<<

Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012

Effect of essential oils from Mangifera indica L. cultivars on the antifungal susceptibility of Candida spp. strains isolated from dogs

Efeitodosóleosessenciaisdevariedadesde“Mangiferaindica”L.nasusceptibilidade antifúngicadecepasdeCandidaspp.isoladasdecães

FONTENELLE,RaquelOliveiradosSantos 1;SOBRINHO,AntonioCarlosNogueira 2*; SOARES,BrunaVieira 3;AGUIAR,FranciscaLidianeLinharesde 4;BRITO,Erika HelenaSalesde 5;CAVALCANTE,CarolinaSidrimdePaula 4;ROCHA,MarcosFábio Gadelha 3,6;MORAIS,SeleneMaiade 2,3 .

1UniversidadeEstadualValedoAcaraú,CentrodeCiênciasAgráriaseBiológicas,Sobral,Ceará,Brasil. 2Universidade Estadual do Ceará, Rede Nordeste de BiotecnologiaRenorbio, Programa de Pós GraduaçãoemBiotecnologia,Fortaleza,Ceará,Brasil. 3Universidade Estadual do Ceará, Faculdade de Veterinária, Programa de PósGraduação em Ciências Veterinárias,Fortaleza,Ceará,Brasil. 4UniversidadeFederaldoCeará,FaculdadedeFarmácia,OdontologiaeEnfermagem,ProgramadePós GraduaçãoemCiênciasFarmacêuticas,Fortaleza,Ceará,Brasil. 5UniversidadedaIntegraçãoInternacionaldaLusofoniaAfroBrasileira,InstitutodeCiênciasdaSaúde, Redenção,Ceará,Brasil. 6UniversidadeFederaldoCeará,CentroEspecializadoemMicologiaMédica,DepartamentodePatologiaeMedicina Legal,Fortaleza, Ceará, Brasil. *Endereçoparacorrespondência:[email protected]

RESUMO variaram de 0,31 a0,62 mg/mL; ao passo que para a variedade Moscatel o valor de CIM foi 1,25 mg/mL para todas as cepas de Candida spp. Os óleos essenciais das quatro variedades Estetrabalhodescreveacomposiçãoquímicae de M. indica foram ativos in vitro contra a atividade antiCandida spp. de óleos Candida spp., demonstrando boa atividade essenciais de folhas de diversos cultivares de antifúngica, podendo ser uma fonte útil de Mangifera indica . Os óleos essenciais foram compostos antifúngicos para uso na medicina obtidospormeiodehidrodestilaçãoeanalisados veterinária. por cromatografia de gás acoplada à espectrometria de massa. A atividade anti Candida spp.foiavaliadacontracepasisoladas Palavras-chave: manga, leveduras, óleos de cães pelo método de difusão em ágar e a aromáticos, óxido de cariofileno, pequenos concentração inibitória mínima (CIM) pelo carnívoros método de microdiluição em caldo. O cultivar Tommy Atkins apresentou β–selineno (29.49%), óxido de cariofileno (12.40%) e SUMMARY humuleno II epoxido (8.66%) como seus constituintes principais, enquanto que os principais componentes das variedades Rosa, MoscateleJasmim foramóxidodecariofileno Thisworkreportsthechemicalstudy,andanti (23,62, 48,42 e 30,77%, respectivamente) e Candida spp.activityof leafessentialoil from humuleno II epoxido (11,56, 23,45 e 16,27%, Mangifera indica cultivars. The essential oils respectivamente). As médias de zona de were obtained by hydrodistillation and inibição foram 11 ± 0,71, 13,5 ± 3,54,10,5 ± analyzed by gas chromatography/mass 0,71e13,5±0,71mmrespectivamenteparaos spectroscopy. The antiCandida spp. activity cultivares Tommy Atkins, Rosa, Moscatel e wasevaluatedagainststrainsisolatedfromdogs Jasmim. Para a variedade Tommy Atkins, a by the agarwell diffusion method and the CIMvarioude0,62a1,25mg/mL;paraRosa, minimuminhibitoryconcentration(MIC)bythe 0.31 a 1.25 mg/mL; para Jasmim os valores broth microdilution method. Tommy Atkins

337 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012 cultivar presented β–selinene (29.49%), 2015). The leaf decoction is popularly caryophylleneoxide(12.40%)andhumuleneII used as stomachic, antidiarrheic and epoxide(8.66%)asmainconstituents,whilethe main constituents of Rosa, Moscatel and against genitourinary inflammations, Jasmim varieties were caryophyllene oxide bronchitis and asthmas and in external (23.62, 48.42 and 30.77%, respectively) and use,inbathsorwashesagainstscabies humuleneepoxideII(11.56,23.45,and16.27%, and syphilis (AGRA et al., 2007). respectively). The means of inhibition zones Bbosa et al. (2007) reported the were 11 ± 0.71, 13.5 ±3.54, 10.5 ±0.71 and 13.5 ± 0.71mm to Tommy Atkins, Rosa, antibacterial activity for the leaves and Moscatel and Jasmim varieties, respectively. concludedthattheuseofmangoleafin ForTommyAtkins,theMICrangedfrom0.62 conjunctionwithatoothbrushwillbea to 1.25 mg/mL; for Rosa, ranged from 0.31 to goodhomecaredeviceformaintenance 1.25 mg/mL; for Jasmim ranged from 0.31 to of oral hygiene. The seeds extract 0.62mg/mL;whilefortheMoscatelvarietythe MIC value was 1.25 mg/mL for all Candida demonstrated antibacterial activity that strains. Essentialoilsoffour M.indica cultivars maybeduetothepresenceoftanninand were active in vitro against Candida spp., higher amount of total phenol content demonstrating goodantifungalactivityandcan (VAGHASIYAetal.,2011). beausefulsourceofantifungalcompoundsfor Malassezia sp.and Candida sp.areyeasts veterinarymedicine. commonly found in normal flora from Keywords: mango, yeasts, aromatic oils, small carnivores, as dogs. Nevertheless, caryophylleneoxide,smallcarnivores despite being saprobes, there have been many reports of infections caused by these microorganisms (BRITO et al., INTRODUCTION 2009).Infecctionwhichpresentdifferent clinical manifestations, such as dermatomycosis (YURAYART et al., Mangifera indica L. (Sapindales: 2014), systemic infections (SKORIC et Anacardiaceae), a medicinal and al., 2011), urinary infections horticultural plant, is among the most (ÁLVAREZPÉREZ et al., 2016) and popular and bestknown tropical fruits, otitisexterna(EBANIetal.,2017). including many cultivars (JAHURUL et Although effective antimicrobials have al., 2015). Mango occupies the 2nd beendevelopedovertheyears,therehas position as a tropical crop, behind only been increased development of bananas in terms of production and antimicrobialdrugresistancetocurrently acreage used (MUCHIRI et al., 2012). availableantimicrobials(SANGUINETTI Traditionally, the mango plant has etal.,2015).Duetomanyactivitiesof M. medicinalapplicationsasafebrifugeand indica leaves,theessentialoilsfromfour to treat diarrhea, dysentery, cultivarsfoundinBrazil,TommyAtkins, gastrointestinal tract disorders, typhoid Rosa, Moscatel and Jasmim, were fever,sorethroatandscurvy.Themango screenedforantimicrobialactivityagainst fruits are source of vitamin A and also Candida spp. strains isolated from can be used in treatment of blood symptomaticdogs. disorders(THOMASetal.,2015). Studies have reported the activity of several parts of this species, which MATERIALS AND METHODS include antiinflammatory (SRAVANI et al., 2015), antioxidant (UMAMAHESH et al., 2016; DAS et al., 2015), anti The leaves of four mango varieties hyperglycemic(AWASTHIetal.,2016), Tomy Atkins, Rosa, Moscatel and antiulcerogenic (SEVERI et al., 2009), Jasmim were collected in the Fortaleza antihypertensive (RONCHI et al., city,StateofCearásituatedinnortheast

338 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012 of Brazil (3 ○33’46’’ latitude S, Mycology Center – CEMM (Federal 41 ○05’42’’longitude W). Fresh leaf of UniversityofCeará,Brazil),wherethey mango varieties were subjected to weremaintainedinsaline(0.9%NaCl), hydrodistillation for 2h in a modified at28°C.Atthetimeoftheanalysis,an Clevenger type apparatus, as described aliquot of each suspension was taken by CRAVEIRO et al. (1976). The oil andinoculatedintopotatodextroseagar was dried over anhydrous Na 2SO 4 (~1 (Difco, Detroit, USA), and then g), filtered and preserved in a sealed incubatedat28°Cfor210days. vialat4ºCpriortofurtheranalysis,with Fortheagarwelldiffusionmethod,based ayieldof0.85%(w/w).Alltheessential onFontenelleetal.(2007),stockinocula oilswerekeptintightlystopperedbottle waspreparedonday2,grownonpotato in a freezer until used for biological dextrose agar (Difco, Detroit, USA) at tests. 28 °C.Potatodextroseagarwasaddedto Thechemicalanalysisoftheessentialoils theagarslantandtheculturesweregently constituents were performed on a swabbed to dislodge the conidia. The Shimadzu QP2010 instrument suspensionwithblastoconidiaof Candida employing the following conditions: spp.wastransferredtoasteriletubeand column:DB5ms(Agilent,partNo.122 adjustedbyturbidimetrytoobtaininocula 5532) coated fused silica capillary of approximately 10 6 CFU/mL column (30m x 0.25mm x 0.25µm); blastoconidia . Theopticaldensitiesofthe carrier gas: He (1mL/min, in constant suspensions were spectrophotometrically linear velocity mode); injector determined at 530 nm and then adjusted temperature was 250°C, in split mode to95%transmittance. (1:100),andthedetectortemperaturewas For the broth microdilution method, 250°C. The column temperature standardized inocula (2.5 – 5 x 10 3 programming was 35 to 180°C at CFU/mL for Candida spp.) were also 4°C/minthen180to280°Cat17°C/min, preparedbyturbidimetry.Stockinocula and at 280°C for 10 min; mass spectra: waspreparedonday2,grownonpotato electron impact 70 eV. The injected dextrose agar at 28 °C. Sterile normal sample volume was 1µL. Compounds saline solution (0.9%; 3mL) was added were identified by their GC retention to the agar slant and the culture was timesrelativetoknowcompoundsandby gently swabbed to dislodge the conidia comparison of their mass spectra with fromtheblastoconidiafrom Candida spp. those present in the computer data bank (BRITO et al., 2009). The blastoconidia (National Institute for Standard suspension was transferred to a sterile Technology – NIST – 147, 198 tube, and the volume of suspension compounds) and published spectra adjusted to 4 mL with sterile saline (ADAMS, 2012; ALENCAR et al., solution. The resulting suspension was 1984). allowed to settle for 5 min at 28 °C, and A total of three strains of C. albicans the density was read at 530nm and the and two strains of C. tropicalis were adjusted to 95% transmittance. The includedinthisstudy.The Candida spp. suspension was diluted to 1:2000 with strainswereisolatedfromthepreputial, RPMI 1640 medium (Roswell Park vaginal, oral and perianal mucosae of Memorial Institute – 1640) with L healthydogs.Theisolatesculturedwere glutamine, without sodium bicarbonate identified according to their (Sigma Chemical Co., St. Louis, Mo.), biochemical profile and morphological buffered to pH 7.0 with 0.165M characteristics (BRITO et al., 2009). morpholinepropanesulfonicacid(MOPS) The strains were stored in the fungal (SigmaChemicalCo.,St.Louis,Mo.),to collection of the Specialized Medical

339 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012 obtain the inoculum size of were included for each isolate tested. approximately2.5–5x10 3 CFU/mL. Themicroplateswereincubatedat37 °C The antifungal activity of essential oils and read visually after 2 days. The was evaluated against Candida spp. by assaysforallessentialoilswererunin the agarwell diffusion method duplicate and repeated at least twice. according to Fontenelle et al. (2007). TheMICwasdefinedasthelowestoil Petri dishes with 15cm diameter were concentration that caused 100% prepared with potato dextrose agar inhibitionofvisiblefungalgrowth.The (Difco,Detroit,USA).Thewells(6mm results were read visually as indiameter)werethencutfromtheagar recommended by CLSI. The MFC was and100µLofessentialoilwasdelivered determined by subculturing 100µL of into them. The oils were weighed and solution from wells without turbidity, preparedindimethylsulfoxide(DMSO) on potato dextrose agar, at 28˚C. The to obtain the test concentrations of MFCs were determined as the lowest 10mg.mL 1. Stock solutions of concentrationresultinginnogrowthon amphotericinB(0.005mg.mL 1;Sigma thesubcultureafter2days. Chemical Co., USA) was prepared in Antifungal activity was expressed as distilled water and tested as positive mean ± SD of the diameter of the control for Candida spp. Each fungal growth inhibition zones (mm). The suspension was inoculated on to the antifungal activity of the essential oils surfaceoftheagar.Afterincubation,for was analyzed by linear correlation for 35 days at 28˚C, all dishes were individual analysis and the twotailed examinedforzonesofgrowthinhibition Student’s ttest at 95% confidence and the diameters of these zones were intervals was used to evaluate measured in millimeters. Each differencesbetweentheessentialoiland experimentwasrepeatedatleasttwice. thecontrols. The minimum inhibitory concentration (MIC)for Candida spp.wasdetermined by the broth microdilution method, in RESULTS AND DISCUSSION accordance to M27A3 guidelines of Clinical and Laboratory Standards Institute (CLSI, 2008). The minimum Thechemicalanalysesdemonstratedthat fungicidalconcentration(MFC)forboth essential oil from leaves of Tommy Candida spp. were determined Atkins cultivar has β–selinene (29.49%), according Fontenelle et al. (2007). In caryophyllene oxide (12.40%) and addition, C.parapsilosis (ATCC22019) humulene epoxide II (8.66%) as main and C. albicans (ATCC 1023) strains constituents, while the main constituents wereused asqualitycontrolsforbroth of Rosa, Moscatel and Jasmim cultivars microdilutionmethod. arecaryophylleneoxide(23.62,48.42and Theessentialoilsof M.indica varieties 30.77%, respectively) and humulene were prepared in mineral oil. epoxide II (11.56, 23.45, 16.27%, Amphotericin B (AMB) (Sigma, respectively). The constituents, italicene Chemical Co., USA) was prepared in epoxide, spathulenol, caryophyllene DMSO. For the susceptibility analysis, oxide, humulene epoxide II and theessentialoilssamplesweretestedin cyclocolorenonearecommontothefour concentrations ranging from 0.004 to essentialoils.Theseresultsareshownon 5mg.mL 1.Themicrodilutionassaywas Table1. The M.indica essentialoilsare performed in 96well microdilution mainlycomposedof. plates.Growthandsterilecontrolwells

340 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012

Table1.Chemicalcompositionoftheessentialoilsfromleavesof M.indica cultivars Composition(%*) Constituent TommyAtkins Rosa Moscatel Jasmim K.I.** Monoterpenoids αPinene 3,13 939 2δCarene 3,31 1003 Piperitenone 1,41 3,17 1307 Sesquiterpenoids αCopaene 3,43 1375 β–Elemene 1,45 1,30 1391 αGurjunene 5,64 4,33 1401 Longifolene 3,52 1406 ECaryophyllene 5,40 4,58 1414 Aromadendrene 1,82 1437 αHumulene 4,95 2,68 4,74 1450 Alloaromadendrene 3,71 2,84 1459 Drima7,9(11)diene 2,49 1469 β–Selinene 29,49 2,3 1483 Viridiflorene 2,06 2,2 1485 1,15 1492 Trans cycloisolongifolol5ol 2,11 1512 Silfiperfol5en3olB 3,64 1529 Eremophilaketone 1,44 1534 Italiceneepoxide 7,81 2,56 4,42 3,32 1551 βGermacrene 1,02 1,19 1562 Espathulenol 1,93 4,32 9,19 5,81 1577 Caryophylleneoxide 12,40 23,62 48,42 30,77 1583 Viridiflorol 1,77 1604 HumuleneepoxideII 8,66 11,56 23,45 16,27 1610 Eudesmol(10epigamma) 4,37 1624 Alloaromadendreneepoxide 2,85 1630 Xanthoirhizol 1,40 1748 Ciclocolorenone 7,26 5,91 4,55 2,68 1757 Aristolone 1,58 1761 Methylatedfattyacid Methyllinoleate 3,04 2,26 2092 Total(Contet%) 96,59 78,99 94,27 92,17 * % peak area of the compounds in GCFID chromatograms; ** Retention index. The identified constituentsarelistedintheirorderofelutionfromanonpolarcolumn. :Componentswasnotdetected

Plant essential oils are a potentially oftheplant,themethodofdryingand useful source of antimicrobial the extraction method (FIGUEIREDO compounds, and important in the et al., 2008). Several previous studies developmentofnewdrugsduetohave have demonstrated the activity of served as models for the synthesis of essential oils isolated from Brazilian drugs with diverse pharmacological biomes plants against Candida species properties and chemical structures (DUARTE et al. 2005). Previous study (SOBRINHO et al., 2016). It is often described antiCandida activity against quite difficult to compare the results Lippiasidoides Cham.(FONTENELLE obtainedfromdifferentstudies,because et al., 2007) and Croton species the compositions of the essential oils (FONTENELLEetal.,2008),Brazilian can vary greatly depending upon the Northeast plants with ethnomedicinal geographicalregion,thevariety,theage andbioactiveproperties.

341 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012

However, there is no specific study of Based on this initially screen, all of the antiCandida activity of essential mangoessentialoilsweresubmittedto oilsfromleavesof M. indica varieties. the broth microdilution method (Table The antifungal activity of the essential 3) for Candida spp. strains ( n=5). For oilswasinitiallytestedbytheagarwell Tommy Atkins, the MIC ranged from diffusion assay, at the 10mg/mL 0.62to1.25mg/mL andthe geometric concentration, against 2 strains of mean was 0.87 mg/mL; for Rosa, Candida spp. isolated from rangedfrom0.31to1.25mg/mLandthe symptomaticdogs.All oftheninduced geometric mean was 0.68mg/mL; for growthinhibitionzone,theseresultsare Jasmim ranged from 0.31 to 0.62 showninTable2.Themeansinhibition mg/mL and the geometric mean was zoneswere11±0.71,13.5±3.54,10.5 0.49mg/mL;andforMoscatel,theMIC ± 0.71 and 13.5 ± 0.71mm to Tommy value was the same for all strains of Atkins, Rosa, Moscatel and Jasmim Candida spp.Themosteffectivevariety cultivars, respectively. The positive was Jasmim, following by Rosa, control amphotericin B induced a TommyAtkinsandMoscatel. significantgrowthinhibitionzoneof9.5 ±0.71mm.

Table2.Antifungalactivityoftheessentialoilsof M.indica varietiesagainst Candida spp. intheagarwelldiffusionassay Growthinhibitionzones(mm) Strains TommyAtkins Rosa Moscatel Jasmim AmphotericinB 10mg/mL 10mg/mL 10mg/mL 10mg/mL 0.005mg/mL Candida spp. CEMM012078 10 16 10 13 10 (C.tropicalis ) CEMM012081 12 11 11 14 09 (C.tropicalis ) (mean±SD) (11±0.71) (13.5±3.54) (10.5±0.71) (13.5±0.71) (9.5±0.71) Eachexperimentwasperformedinduplicate

Table3.Minimuminhibitoryconcentrationsofvarieties of M. indica essential oils against Candida spp. M.indica essentialoils Strains TommyAtkins Rosa Moscatel Jasmim MIC(mg/mL) MIC(mg/mL) MIC(mg/mL) MIC(mg/mL) Candida spp. CEMM013068 0.62 0.62 1.25 0.62 (C.albicans ) CEMM013069 1.25 0.62 1.25 0.62 (C.albicans ) CEMM013077 1.25 0.62 1.25 0.62 (C.albicans ) CEMM012078 0.62 0.31 1.25 0.31 (C.tropicalis ) CEMM012081 0.62 1.25 1.25 0.31 (C.tropicalis ) (Geometricmean) 0.87 0.68 1.25 0.49 MIC = minimum inhibitory concentration expressed in mg/mL; CEMM = specialized Medical MycologyCenter.Eachexperimentwasrepeatedatleasttwice.

342 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012

Theconstituents αpineneand2δcarene, guided fractionation will be conducted found just in Jasmim variety, have on plants showing potential anti antibacterial against many bacterial Candida activity to identify the active strains reported by Dorman & Deans compounds. Evaluations of the (2000). The αpinene is a compound of toxicological aspects and antimicrobial Menthaarvensis var. piperita L.essential activity against other important human oil,andDuarteetal(2005)shownaMIC and especially animal pathogens are value of 1.1mg/mL against C. albicans alsobeingconducted. for this oil. These antimicrobial compounds may have increased the antifungalactivityofJasmimessentialoil. ACKNOWLEDGEMENTS Therefore, the high content of sesquiterpenes in both mango essential oils may be a factor that influences the The authors are indebted to the Laboratory of antimicrobial activity observed. NaturalProductsChemistryofStateUniversity ofCeará,theMicrobiologyLaboratoryofState Caryophyllene oxide, main constituent UniversityofValedoAcaraú,andthefinancial from essential oils, showed antifungal support of FUNCAP and CNPq/UNIVERSAL activity against C. albicans by broth (No.447291/20149). microdilution method (SKALTSA et al., 2003). Probably there is a correlation between REFERENCES theantifungalactivity of thestudiedoils and their main constituents. Corroborating this hypothesis, previous ADAMS,R.P. Identification of studies have demonstrated that the essential oils by ion trap mass essential oils in which spathulenol and spectroscopy. USA:AlluredPublishing caryophyllene oxide are the main Corporation,2012. compounds have inhibitory activity on filamentousfungispecies(FARAGetal., AGRA,M.F.;FREITAS,P.F.; 2004; WENQIANG et al., 2006). These BARBOSAFILHO,J.M.Synopsisof compoundsmusthaveinhibitoryactivity theplantsknownasmedicinaland against Candida speciestoo,becauseare poisonousinNortheastofBrazil. abundantinallessentialoilstestedinthis Revista Brasileira de Farmacognosia , study.Theseresultsareimportantbecause v.17,n.1,p.114140,2007. strains of Candida spp. isolated from dogs showed high resistance to azole ALENCAR,W.J.;CRAVEIRO,A.A.; antifungalagents(BRITOetal.,2009). MATOS,F.J.A.Kovats’indicesasa The results of the present study indicate preselectionroutineinmassspectra that the essential oils obtained from librarysearchesofvolatiles. Journal of leaves of M. indica cultivars found in Natural Products ,v.47,n.5,p.890 Brazilshowedantifungalactivity against 892,1984. Candida spp. strains. These results ÁLVAREZPÉREZ,S.;GARCÍA, corroborate the importance of M.E.;CUTULI,M.T.;FERMÍN,M.L.; ethnopharmacological surveys in the DAZA,M.Á.;PELÁEZ,T.;BLANCO, selection of plants for bioactivity J.L.Acquiredmultiazoleresistancein screening. The results contribute to the Candidatropicalis duringpersistent characterization of the antiCandida urinarytractinfectioninadog. Medical activityofessentialoilsandplantextracts mycology case reports ,v.11,p.912, oftraditionalmedicinalplantsfromthe 2016. Brazilian flora. Subsequently, bio

343 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012

AWASTHI,A.;PARWEEN,N.; EBANI,V.V.;NARDONI,S.; SINGH,V.K.;ANWAR,A.;PRASAD, BERTELLONI,F.;NAJAR,B.; B.;KUMAR,J.Diabetes:Symptoms, PISTELLI,L.;MANCIANTI,F. CauseandPotentialNaturalTherapeutic AntibacterialandAntifungalActivityof Methods. Advances in Diabetes and EssentialOilsagainstPathogens Metabolism ,v.4,n.1,p.1023,2016. ResponsibleforOtitisExternainDogs andCats. Medicines ,v.4,n.2,p.21, BBOSA,G.S.;KYEGOMBE,D.B.; 2017. OGWALOKENG,J.;BUKENYA ZIRABA,R.;ODYEK,O.;WAAKO, FARAG,R.S.;SHALABY,A.S.;EL P.Antibacterialactivityof Mangifera BAROTY,G.A.;IBRAHIM,N.A.; indica (L.). African Journal of ALI,M.A.;HASSAN,E.M.Chemical Ecology ,v.45,n.s1,p.1316,2007. andbiologicalevaluationofthe essentialoilsofdifferent Melaleuca BRITO,E.H.S.;FONTENELLE, species. Phytotherapy Research ,v.18, R.O.S.;BRILHANTE,R.S.N.; n.1,p.3035,2004. CORDEIRO,R.A.;MONTEIRO,A.J.; SIDRIM,J.J.C.;ROCHA,M.F.G.The FIGUEIREDO,A.C.;BARROSO,J.G.; anatomicaldistributionand PEDRO,L.G.;SCHEFFER,J.J.Factors antimicrobialsusceptibilityofyeast affectingsecondarymetabolite speciesisolatedfromhealthydogs. The productioninplants:volatile Veterinary Journal ,v.182,n.2,p.320 componentsandessentialoils. Flavour 326,2009. and Fragrance Journal ,v.23,n.4, p.213226,2008. CRAVEIRO,A.A.;MATOS,F.J.A.; ALENCAR,J.W.Asimpleand FONTENELLE,R.O.S.;MORAIS, inexpensivesteamgeneratorfor S.M.;BRITO,E.H.S.;KERNTOPF, essentialoilsextraction. Journal of M.R.;BRILHANTE,R.S.N.; Chemical Education ,v.53,n.10,p.652, CORDEIRO,R.A.;TOMÉ,A.R.; 1976. QUEIROZ,M.G.R.;NASCIMENTO, N.R.F.;SIDRIM,J.J.C.;ROCHA, DAS,S.;ALAM,M.N.;BATUTA,S.; M.F.G.Chemicalcomposition, ROY,N.;BEGUM,N.A.Exploring toxicologicalaspectsandantifungal ComparativeAntioxidantActivityof activityofessentialoilfrom Lippia SomePopularCultivarsof Mangifera sidoides Cham. Journal of indica L.,NationalFruitofIndia. Antimicrobial Chemotherapy ,v.59, International Journal of Fruit n.5,p.934940,2007. Science ,v.15,n.2,p.129147,2015. FONTENELLE,R.O.S.;MORAIS, DORMAN,H.;DEANS,S. S.M.;BRITO,E.H.S.;BRILHANTE, Antimicrobialagentsfromplants: R.S.N.;CORDEIRO,R.A.; antibacterialactivityofplantvolatile NASCIMENTO,N.R.F.;KENTOPF, oils. Journal of Applied Microbiology , M.R.;SIDRIM,J.J.C.;ROCHA,M.F.G. v.88,n.2,p.308316,2000. Antifungalactivityofessentialoilsof Croton speciesfromtheBrazilian DUARTE,M.C.T.;FIGUEIRA,G.M.; Caatingabiome. Journal of Applied SARTORATTO,A.;REHDER,V.L.G.; Microbiology ,v.104,n.5,p.13831390, DELAMERLINA,C.AntiCandida 2008. activityofBrazilianmedicinalplants. Journal of Ethnopharmacology ,v.97, JAHURUL,M.;ZAIDUL,I.; n.2,p.305311,2005. GHAFOOR,K.;ALJUHAIMI,F.;

344 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012

NYAM,K.;NORULAINI,N.; SKORIC,M.;FICTUM,P.;SLANA,I.; SAHENA,F.;OMAR,A.Mango KRIZ,P.;PAVLIK,I.Acaseof (Mangiferaindica L.)byproductsand systemicmycosisinaHovawartdog theirvaluablecomponents:Areview. dueto Candidaalbicans . Veterinarni Food Chemistry ,v.183,p.173180, Medicina ,v.56,n.5,p.260264,2011. 2015. SOBRINHO,A.C.N.;SOUZA,E.B.; MUCHIRI,D.R.;MAHUNGU,S.M.; ROCHA,M.F.G.;ALBUQUERQUE, GITUANJA,S.N.Studiesonmango M.R.J.R.;BANDERA,P.N.;SANTOS, (Mangiferaindica ,L.)kernelfatof H.S.;CAVALCANTE,C.S.P.; someKenyanvarietiesinMeru. OLIVEIRA,S.S.;ARAGÃO,P.R.; Journal of the American Oil MORAIS,S.M.;FONTENELLE, Chemists' Society ,v.89,n.9,p.1567 R.O.S.Chemicalcomposition, 1575,2012. antioxidant,antifungalandhemolytic activitiesofessentialoilfrom Baccharis JACRONCHI,S.N.;BRASIL,G.A.; trinervis (Lam.)Pers.(Asteraceae). NASCIMENTO,A.M.;LIMA,E.M.; Industrial Crops and Products ,v.84, SCHERER,R.;COSTA,H.B.; p.108115,2016. ROMÃO,W.;BOËCHAT,G.A.P.; LENZ,D.;FRONZA,M.;BISSOLI, SRAVANI,D.;AARATHI,K.; N.S.;ENDRINGER,D.C.;ANDRADE, KUMAR,N.S.;KRUPANIDHI,S.; T.U.and invitro andin RAMU,D.V.;VENKATESWARLU, vivobiologicalinvestigationonthe T.C. InVitro AntiInflammatory antihypertensiveactivityofmango Activityof Mangiferaindica and leaves( Mangiferaindica L.). Manilkarazapota LeafExtract. Therapeutic Advances in Research Journal of Pharmacy and Cardiovascular Disease ,v.9,n.5, Technology ,v.8,n.11,p.14771480, p.244256,2015. 2015.

SANGUINETTI,M.;POSTERARO, THOMAS,B.T.;OLANPELEKE, B.;LASS ‐FLÖRL,C.Antifungaldrug A.A.;LAKUNLE,O.M.;DAVIES,A. resistanceamong Candida species: Mangiferaindica crudeleafextracts mechanismsandclinicalimpact. inhibitseffluxpumpsystemin Serratia Mycoses ,v.58,n.S2,p.213,2015. marscencens . Global Journal of Pharmacology ,v.9,p.196202,2015. SEVERI,J.A.;LIMA,Z.P.; KUSHIMA,H.;BRITO,A.R.M.S.; UMAMAHESH,K.;SIVUDU,S.N.; SANTOS,L.C.;VILEGAS,W.; REDDY,O.V.S.Evaluationof HIRUMALIMA,C.A. antioxidantactivity,totalphenolicsand withantiulcerogenicactionfrom totalflavonoidsinpeelsoffivecultivars aqueousdecoctionofmangoleaves ofmango( Mangiferaindica )fruit. (Mangiferaindica L.). Molecules ,v.14, Food Chemistry , v.4,n.42,p.200203, n.3,p.10981110,2009. 2016.

SKALTSA,H.D.;DEMETZOS,C.; VAGHASIYA,Y.;PATEL,H.; LAZARI,D.;SOKOVIC,M.Essential CHANDA,S.Antibacterialactivityof oilanalysisandantimicrobialactivityof Mangiferaindica L.seedsagainstsome eight Stachys speciesfromGreece. humanpathogenicbacterialstrains. Phytochemistry ,v.64,n.3,p.743752, African Journal of Biotechnology , 2003. v.10,n.70,p.1578815794,2011.

345 Rev. Bras. Saúde Prod. Anim., Salvador, v.18, n.2, p.337-346 abr./jun., 2017 ISSN 1519 9940 http://mc04.manuscriptcentral.com/rbspa-scielo http://dx.doi.org/10.1590/S1519-99402017000200012

WENQIANG,G.;SHUFEN,L.; RUIXIANG,Y.;YANFENG,H. Comparisonofcompositionand antifungalactivityof Artemisiaargyi Levl.etVantinflorescenceessentialoil extractedbyhydrodistillationand supercriticalcarbondioxide. Natural Product Research ,v.20,n.11,p.992 998,2006.

YURAYART,C.;NUCHNOUL,N.; MOOLKUM,P.;JIRASUKSIRI,S.; NIYOMTHAM,W.; CHINDAMPORN,A.;KAJIWARA, S.;PRAPASARAKUL,N.Antifungal agentsusceptibilitiesandinterpretation of Malasseziapachydermatis and Candidaparapsilosis isolatedfrom dogswithandwithoutseborrheic dermatitisskin. Medical mycology , v.51,n.7,p.721730,2013.

Dataderecebimento:09/03/2017 Datadeaprovação:29/05/2017

346