Terpene Biosynthesis 2.1 Introduction Terpenes Are A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toxicity and Neurotoxic Effects of Monoterpenoids: in Insects and Earthworms Joel R
Entomology Publications Entomology 1-9-1991 Toxicity and Neurotoxic Effects of Monoterpenoids: In Insects and Earthworms Joel R. Coats Iowa State University, [email protected] Laura L. Karr Iowa State University Charles D. Drewes Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs Part of the Entomology Commons, Environmental Health Commons, Other Animal Sciences Commons, and the Plant Biology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/377. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Toxicity and Neurotoxic Effects of Monoterpenoids: In Insects and Earthworms Abstract The insecticidal activity of several monoterpenoids from essential oils was evaluated against insect pests. Toxicity tests illustrated the bioactivity of d-limonene, α-terpineol, β-myrcene, linalool, and pulegone against insects, including the house fly, the German cockroach, the rice weevil, and the western corn rootworm. Bioassays were conducted to assess their toxicity via topical application, fumigation, ingestion, and ovicidal exposures. Growth, reproduction and repellency were also evaluated in the German cockroach. Non-invasive electrophysiological recordings were used with an earthworm to investigate neurotoxic effects of the monoterpenoids. Relevant monoterpenoid bioassay results in the literature are also discussed. Disciplines Entomology | Environmental Health | Other Animal Sciences | Plant Biology | Plant Sciences Comments Reprinted (adapted) with permission from Naturally Occurring Pest Bioregulators, 449(20); 305-316. -
Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models
molecules Review Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models (2010–2020): A Review Maria Elaine Araruna 1, Catarina Serafim 1, Edvaldo Alves Júnior 1, Clelia Hiruma-Lima 2, Margareth Diniz 1,3 and Leônia Batista 1,3,* 1 Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; [email protected] (M.E.A.); [email protected] (C.S.); [email protected] (E.A.J.); [email protected] (M.D.) 2 Department of Structural and Functional Biology (Physiology), Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil; [email protected] 3 Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil * Correspondence: [email protected]; Tel.: +55-83-32167003; Fax: +55-83-32167502 Academic Editors: Maurizio Battino, Jesus Simal-Gandara and Esra Capanoglu Received: 8 September 2020; Accepted: 28 September 2020; Published: 20 November 2020 Abstract: Inflammatory bowel diseases (IBDs) refer to a group of disorders characterized by inflammation in the mucosa of the gastrointestinal tract, which mainly comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBDs are characterized by inflammation of the intestinal mucosa, are highly debilitating, and are without a definitive cure. Their pathogenesis has not yet been fully elucidated; however, it is assumed that genetic, immunological, and environmental factors are involved. People affected by IBDs have relapses, and therapeutic regimens are not always able to keep symptoms in remission over the long term. Natural products emerge as an alternative for the development of new drugs; bioactive compounds are promising in the treatment of several disorders, among them those that affect the gastrointestinal tract, due to their wide structural diversity and biological activities. -
Molecular Regulation of Plant Monoterpene Biosynthesis in Relation to Fragrance
Molecular Regulation of Plant Monoterpene Biosynthesis In Relation To Fragrance Mazen K. El Tamer Promotor: Prof. Dr. A.G.J Voragen, hoogleraar in de Levensmiddelenchemie, Wageningen Universiteit Co-promotoren: Dr. ir. H.J Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Dr. ir. J.P Roozen, departement Agrotechnologie en Voedingswetenschappen, Wageningen Universiteit Promotiecommissie: Dr. M.C.R Franssen, Wageningen Universiteit Prof. Dr. J.H.A Kroeze, Wageningen Universiteit Prof. Dr. A.J van Tunen, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam. Prof. Dr. R.G.F Visser, Wageningen Universiteit Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 27 november 2002 des namiddags te vier uur in de Aula Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift Wageningen Universiteit ISBN 90-5808-752-2 Cover and Invitation Design: Zeina K. El Tamer This thesis is dedicated to my Family & Friends Contents Abbreviations Chapter 1 General introduction and scope of the thesis 1 Chapter 2 Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation 21 and functional analysis of four monoterpene synthases Chapter 3 Domain swapping of Citrus limon monoterpene synthases: Impact 57 on enzymatic activity and -
Drying Effects on Chemical Composition and Antioxidant Activity of Lippia Thymoides Essential Oil, a Natural Source of Thymol
molecules Article Drying Effects on Chemical Composition and Antioxidant Activity of Lippia thymoides Essential Oil, a Natural Source of Thymol Lidiane Diniz do Nascimento 1,2,* , Sebastião Gomes Silva 3 ,Márcia Moraes Cascaes 4, Kauê Santana da Costa 5,* , Pablo Luis Baia Figueiredo 6 , Cristiane Maria Leal Costa 7, Eloisa Helena de Aguiar Andrade 2,4 and Lênio José Guerreiro de Faria 1,7 1 Programa de Pós-Graduação em Engenharia de Recursos Naturais da Amazônia, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil; [email protected] 2 Coordenação de Botânica, Museu Paraense Emílio Goeldi, Belém 66077-830, Pará, Brazil; [email protected] 3 Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil; [email protected] 4 Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil; [email protected] 5 Faculdade de Biotecnologia, Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Santarém 68035-110, Pará, Brazil 6 Departamento de Ciências Naturais, Universidade do Estado do Pará, Belém 66050-540, Pará, Brazil; pablo.fi[email protected] 7 Programa de Pós-Graduação em Engenharia Química, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil; [email protected] Citation: Nascimento, L.D.d.; Silva, * Correspondence: [email protected] (L.D.d.N.); [email protected] (K.S.d.C.); S.G.; Cascaes, M.M.; Costa, K.S.d.; Tel.: +55-91-3217-6086 (L.D.d.N.); +55-93-2101-6771 (K.S.d.C.) Figueiredo, P.L.B.; Costa, C.M.L.; Andrade, E.H.d.A.; de Faria, L.J.G. -
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
In This Issue
Issue n° 2 MAY 2019 In this issue----- ABACUS project in brief… - ABACUS project in brief The 3-year ABACUS project aims to provide a range of new molecules - Focus on WP1 & WP2 synthetized from microalgae and therefore to bring competitive innovative ingredients based on terpenes for fragrances markets and - Events of interest carotenoids for cosmetics and nutraceutics markets. The concept of ABACUS project associates several interdisciplinary approaches in order to support a high- value product market development stemming from: - Selection and biological engineering of microalgal strains and oriented photosynthesis of terpenoids; - Technological development of algae biomass production systems to optimize cultivation and photosynthesis of terpenoids; - Technological development of the downstream processing steps to reduce time and costs, and to optimize environmental acceptability; - Market development based on new algae-derived ingredients and structuration of new bio-based value chains. To reach its targets, ABACUS takes benefits from a wide range of expertise by gathering 2 large industrial partners (Proteus and Sensient Cosmetics Technologies), 3 algae SMEs (Algafuel, Microphyt and Subitec) and 4 RTOs (CEA, SAMS, CSIC and KIT). Since May 2017, a cooperative work has unfolded between all consortium members whose work is distributed in 10 defined work packages, altogether tailored to reach the objectives by the end of the project. With this second issue of our project’s newsletter, we are pleased to introduce WP1 & WP2 achievements to date. Product and market Market survey acceptances & roadmap Applicability Algae selection Fractionation Process design Up scaling Communication Management Ethics requirements WP1: Solidification of market opportunities and products specifications Two market studies for terpenoid and carotenoid molecules were performed during the first three months of the project. -
Print This Article
PEER-REVIEWED ARTICLE bioresources.com Chemical Composition and Antimicrobial and DPPH Scavenging Activity of Essential Oil of Toona sinensis (A. Juss.) Roem from China Congjin Chen,a,c,* Zhangfa Tong,a Dankui Liao,a Yue Li,a Guoen Yang,b and Mingfei Li c The chemical components of essential oil of Toona sinensis leaf blades and their petioles from China were extracted by simultaneous distillation solvent extraction (SDE) and were analyzed by GC-MS. The antimicrobial and DPPH scavenging activity of the essential oil were evaluated. The results showed that there were differences in chemical compositions and content among essential oils extracted from T. sinensis in different parts and different geographical areas in China, but the main components of essential oils were sesquiterpene and sesquiterpene oxygenated compounds, accounting for 90.1% (No. 1), 92.6% (No. 2), and 80.9% (No. 3) of the relative mass fraction, respectively. T. sinensis essential oil exhibited noticeable growth inhibitory activity against the tested microorganisms. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of different essential oils against microorganisms were different. For all essential oil samples, MIC and MBC against Escherichia coli and Bacillus subtilis were less than 25 μg·mL−1, MIC and MBC against Penicillium citrinum were 200 and 400 μg·mL−1, respectively, and MIC and MBC against Colletotrichum gloeosporioides were 50 and 200 −1 μg·mL , respectively. The IM50 of DPPH scavenging for T. sinensis essential oil was less than 0.3 g DPPH per g essential oil. The results indicated that T. sinensis essential oil may be a useful natural antiseptic source from forest products. -
Terpenoids Commonly Found in Cannabis Sativa Do Not Modulate the Actions of Phytocannabinoids Or Endocannabinoids on TRPA1 and TRPV1 Channels
Cannabis and Cannabinoid Research Volume 5, Number 4, 2020 Mary Ann Liebert, Inc. DOI: 10.1089/can.2019.0099 Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Actions of Phytocannabinoids or Endocannabinoids on TRPA1 and TRPV1 Channels Marika Heblinski,1,2 Marina Santiago,3 Charlotte Fletcher,1,4 Jordyn Stuart,1,3,4 Mark Connor,3 Iain S. McGregor,1,4 and Jonathon C. Arnold1,2,* Abstract Introduction: Cannabis sativa produces hundreds of bioactive compounds, including cannabinoids and terpe- noids. It has been proposed that cannabinoids act in synergy with terpenoids to produce the entourage effect, a concept used to explain the therapeutic benefits of medicinal cannabis. One molecular explanation for the en- tourage effect is that the terpenoids augment the actions of cannabinoids at their molecular drug targets in cells. We recently reported that terpenoids commonly found in cannabis do not influence the functional effects of D9-tetrahydrocannabinol (D9-THC) on cannabinoid 1 and cannabinoid 2 receptors. The present study aimed to extend on this research by examining whether terpenoids influence the effects of phytocannabinoids and endo- cannabinoids on human transient receptor potential ankyrin 1 (hTRPA1) and human transient receptor potential vanilloid 1 (hTRPV1) channels heterologously expressed in mammalian cells. Materials and Methods: The activity of terpenoids, phytocannabinoids, and endocannabinoids was assessed in inducible HEK Flp-In T-Rex cells transfected with hTRPA1 and hTRPV1 channels, respectively. Real-time changes in intracellular calcium ([Ca]i) were measured using the Calcium 5 dye and a FlexStation 3 plate reader. Results: a-pinene, b-pinene, b-caryophyllene, linalool, limonene, b-myrcene or a-humulene did not affect [Ca]i in hTRPA1 and hTRPV1 overexpressing cells. -
Review Article a Review on Anti-Oxidative Herbs PL
INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND CHEMICAL SCIENCES ISSN: 22775005 Review Article A Review on Anti-oxidative Herbs PL. Rajagopal1*, VB. Narayana Swamy2, SS. Kiron3 and KR. Sreejith4 1Department of Pharmacognosy, Academy of Pharmaceutical Sciences, Pariyaram Medical College, Kannur, Kerala, South India. 2Professor and Principal, Department of Pharmacognosy, Karaveli College of Pharmacy, Mangalore, Karnataka, South India. 3Department of Pharmacy Practice, Academy of Pharmaceutical Sciences, Pariyaram Medical College, Kannur, Kerala, South India. 4Department of Pharmaceutical Chemistry, Academy of Pharmaceutical Sciences, Pariyaram Medical College, Kannur, Kerala, South India. ABSTRACT Plants are valuable source of the therapeutic agents in the armory of modern medicine. The method of drug development from plant sources is based on a sequence of operation leading mainly toward the isolation of pure natural products. An antioxidant is a molecule that inhibits the oxidation of other molecules. Antioxidants have been investigated for the prevention of diseases such as cancer, coronary heart disease and even altitude sickness. The major sources of anti-oxidants are reported to be from the natural source, especially from plant source. Key words: Anti oxidant, Free radical, Medicinal Plants INTRODUCTION pharmacological studies to ascertain their Till date as such no set definition of the term therapeutic properties. (Bakru H.K. 1992). antioxidant exists. Scientists are still striving In this review an attempt has been made o hard to find out the role of particular dietary compile most of the Natural Herbs which supplements in body that have potent health possess ant oxidative property. Following are benefits. Since, different antioxidant the list of such medicinal herbs which are compounds found in diet considerably vary reported to be an antioxidant. -
Biosynthesis of Natural Products
63 2. Biosynthesis of Natural Products - Terpene Biosynthesis 2.1 Introduction Terpenes are a large and varied class of natural products, produced primarily by a wide variety of plants, insects, microoroganisms and animals. They are the major components of resin, and of turpentine produced from resin. The name "terpene" is derived from the word "turpentine". Terpenes are major biosynthetic building blocks within nearly every living creature. Steroids, for example, are derivatives of the triterpene squalene. When terpenes are modified, such as by oxidation or rearrangement of the carbon skeleton, the resulting compounds are generally referred to as terpenoids. Some authors will use the term terpene to include all terpenoids. Terpenoids are also known as Isoprenoids. Terpenes and terpenoids are the primary constituents of the essential oils of many types of plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery, and in traditional and alternative medicines such as aromatherapy. Synthetic variations and derivatives of natural terpenes and terpenoids also greatly expand the variety of aromas used in perfumery and flavors used in food additives. Recent estimates suggest that over 30'000 different terpenes have been characterized from natural sources. Early on it was recognized that the majority of terpenoid natural products contain a multiple of 5C-atoms. Hemiterpenes consist of a single isoprene unit, whereas the monoterpenes include e.g.: Monoterpenes CH2OH CHO CH2OH OH Myrcens -
33 34 35 Lipid Synthesis Laptop
BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates -
Use the Right Citrus-Based Cleaning Products to Avoid Corrosion Or Rust Bob Beckley, Project Leader
United States Department of Agriculture Facilities Forest Service Technology & Development Program March 2006 0673–2319–MTDC 7300/7100/5100/2400/2300 Use the Right Citrus-Based Cleaning Products to Avoid Corrosion or Rust Bob Beckley, Project Leader itrus-based cleaning products are commonly found in metal on their chain saws. The crew stopped using citrus-based residential and commercial settings. The ingredients in products because they believed citric acid was causing the these products vary widely (figure 1). While some of damage. However, the damage probably was caused by a C water-based citrus cleaning product. What To Look for in a Citrus-Based Cleaning Product The Material Safety Data Sheets (MSDSs) for chemical products list their ingredients. The MSDS for a citrus-based cleaner should list D-Limonene among the ingredients. D- Limonene is in the terpene family, which includes citrus and pine oils. Terpenes are generally not corrosive or harmful to metals or most plastics and polymers. Terpenes won’t cause rusting, pitting, etching, or staining. Citrus-based terpenes can dissolve heavy petroleum greases and residues in about 30 Figure 1—Citrus-based cleaners are commonly used in residential and minutes when they are used at ambient temperatures. commercial settings, but users often are unaware of the difference between citrus oil-based cleaning products and water-based products. A citrus oil-based cleaning product will not cause corrosion these products can cause corrosion or rust, others do not. The or rust. Such products are made from the oil found in the difference is based on the ingredients. Hundreds of cleaning orange peel, rather than the pulp and juice of the orange.