigations underway management and protection of non- Formation, all of Early Jurassic age. Prior at the recently discovered Johnson Farm renewable fossils. to Josh’s arrival in Zion, only four track tracksite in nearby St. George, Utah. The localities had been documented within Johnson Farm site preserves numerous This project was initiated in the summer the park; his work led to the discovery of trackways on many horizons within the of 1999 when NPS intern Joshua A. dozens of new track localities and Whitmore Point Member of the Moenave Smith (now a graduate student at the allowed us to predict areas having high Formation and is one of the most University of Utah) began an inventory of potential for track discoveries (Smith and significant tracksites ever discovered in paleontological resources within the park Santucci, 1999). The most common the western United States. Jenny under the direction of NPS paleontologist tracks found in these formations are McGuire, and St. George paleontologist Vince Santucci. Because most of this those of large and small three-toed Andrew Milner, discovered a significant work was done during the hot summer bipedal dinosaurs. The large tracks are tracksite in the Early Triassic Moenkopi months, the work was concentrated in placed in the ichnogenus (track-genus) Formation. This site is located the cooler confines of Zion Canyon. In Eubrontes while the smaller tracks are stratigraphically low in the section, below the summer of 2002, Don DeBlieux of assigned to Grallator. One site preserves the Virgin Limestone Member, and the UGS joined Josh for several weeks to several Eubrontes trackways with track preserves several types of tracks including continue work in Zion Canyon. In the spacing and directions suggestive of those of therapsids (mammal-like spring of 2003, recent Duke University possible gregarious behavior (Smith et al., reptiles). In fact, this may be the earliest graduate Jennifer McGuire began a 2002). In addition to Eubrontes and known Mesozoic tracksite in North three-month internship to continue the Grallator tracks and trackways, we found America. Further research is already inventory work. Don DeBlieux and Jim other types of tracks including four-toed, underway to more fully document this Kirkland (UGS) assisted her for several crocodile-like tracks, bird-like tracks, and site. weeks along with volunteers from the swim tracks. In the summer of 2002, we The Late Triassic Chinle Formation in Zion Utah Friends of Paleontology (UFOP). located the second known tracksite in National Park is composed of two units; Our work in 2003 took advantage of the the Navajo Sandstone at Zion. the resistant cap-forming Shinarump cooler spring temperatures to Conglomerate, and the overlying concentrate on some of the The tracks preserved in Zion are multicolored mudstones and sandstones stratigraphically lower formations, found important not only from a scientific of the Petrified Forest Member. The at lower elevations within the park. standpoint but also provide avenues for Shinarump Conglomerate was deposited Fossil-bearing formations within Zion interpretation to educate the many in braided-stream channels and is best National Park include the Permian-age visitors to Zion National Park. Different known for preserving abundant fossil Toroweap Formation and Kaibab modes of track preservation, combined wood and plant material. Bone is Limestone, the Triassic Moenkopi and with erosion, have produced many tracks sometimes found preserved in the Chinle Formations, the Jurassic Moenave, that are aesthetically quite appealing and Shinarump and a well-preserved reptile will be of interest to park visitors. The Kayenta, Navajo, and Carmel Formations, continued on page 7 Park Paleontology 1 The Centennial Site, a Significant Discovery in Wind Cave National Park Rodney D. Horrocks Physical Science Specialist Wind Cave National Park Figure 1: The Subhyracodon upper palette, the photo on the left was taken the day it was R.R. 1 Box 190 discovered and the other one month later, show the weathering that occurred during that Hot Spring, South Dakota 57747-9430 short time period. Photos by Greg McDonald and Rod Horrocks. [email protected] specimen (Fig. 1), we immediately final detail involved the arrangement for 605-745-1158 headed into the park headquarters to the park’s law enforcement staff to keep talk with the Superintendent, Linda L. the site secure once work began on the After a fruitless search in near 100- Stoll about this significant discovery. recovery operation. degree heat on July 23, we had split up to cover more ground on the way back Sitting in her office, we analyzed the When we returned to the site after one to the truck, when Dr. Greg McDonald discovery according to the guidelines month, we were surprised at the amount found some large fossil teeth weathering found in NPS 77, in the “Paleontological of weathering that had happened since out of a steep hillside. The previous day, Collect/Leave Simplified Flowchart”. The our initial discovery (Fig. 1). With a very Greg, the National Paleontological Superintendent readily supported an competent crew on hand, everybody Coordinator from the Geologic Resource emergency excavation to recover the started on their pre-assigned duties. Dr. Division (GRD), helped Wind Cave threatened fossils. Not only were we Benton was able to revise our preliminary National Park inventory the seven worried about fossil poaching or rapid identification of the skull, assigning it to localities of the Klukas Site, an weathering of the soft sediment, but we Subhyracodon (probably occidentalis), a Oligocene-aged deposit that is part of were also concerned about the proximity five-foot high, hornless rhino that lived the White River Group. During the of the fossils to an often-used bison approximately 32 million years ago, and inventory process we discovered three wallow. In order to protect the site in the not brontothere (much to Dr. Martin’s new localities (see “Resurvey of the interim, everybody at the meeting relief). After Megan and Gavin set up a White River Group Sites in Wind Cave agreed to keep the discovery secret. zero datum and a working point on a National Park” Park Paleontology, Vo. 7, true north/south line, we installed a no. 2, Fall 2003). With an extra day After Greg headed back to Denver, it metric grid over the site. We then used a before Greg headed back to Denver, we became obvious that no one had any total station GPS to map the location of decided to survey some additional White budget for this emergency excavation, so the exposed bones and locate the zero River exposures in the park. we had to find a way to do some datum. paleontology on a shoestring. After Dr. James Martin, from South Dakota completing the environmental screening When Greg started blocking around the School of Mines and Technology (SDSMT) form (ESF), we borrowed the necessary skull, he discovered disarticulated bones had determined through surveys excavation equipment from Badlands from the rest of the skeleton of the conducted in 1986 that these soft National Park and the Mammoth Site, rhino. As the blocking process claystones and siltstones exposed as and then we secured the return of Dr. progressed, we also started finding the scattered windows in the prairie of the McDonald. We also solicited the help of disarticulated remains of Mesohippus, a park represent the Scenic Member of the Dr. Rachel Benton of Badlands National small horse and Leptomeryx, a deer-like Brule Formation. This is the same part of Park and Megan Cherry, and Gavin mammal. The tortoise turned out to be the White River Group that is extensively McCullough, students at the South nearly complete, but badly disarticulated exposed at a much lower elevation to the Dakota School of Mines, who were due to weathering (Fig. 2). The rhino east of Wind Cave at Badlands National working as seasonal employees at remains seemed to be concentrated in Park However, Dr. Martin had never Badlands National Park and Dr.
Recommended publications
  • South Dakota to Nebraska
    Geological Society of America Special Paper 325 1998 Lithostratigraphic revision and correlation of the lower part of the White River Group: South Dakota to Nebraska Dennis O. Terry, Jr. Department of Geology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0340 ABSTRACT Lithologic correlations between type areas of the White River Group in Nebraska and South Dakota have resulted in a revised lithostratigraphy for the lower part of the White River Group. The following pedostratigraphic and lithostratigraphic units, from oldest to youngest, are newly recognized in northwestern Nebraska and can be correlated with units in the Big Badlands of South Dakota: the Yellow Mounds Pale- osol Equivalent, Interior and Weta Paleosol Equivalents, Chamberlain Pass Forma- tion, and Peanut Peak Member of the Chadron Formation. The term “Interior Paleosol Complex,” used for the brightly colored zone at the base of the White River Group in northwestern Nebraska, is abandoned in favor of a two-part division. The lower part is related to the Yellow Mounds Paleosol Series of South Dakota and rep- resents the pedogenically modified Cretaceous Pierre Shale. The upper part is com- posed of the unconformably overlying, pedogenically modified overbank mudstone facies of the Chamberlain Pass Formation (which contains the Interior and Weta Paleosol Series in South Dakota). Greenish-white channel sandstones at the base of the Chadron Formation in Nebraska (previously correlated to the Ahearn Member of the Chadron Formation in South Dakota) herein are correlated to the channel sand- stone facies of the Chamberlain Pass Formation in South Dakota. The Chamberlain Pass Formation is unconformably overlain by the Chadron Formation in South Dakota and Nebraska.
    [Show full text]
  • Chapter 2 Paleozoic Stratigraphy of the Grand Canyon
    CHAPTER 2 PALEOZOIC STRATIGRAPHY OF THE GRAND CANYON PAIGE KERCHER INTRODUCTION The Paleozoic Era of the Phanerozoic Eon is defined as the time between 542 and 251 million years before the present (ICS 2010). The Paleozoic Era began with the evolution of most major animal phyla present today, sparked by the novel adaptation of skeletal hard parts. Organisms continued to diversify throughout the Paleozoic into increasingly adaptive and complex life forms, including the first vertebrates, terrestrial plants and animals, forests and seed plants, reptiles, and flying insects. Vast coal swamps covered much of mid- to low-latitude continental environments in the late Paleozoic as the supercontinent Pangaea began to amalgamate. The hardiest taxa survived the multiple global glaciations and mass extinctions that have come to define major time boundaries of this era. Paleozoic North America existed primarily at mid to low latitudes and experienced multiple major orogenies and continental collisions. For much of the Paleozoic, North America’s southwestern margin ran through Nevada and Arizona – California did not yet exist (Appendix B). The flat-lying Paleozoic rocks of the Grand Canyon, though incomplete, form a record of a continental margin repeatedly inundated and vacated by shallow seas (Appendix A). IMPORTANT STRATIGRAPHIC PRINCIPLES AND CONCEPTS • Principle of Original Horizontality – In most cases, depositional processes produce flat-lying sedimentary layers. Notable exceptions include blanketing ash sheets, and cross-stratification developed on sloped surfaces. • Principle of Superposition – In an undisturbed sequence, older strata lie below younger strata; a package of sedimentary layers youngs upward. • Principle of Lateral Continuity – A layer of sediment extends laterally in all directions until it naturally pinches out or abuts the walls of its confining basin.
    [Show full text]
  • Hyracodons and Subhyracodons Early Rhinoceros by Ryan C
    The Fossils of the White River Badlands http://whiteriver.weebly.com/hyracodons.html Hyracodons and Subhyracodons Early rhinoceros by Ryan C. The discovery of rhinoceros in the Badlands of the American West was very exciting, most people never suspecting that such primitive forms of rhinoceros existed in North America. Today, living rhinoceroses consist of four genera that contain five species. Two are found in Africa; three others are restricted to Asia. Most are browsing animals but the largest species, the white rhinoceros of Africa, is a grazer. All living species possess "horns" that are composed of keratinized hair which decomposes at death and are not normally preserved in the fossil record. Although most New World rhinoceroses did not have horns, the widely distributed, males of the pig-sized Menoceros of the early Miocene had a lateral pair of horns. In North America, "rhinoceroses" of three similar lineages appeared from Asia during the Middle Eocene. Consisting of hippo-like Amynodontidae, "running rhinos" or Hyracodontidae, and true rhinoceroses, Rhinocerotidae, only true rhinoceroses adapted and diversified enough to survive into the early Pliocene. Amynodontids entered North America during the Bridgerian NALMA. Apparently adapted for a warm humid environment typified by lush forests, most amynodontids physically and ecologically resembled the hippopotamus of Africa. Remaining undiversified, only four genera are recognized and three of them contain but a single species. The massive and best known species is Metamynodon planifrons, a form characterized by having massive teeth with large tusks that give it the appearance of a hippopotamus. Some skeletons were 10 ft in length. Due to their skull structure, some believe this group supported a proboscis similar to that of a modern tapir.
    [Show full text]
  • The Brule-Gering (Oligocene-Miocene) Contact in the Wildcat Ridge Area of Western Nebraska
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Bulletin of the University of Nebraska State Museum Museum, University of Nebraska State 1967 The Brule-Gering (Oligocene-Miocene) Contact in the Wildcat Ridge Area of Western Nebraska C. Bertrand Schultz University of Nebraska Charles H. Falkenbach Nebraska State Museum Carl F. Vondra American Museum of Natural History Follow this and additional works at: https://digitalcommons.unl.edu/museumbulletin Part of the Entomology Commons, Geology Commons, Geomorphology Commons, Other Ecology and Evolutionary Biology Commons, Paleobiology Commons, Paleontology Commons, and the Sedimentology Commons Schultz, C. Bertrand; Falkenbach, Charles H.; and Vondra, Carl F., "The Brule-Gering (Oligocene-Miocene) Contact in the Wildcat Ridge Area of Western Nebraska" (1967). Bulletin of the University of Nebraska State Museum. 58. https://digitalcommons.unl.edu/museumbulletin/58 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Bulletin of the University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BULLETIN OF The University of Nebraska State Museum VOLUME 6 , NUMBER 4 SEPTEMBER 1967 C. Bertrand Schultz Charles H. Falkenbach Carl F. Vondra The Brule-Gering (Oligocene-Miocene) Contact in the Wildcat Ridge Area of Western Nebraska A Guide for the Stratigraphic Collecting of Fossil Mammals The University of Nebraska The Board of Regents RICHARD E. ADKINs J. G. ELLIOTI B. N. GREENBERG, M.D. RICHARD L.
    [Show full text]
  • HCR1003 As Engrossed on 01-19-2017 09:28:34
    Stricken language would be deleted from and underlined language would be added to present law. 1 State of Arkansas As Engrossed: H1/19/17 2 91st General Assembly 3 Regular Session, 2017 HCR 1003 4 5 By: Representatives Leding, Vaught, C. Fite, Collins, D. Whitaker, Burch, Watson, Pilkington 6 By: Senators Teague, U. Lindsey 7 8 HOUSE CONCURRENT RESOLUTION 9 TO DESIGNATE THE ARKANSAURUS FRIDAYI AS THE OFFICIAL 10 STATE DINOSAUR. 11 12 13 Subtitle 14 TO DESIGNATE THE ARKANSAURUS FRIDAYI AS 15 THE OFFICIAL STATE DINOSAUR. 16 17 WHEREAS, for public and educational benefits, the Ninety-First General 18 Assembly of the State of Arkansas will select an official state dinosaur from 19 the known population of dinosaurs represented in Arkansas's fossil record: 20 Arkansaurus, sauropod dinosaur, and theropod dinosaur tracks of currently 21 uncertain taxonomic affiliation; and 22 23 WHEREAS, from these species, the Arkansaurus fridayi shall be selected, 24 since it is unique to the State of Arkansas, brings recognition to the State 25 of Arkansas, and promotes an interest paleontology in Arkansas; and 26 27 WHEREAS, by designating an official state dinosaur, Arkansas would join 28 nine (9) other states in the country with a unique designation of an official 29 state dinosaur; and 30 31 WHEREAS, the Arkansaurus fridayi was discovered in a gravel pit near 32 the community of Lockesburg, Arkansas, in August 1972 by Joe B. Friday and 33 studied by Professor James Harrison Quinn of the University of Arkansas in 34 1973 and by paleontologist ReBecca Hunt
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • How Old Is Old? (.Pdf)
    How Old is Old? Purpose: This lesson will help students visualize the geologic time scale and identify when and where regional features were formed in the Rogue Valley. Objectives: Time Required: 1.5 hours (can be Students will: broken into 2 class periods) Identify the point in time when their assigned Appropriate grades: 6th-8th geological formation was formed by calculating NGSS and Common Core Standards: how many centimeters from the end of the MS-ESS2-2: Construct an explanation based ribbon their tag should be placed. on evidence for how geoscience processes Teach the class about their assigned geological have changed Earth's surface at varying time formations by conducting research about when and spatial scales. they were formed, how they were formed, CCSS.ELA-LITERACY.SL.6-8.4: Present claims where they are located, and what they are made and findings, emphasizing salient points in a of, and preparing visual presentations in small focused, coherent manner with pertinent groups. descriptions, facts, details, and examples; use appropriate eye contact, adequate Materials: volume, and clear pronunciation. CCSS.ELA-LITERACY.SL.6-8.5: Include Time scale ribbon (1) multimedia components and visual displays Time period tags (19) in presentations to clarify claims and “Geology of Jackson County, Oregon” booklets findings and emphasize salient points. (5) Geological formation half sheets (1 for each group with the name of their formation on it) Poster boards (not provided) Markers (not provided) Activity: Introduction Prep: cut the geological formation half sheets along the solid line in the middle of the page. Each group of students will get a half sheet with the name of their geological formation.
    [Show full text]
  • Geological Formation Educational Hand Sample Collection Content Last Updated 06/30/2010
    CT Geological Survey Geological Formation Educational Hand Sample Collection Content last updated 06/30/2010 TOWN Sample Numer Geological Description Formation Barkhamsted 19-9-1 Єh Cambrian "Waramaug Formation", Hoosac Schist, West Hill Road, New Hartford, 2 samples. Quartzplagioclase- biotite schist and gneissic schist. Bethel 92-4-1 Og Collected from Huntington State Park, site of large tourmaline 76-9-1 OCs Inwood? Marble from W side of stream just below Cameron's Line 76-9-2 Or Sheared Hartland? from E side of stream just above Cameron's Line Bozrah 71-5 Otay Collected from intersection of South and Bishop Rds, Bozrah Branford 97-1 Zsc & Pn Stony Creek Quarry Granite 97-6 Zp, Zsc & Pn From Red Hill Quarry, Stony Creek Preserve, Branford Bridgeport 109-1 Ohb Collected in Beardsley Park, Bridgeport Burlington 35-5-1 DSt Straits Schist, collected on road cut for entrance of side road on W side of Maine Rd Canterbury 57-6-1 Dc Canterbury Gneiss, Note Muskovite and garnet? 57-6-2 SOh Meta siltstone/Hornfels? Mapped as hCS on GQ 392, Collected just W of pond, low outcrops Canterbury is just to the W of the outcrop, inclusions of this rock and a very fine grained biotite schist are found in Canterbury. This rock is quite massive with n Chester 84-7 Dc In woods SW of Chester Elementary School, Ridge Rd, Chester 84-1 b SOh Biotite Gneiss and schist, E side of northbound entrance ramp intersection of Rt 9 and 148 84-1 c SOh Biotite Gneiss and schist, E side of northbound entrance ramp intersection of Rt 9 and 148 84-1 a SOh Biotite Gneiss
    [Show full text]
  • Michael Kenney Paleozoic Stratigraphy of the Grand Canyon
    Michael Kenney Paleozoic Stratigraphy of the Grand Canyon The Paleozoic Era spans about 250 Myrs of Earth History from 541 Ma to 254 Ma (Figure 1). Within Grand Canyon National Park, there is a fragmented record of this time, which has undergone little to no deformation. These still relatively flat-lying, stratified layers, have been the focus of over 100 years of geologic studies. Much of what we know today began with the work of famed naturalist and geologist, Edwin Mckee (Beus and Middleton, 2003). His work, in addition to those before and after, have led to a greater understanding of sedimentation processes, fossil preservation, the evolution of life, and the drastic changes to Earth’s climate during the Paleozoic. This paper seeks to summarize, generally, the Paleozoic strata, the environments in which they were deposited, and the sources from which the sediments were derived. Tapeats Sandstone (~525 Ma – 515 Ma) The Tapeats Sandstone is a buff colored, quartz-rich sandstone and conglomerate, deposited unconformably on the Grand Canyon Supergroup and Vishnu metamorphic basement (Middleton and Elliott, 2003). Thickness varies from ~100 m to ~350 m depending on the paleotopography of the basement rocks upon which the sandstone was deposited. The base of the unit contains the highest abundance of conglomerates. Cobbles and pebbles sourced from the underlying basement rocks are common in the basal unit. Grain size and bed thickness thins upwards (Middleton and Elliott, 2003). Common sedimentary structures include planar and trough cross-bedding, which both decrease in thickness up-sequence. Fossils are rare but within the upper part of the sequence, body fossils date to the early Cambrian (Middleton and Elliott, 2003).
    [Show full text]
  • Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction by MACKENZIE GORDON, JR
    Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction By MACKENZIE GORDON, JR. Corals By WILLIAM J. SANDO Pelecypods By JOHN POJETA, JR. Gastropods By ELLIS L. YOCHELSON Trilobites By MACKENZIE GORDON, JR. Ostracodes By I. G. SOHN GEOLOGICAL SURVEY PROFESSIONAL PAPER 606-A, B, C, D, E, F Papers illustrating and describing certain of G. H. Girty' s invertebrate fossils from the Fayetteville Shale UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 70-650224 For sale by the Superintendent of Documents, U.S. Government Printing Office Washing.ton, D.C. 20402 CONTENTS [The letters in parentheses preceding the titles are those used to designate the chapters] Page (A) Introduction, by Mackenzie Gordon, Jr _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 (B) Corals, by William J. Sando__________________________________________________________________________________ 9 (C) Pelecypods, by John Pojeta, Jr _____ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 15 (D) Gastropods, by Ellis L.
    [Show full text]
  • Article the Skull of Teleosaurus Cadomensis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Journal of Vertebrate Paleontology 29(1):88–102, March 2009 # 2009 by the Society of Vertebrate Paleontology ARTICLE THE SKULL OF TELEOSAURUS CADOMENSIS (CROCODYLOMORPHA; THALATTOSUCHIA), AND PHYLOGENETIC ANALYSIS OF THALATTOSUCHIA STE´ PHANE JOUVE Muse´um National d’Histoire Naturelle de Paris, De´partement Histoire de la Terre, CNRS UMR 5143, 8 rue Buffon, 75005 Paris, France, [email protected] ABSTRACT—Several Teleosaurus skulls were described during the nineteenth century. Unfortunately, all skulls from this genus were destroyed during World War II. The only available skull is currently preserved in the MNHN. Thanks to a new preparation, new anatomical features can be seen, such as the morphology of the nasal cavity, the external otic recess, and the distribution of the foramina for the cranial nerves. A phylogenetic analysis is presented, including 14 thalattosu- chian taxa. This analysis has generated four equally most parsimonious trees, where the thalattosuchians are closely related to the pholidosaurids and dyrosaurids, forming a longirostrine taxa. These relationships have been often consid- ered to be based on homoplasies, related to the longirostrine morphology. This is also suggested herein, as the deletion of the longirostrine dependant characters or of the most longirostrine thalattosuchians in the analysis provide a consensus tree where thalattosuchians are basal crocodyliforms, a result more generally accepted. As the deletion of the most longirostrine thalattosuchians precludes the longirostrine problem in the phylogenetic analysis of Crocodyliformes, this deletion seems to be the less unsatisfactory solution to assess the crocodyliform relationships.
    [Show full text]
  • Jason P. Schein
    Curriculum Vitae JASON P. SCHEIN EXECUTIVE DIRECTOR BIGHORN BASIN PALEONTOLOGICAL INSTITUTE 3959 Welsh Road, Ste. 208 Willow Grove, Pennsylvania 19090 Office: (406) 998-1390 Cell: (610) 996-1055 ​ ​ [email protected] EDUCATION Ph.D. Student Drexel University, Department of Biology, Earth and Environmental Science, 2005-2013 M.Sc., Auburn University, Department of Geology and Geography, 2004 B.Sc., Auburn University, Department of Geology and Geography, 2000 RESEARCH AND PROFESSIONAL INTERESTS Mesozoic vertebrate marine and terrestrial faunas, paleoecology, paleobiogeography, faunistics, taphonomy, biostratigraphy, functional morphology, sedimentology, general natural history, education and outreach, paleontological resource assessment, and entrepreneurial academic paleontology. ACADEMIC, PROFESSIONAL, & BOARD POSITIONS 2019-Present Member of the Board, Yellowstone-Bighorn Research Association ​ 2017-Present Founding Executive Director, Bighorn Basin Paleontological Institute ​ 2017-Present Member of the Board, Delaware Valley Paleontological Society ​ 2016-Present Scientific and Educational Consultant, Field Station: Dinosaurs ​ 2015-Present Graduate Research Associate, Academy of Natural Sciences of Drexel University ​ 2007-2017 Assistant Curator of Natural History Collections and Exhibits, New Jersey State Museum ​ 2015-2017 Co-founder, Co-leader, Bighorn Basin Dinosaur Project ​ 2010-2015 International Research Associate, Palaeontology Research Team, University of Manchester ​ 2010-2014 Co-leader, New Jersey State Museum’s Paleontology Field Camp ​ 2007-2009 Interim Assistant Curator of Natural History, New Jersey State Museum ​ 2006-2007 Manager, Dinosaur Hall Fossil Preparation Laboratory ​ 2004-2005 Staff Environmental Geologist, Cobb Environmental and Technical Services, Inc. ​ 1 FIELD EXPERIENCE 2010-2019 Beartooth Butte, Morrison, Lance, and Fort Union formations, Bighorn Basin, Wyoming and Montana, U.S.A. (Devonian, Jurassic, Late Cretaceous, and earliest Paleocene, respectively) 2010 Hell Creek Formation, South Dakota, U.S.A.
    [Show full text]