The Origin, Properties and Fate of the First Black Holes in the Universe

Total Page:16

File Type:pdf, Size:1020Kb

The Origin, Properties and Fate of the First Black Holes in the Universe PH.D. IN ASTRONOMY, ASTROPHYSICS AND SPACE SCIENCE CYCLE XXX The origin, properties and fate of the first black holes in the Universe Edwige Pezzulli A.Y. 2016/2017 Supervisor: Prof. Raffaella Schneider Co-supervisor: Dr. Rosa Valiante Referee: Prof. Piero Madau Referee: Prof. Priyamvada Natarajan Coordinator: Prof. Pasquale Mazzotta Deputy Coordinator: Prof. Roberto Capuzzo Dolcetta "She drank from a bottle called DRINK ME And she grew so tall, She ate from a plate called TASTE ME And down she shrank so small. And so she changed, while other folks Never tried nothin’ at all." S. Silverstein Calvin and Hobbes, Bill Watterson. i Abstract Observations of the Universe’s earliest quasars, less than 1 Gyr after the Big Bang, open the door to many questions. They are found to host supermassive black holes (SMBHs) with 9 10 MBH = 10 − 10 M (Fan et al., 2001, 2004; Mortlock et al., 2011), and BH formation models need to explain their existence and evolution in such a short time. In the first part of this original work, we introduce the cosmological, semi-analytic code GAMETE/SuperQSOdust, which reconstructs several hierarchical merger histories of high-z bright quasars, following the time evolution of central BHs together with the mass of stars, gas, metals and dust. With this tool, we have studied the relative importance of different accretion regimes for the formation of the first quasars, with particular attention to accretion events occurring over the classical luminosity threshold - the so-called Eddington limit. We find that ∼ 80 % of the final SMBH mass is grown by super-Eddington accretion, which can be sustained down to z ∼ 10 in dense, gas-rich environments, and the average 4 BH mass at z ∼ 20 is MBH ∼ 10 M , comparable to that of direct collapse BHs. However, stellar feedback from BH seed progenitors and winds from BH accretion disks may decrease BH accretion rates. Therefore, we studied the impact of these physical processes on the formation of z ∼ 6 quasars, including new physical prescriptions in the model. We find that the feedback produced by the first stellar progenitors on the surround- ing environment does not play a relevant role in preventing the SMBH formation. In order to grow the z ∼ 6 SMBHs, the accreted gas must efficiently lose angular momentum. More- over, disk winds, easily originated in the super-Eddington accretion regime, can strongly reduce duty cycles, producing a decrease in the active fraction among the progenitors of z ∼ 6 bright quasars and thus reducing the probability to detect them. From an observational point of view, no convincing candidates of faint progenitors of luminous high-z quasars have been selected in X-ray surveys (Treister et al., 2013; Weigel ii et al., 2015; Cappelluti et al., 2016). In order to interpret this lack of detections, we have modelled the spectral energy distribution of accreting BHs. This modelling has been ap- plied to a sample of simulated z ∼ 6 SMBH progenitors, also taking into account the photon trapping effect which plays an important role at high accretion rates. The results show that faint progenitors are still luminous enough to be detected with current X-ray surveys. Even accounting for a maximum obscuration effect, the number of detectable BHs is reduced at most by a factor of 2. In our simulated sample, observations of faint BHs are mainly limited by their very low active fraction (fact ∼ 1 per cent), which is the result of short, supercriti- cal growth episodes. We suggest that to detect high-z SMBH ancestors, large area surveys with shallower sensitivities, such as COSMOS Legacy and XMM-LSS+XXL, should be preferred with respect to deep surveys probing smaller fields, such as Chandra Deep Field South. An alternative way of constraining the early growth of BHs is to compare theoretical 5 models with observations of massive BHs (MBH ∼ 10 M ) in local dwarf galaxies. To this aim, in the last part of this work, we introduced GAMESH, a simulation following the formation of a Milky Way-like halo in a well resolved cosmic volume of (4 cMpc)3. This model allows to follow the star formation and chemical enrichment histories of all the galaxies in the simulation box. In the near future, we plan to extend the model including a self-consistent evolution of BHs and their feedback onto the host galaxies. This will allow us to compare results obtained by different BH seeding and accretion models with obser- vations of BH masses hosted by the Milky Way and dwarf galaxies. Here, we present a preliminary study, where we have post-processed the simulation output to analyse the mass and redshift distribution of BH seeds formed as remnants of Pop III stars, and the BH occu- pation fraction at z = 0. Our preliminary results have been obtained under the assumption that gas accretion gives a negligible contribution to BH mass growth and, hence, provide a lower limit to the mass of nuclear BHs found at z = 0. We compare our results with re- cent studies carried out by means of cosmological hydrodynamical simulations (Marinacci et al. 2014; Bonoli et al. 2016), and - given the quiescent history experienced by the Milky Way-like halo - we conclude that either (i) light BH remnants of Pop III stars are able to rapidly grow their masses soon after their formation, or (ii) that the Milky Way nuclear BH originates from more massive BH seeds, with masses comparable to the ones that charac- iii terize direct collapse BHs. In our future study, we will be able to analyse each of these two possibilities using the detailed treatment of chemical and radiative feedback effects allowed by GAMESH. This thesis is divided into four main parts. In the first part, we introduce some basic theoretical tools for understanding the most important features of the formation of galax- ies and black holes: in Chapter 1, we present the ΛCDM Cosmological Model and some fundamental properties of our Universe, including Large Scale Structures and galaxy for- mation, and in Chapter 2 we briefly describe the main characteristics of black holes and gas accretion disks orbiting around these compact objects. The second part of this work is dedicated to the high-z BHs: Chapter 3 is an extract from the review Valiante R., Agar- wal B., Habouzit M., Pezzulli E., 2017, PASA 34, 31. In Chapter 4 we discuss the results obtained in the manuscript Pezzulli E., Valiante R., Schneider R., 2016, MNRAS, 458, 3047, and we also introduce the cosmological, semi-analytic model used for the study on the occurrence of different accretion regimes for the formation of high-z QSOs. In Chapter 5 we discuss on the sustainability of super-Eddington accretion in a cosmological context, including some prescriptions for the two negative feedback mechanisms introduced above. The results have been published in Pezzulli E., Volonteri M., Schneider R., Valiante R., 2017, MNRAS, 471, 589. Possible solutions for the current lack of faint, high-z AGNs observations are reported in Chapter 6, as investigated in Pezzulli E., Valiante R., Orofino M.C., Schneider R., Gallerani S., Sbarrato T., 2017, MNRAS, 466, 2131. In the third part of the thesis, we turn our attention to the Local Universe and to the constraints that can be put on the evolution of nuclear BHs and their hosts from observations of the Milky Way and local dwarf galaxies. In Chapter 7 we present the results of our preliminary study on the mass and redshift distribution of BH seeds and their impact on the z = 0 BH occupation fraction. Finally, in Part IV, we summarize our main conclusions. iv Contents Abstract i I Introduction 2 1 The Universe 3 1.1 The Cosmological Model . .3 1.2 The Friedmann Model . .4 1.2.1 Friedmann equations . .6 1.3 From the Big Bang to the first structures . .9 1.3.1 Linear growth . 11 1.3.2 Non-linear growth . 15 1.3.3 Gas infall and cooling . 17 1.3.4 Formation of stars . 19 2 Black holes 22 2.1 Schwarzschild and Kerr solution . 22 2.2 Accretion onto a BH . 25 2.3 Spherical flows: the Bondi accretion . 27 2.4 Eddington Limit . 28 2.5 Accretion from a disk . 30 II The first black holes 34 3 On the formation of the first quasars 35 v 3.1 Open questions . 36 3.2 Theoretical models . 42 3.3 The first seed BHs: how, where and when . 44 3.3.1 Seeds formation sites . 44 3.3.2 Forming the first stars . 47 3.3.3 Conditions for direct collapse . 49 3.3.4 DCBHs number density . 56 3.4 From seeds to the first quasars . 63 3.4.1 Low-Mass vs high-mass seeds . 64 3.4.2 The role of mergers and BH dynamics . 66 3.4.3 The role of gas accretion . 68 3.4.4 BH feedback . 72 3.5 The host galaxy properties . 73 3.5.1 The origin of high-z dust. 73 3.5.2 The BH-host galaxy co-evolution . 75 3.6 Discussion . 79 4 Growing the first supermassive black holes: the super-Eddington regime 81 4.1 Introduction . 81 4.2 The hierarchical semi-analytic Merger Tree . 83 4.2.1 Mass resolution . 87 4.3 The model . 88 4.3.1 Gas cooling . 90 4.3.2 Disk and bulge formation . 91 4.3.3 Black hole growth and feedback . 95 4.4 Results . 100 4.4.1 The formation of stars and BH seeds . 101 4.4.2 BH evolution . 102 4.4.3 Environmental conditions for Super-Eddington accretion .
Recommended publications
  • Arxiv:2007.09714V1 [Gr-Qc] 19 Jul 2020 Tem PSR J0737-3039A/B
    Probing Noncommutative Gravity with Gravitational Wave and Binary Pulsar Observations Leah Jenks,1 Kent Yagi,2 and Stephon Alexander1 1Brown Theoretical Physics Center and Department of Physics, Brown University, 182 Hope Street, Providence, Rhode Island, 02903 2Department of Physics, University of Virginia, P.O. Box 400714, Charlottesville, VA 22904-4714, USA (Dated: July 21, 2020) Noncommutative gravity is a natural method of quantizing spacetime by promoting the spacetime coordinates themselves to operators which do not commute. This approach is motivated, for exam- ple, from a quantum gravity perspective, among others. Noncommutative gravity has been tested against the binary black hole merger event GW150914. Here, we extend and improve upon such a previous analysis by (i) relaxing an assumption made on the preferred direction due to noncommuta- tivity, (ii) using posterior samples produced by the LIGO/Virgo Collaborations, (iii) consider other gravitational wave events, namely GW151226, GW170608, GW170814 and GW170817, and (iv) consider binary pulsar observations. Using Kepler's law that contains the noncommutative effect at second post-Newtonian order, we derive corrections to the gravitational waveform phase and the pericenter precession. Using the gravitational wave and double pulsar binary observations, we find bounds on a space-time noncommutative tensor θ0i in terms of the preferred frame direction with respect to the orientation of each binary. We find that the gravitational wave bounds are stronger than the binary pulsar one by an order of magnitude and the noncommutative tensor normalized by the Planck length and time is constrained to be of order unity. I. INTRODUCTION of noncommutative gravity stems from these theories.
    [Show full text]
  • Supernova Physics with Gravitational Waves: Newborn Black Holes Are “Kicked”
    Supernova physics with gravitational waves: Newborn black holes are “kicked” Richard O’Shaughnessy [email protected] 614 906 9649 Davide Gerosa [email protected] 626 395 6829 Daniel Wysocki [email protected] ! ! Accepted for publication in Physical Review Letters Poster 317.07 [see iPoster] June 5, AAS 2 3 GW151226: Gravitational waves from a black hole binary B. P.• ABBOTTGW151226et al. is the second, less massive binary black hole confidently detectedPHYS. by REV. LIGO X 6, 041015 (2016) GW151226 Abbott et al, PRX 6, 041015 (2016) ; PRL 118 221101 (2017) FIG. 4. Posterior probability densities of the masses, spins, and distance to the three events GW150914, LVT151012, and GW151226. source For the two-dimensional distributions, the contours show 50% and 90% credible regions. Top left panel: Component masses m1 and source source source m2 for the three events. We use the convention that m1 ≥ m2 , which produces the sharp cut in the two-dimensional source 0.3 distribution. For GW151226 and LVT151012, the contours follow lines of constant chirp mass (M 8.9−þ0.3 M and source 1.4 ¼ ⊙ M 15:1−þ1.1 M , respectively). In all three cases, both masses are consistent with being black holes. Top right panel: The mass and¼ dimensionless⊙ spin magnitude of the final black holes. Bottom left panel: The effective spin and mass ratios of the binary components. Bottom right panel: The luminosity distance to the three events. following section and are consistent with our expect- closely mirror the original analysis of GW150914, as ations for an astrophysical BBH source.
    [Show full text]
  • MY SO October Showdown Rules
    S P A C E - O C T O B E R 2 0 2 0 MY SO STEM SHOWDOWN C O N T E N T , R E C O M M E N D E D M A T E R I A L S & S C O R I N G STEM SHOWDOWN CONTENT The STEM Showdown will consist of a series of online multiple-choice questions. Middle school (Grade 6-9) participant questions will center around the properties and evolution of stars and galaxies as well as their observation using different portions of the electromagnetic spectrum (e.g., Radio, Infrared, Visible, Ultraviolet, X-Ray, Gamma Ray). While high school (Grades 9-12) participants will focus on Star and Galaxy Formation and Evolution. A Showdown participant will have 55- minutes to answer as many questions as possible. The middle school (Grades 6-9) content and skills covered by the Showdown this month is as follows: 1.Stellar and galactic evolution 2.Spectral classification of stars 3.Hubble classification of galaxies 4.Observation using multiple portions of the electromagnetic spectrum 5.The relationship between stellar temperature, radius, and luminosity 6.Magnitude and luminosity scales, distance modulus, inverse square law 7.Identification of the stars, constellations, and deep sky objects included in the list below as they appear on star charts, H-R diagrams, portable star labs, photos, or planetariums. Note: Constellations are underlined; Stars are boldface; Deep Sky Objects are italicized. a.Andromeda: M31 (Andromeda Galaxy) b.Aquila: Altair c.Auriga: Capella d.Bootes: Arcturus e.Cancer: DLA0817g f.Canis Major: Sirius g.Canis Minor: Procyon h.Centaurus: NGC5128 i.Coma Berenices: NGC4676, NGC4555 j.Corvus: NGC4038/NGC4039 k.Crux: Dragonfish Nebula l.Cygnus: Deneb m.Dorado: 30 Doradus, LMC n.Gemini: Castor, Pollux o.Lyra: Vega p.Ophiuchus: Zeta Ophiuchi, Rho Ophiuchi cloud complex q.Orion: Betelgeuse, Rigel & M42 (Orion Nebula) r.Perseus: Algol, NGC1333 Science Olympiad, Inc.
    [Show full text]
  • Searching for Gravitational Waves from Scorpius X-1 with a Cross- Correlation Method: from Mock Data to Advanced LIGO
    Rochester Institute of Technology RIT Scholar Works Theses 8-11-2017 Searching for Gravitational Waves from Scorpius X-1 with a Cross- correlation Method: from Mock Data to Advanced LIGO Yuanhao Zhang [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Zhang, Yuanhao, "Searching for Gravitational Waves from Scorpius X-1 with a Cross-correlation Method: from Mock Data to Advanced LIGO" (2017). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Rochester Institute of Technology Ph.D. Dissertation Searching for Gravitational Waves from Scorpius X-1 with a Cross-correlation Method: from Mock Data to Advanced LIGO Author: Advisor: Yuanhao Zhang Dr. John T. Whelan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Astrophysical Sciences and Technology in the College of Science, School of Physics and Astronomy August 11, 2017 Rochester Institute of Technology Ph.D. Dissertation Searching for Gravitational Waves from Scorpius X-1 with a Cross-correlation Method: from Mock Data to Advanced LIGO Author: Advisor: Yuanhao Zhang Dr. John T. Whelan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Astrophysical Sciences and Technology in the College of Science, School of Physics and Astronomy Approved by Dr. Joel Kastner Date Director, Astrophysical Sciences and Technology Certificate of Approval Astrophysical Sciences and Technologies R I T College of Science · · Rochester, NY, USA The Ph.D.
    [Show full text]
  • LIGO Magazine Issue #14 !
    LIGO Scientific Collaboration Scientific LIGO issue 14 3/2019 LIGO MAGAZINE The Gravitational Weather Forecast: Predicting sources for O3 Upgrades to Hanford, Livingston and Virgo sites Getting ready for O3 p.12 The LVC‘s first Gravitational Wave Transient Catalog Inventorizing the dark side p. 15 ... and an interview with Sir James Hough on the early days p.19 Front cover A new study using Chandra data of GW170817 indicates that the event that produced gravitational waves likely created the lowest mass black hole known. The artist’s illustration shows the black hole that resulted from the merger, along with a disk of infalling matter and a jet of high-energy particles. (Credit: NASA/CXC/M.Weiss) The top inset shows the view from below the ‘north input test mass’ of Virgo. The bottom inset shows a schematic of binary mergers observed by LIGO and Virgo so far. Image credits Photos and graphics appear courtesy of Caltech/MIT LIGO Laboratory and LIGO Scientific Collaboration unless otherwise noted. Cover: Main illustration from NASA/CXC/M.Weiss. Top inset from M. Perciballi / The Virgo collaboration. Bottom inset from LIGO-Virgo / Frank Elavsky / Northwestern University p. 3 Comic strip by Nutsinee Kijbunchoo p. 6-9 Colliding neutron stars illustration by NASA/CXC/M.Weiss. Gravitational wave sources by Chris Messenger. Sensitivity curves from LIGO/Virgo/KAGRA p. 12-14 Livingston photo by Matthew Heintze. Hanford photo by Nutsinee Kijbunchoo, Virgo photo by M. Perciballi / The Virgo Collaboration. p. 15-18 Time frequency plots and waveforms by S. Ghonge, K. Janu / Georgia Tech. Masses in the Stellar Graveyard by LIGO-Virgo / Frank Elavsky / Northwestern University.
    [Show full text]
  • GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
    week ending PRL 116, 241103 (2016) PHYSICAL REVIEW LETTERS 17 JUNE 2016 GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence B. P. Abbott et al.* (LIGO Scientific Collaboration and Virgo Collaboration) (Received 31 May 2016; published 15 June 2016) We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3 4þ0.7 10−22 14 2þ8.3M 7 5þ2.3M . −0.9 × . The inferred source-frame initial black hole masses are . −3.7 ⊙ and . −2.3 ⊙, 20 8þ6.1M and the final black hole mass is . −1.7 ⊙. We find that at least one of the component black holes has spin þ180 greater than 0.2. This source is located at a luminosity distance of 440−190 Mpc corresponding to a redshift 0 09þ0.03 of . −0.04 . All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
    [Show full text]
  • Jonathan Gair, Albert Einstein Institute Potsdam from Einstein and Eddington to LIGO: 100 Years of Gravitational Light Deflection, Principe, May 28Th 2019 Talk Outline
    The Hubble Constant after GW170817 Jonathan Gair, Albert Einstein Institute Potsdam From Einstein and Eddington to LIGO: 100 years of gravitational light deflection, Principe, May 28th 2019 Talk outline ❖ Eddington and Cosmology ❖ Eddington and Gravitational Waves ❖ GW170817 ❖ Gravitational wave sources as cosmological probes ❖ GW170817: first gravitational wave constraint on H0; ❖ statistical H0 measurements with ground-based detectors; ❖ prospects for improved cosmological measurements using future observations; ❖ sources of systematics in GW constraints on cosmology. Cosmological models ❖ Standard cosmological model starts with homogeneous and isotropic line element 2 2 2 2 2 2 2 2 dr 2 2 2 2 ds = c d⌧ =dt a (t)d⌃ ,d⌃ = 2 + r d✓ +sin ✓dφ <latexit sha1_base64="i9PyHZkExmT8HqDxYCOmkNfxTJo=">AAACm3icdZFta9swEMdl76nLHppubwZjcCwMUroG24y2g20U+mJl7EXHlrYQJ0GW5VhEkl3pPAgmX2ofZe/2bSYnbtjjgXSn391x0l9JKYXFIPjh+Tdu3rp9Z+tu5979Bw+3uzuPzm1RGcaHrJCFuUyo5VJoPkSBkl+WhlOVSH6RzE+a/MVXbqwo9BdclHys6EyLTDCKDk273+rYKEiXdhLBW2Bub0GMtFqx9ozusA90EvVxd1PzWcyUQy8hvrqqaArpNXF9cWYoq9tKM4mWdbg/bzzsgXMQS55hfzMt59j07UFshZ5Ea7AZVObCMSNmOe5Ou71gEL4+CA6P4O8gHAQr65HWzqbd73FasEpxjUxSa0dhUOK4pgYFk3zZiSvLS8rmdMZHLtRUcTuuV9ou4YUjKWSFcUsjrOivHTVV1i5U4ioVxdz+mWvgv3KjCrOjcS10WSHXbD0oqyRgAc1HQSoMZygXLqDMCHdXYDl1mqL7zo4T4fql8P/gPBqETplPr3rHb1o5tshT8pz0SUgOyTE5JWdkSJj3xHvnvfdO/Wf+if/B/7gu9b225zH5zfzhTzxAx4I=</latexit> − 1 kr − ❖ and stress-energy tensor of perfect fluid Tµ⌫ =(⇢ + p)uµu⌫ + pgµ⌫ ❖ Einstein’s equations then yield the (Friedmann) equations a˙ 2 k ⇤ 8⇡ + = ⇢ a a2 − 3
    [Show full text]
  • Observatory Science with Extp
    in ’t Zand J.J.M., Bozzo E., Li X., Qu J., etSCIENCE al. Sci. China-Phys. Mech. CHINA Astron. February (2019) Vol. 62 No. 2 029506-1 Physics, Mechanics & Astronomy Print-CrossMark . Invited Review . February 2019 Vol.62 No. 2: 029506 doi: 10.1007/s11433-017-9186-1 The X-ray Timing and Polarimetry Frontier with eXTP Observatory science with eXTP Jean J.M. in ’t Zand1, Enrico Bozzo2, Jinlu Qu3, Xiang-Dong Li4, Lorenzo Amati5, Yang Chen4, Immacolata Donnarumma6;7, Victor Doroshenko8, Stephen A. Drake9, Margarita Hernanz10, Peter A. Jenke11, Thomas J. Maccarone12, Simin Mahmoodifar9, Domitilla de Martino13, Alessandra De Rosa7, Elena M. Rossi14, Antonia Rowlinson15;16, Gloria Sala17, Giulia Stratta18, Thomas M. Tauris19, Joern Wilms20, Xuefeng Wu21, Ping Zhou15;4, Ivan´ Agudo22, Diego Altamirano23, Jean-Luc Atteia24, Nils A. Andersson25, M. Cristina Baglio26, David R. Ballantyne27, Altan Baykal28, Ehud Behar29, Tomaso Belloni30, Sudip Bhattacharyya31, Stefano Bianchi32, Anna Bilous15, Pere Blay33, Joao˜ Braga34, Søren Brandt35, Edward F. Brown36, Niccolo` Bucciantini37, Luciano Burderi38, Edward M. Cackett39, Ric- cardo Campana5, Sergio Campana30, Piergiorgio Casella40, Yuri Cavecchi41;25, Frank Chambers15, Liang Chen42, Yu-Peng Chen3,Jer´ omeˆ Chenevez35, Maria Chernyakova43, Jin Chichuan44, Riccardo Ciolfi45;46, Elisa Costantini1;15, Andrew Cumming47, Antonino D’A`ı48, Zi-Gao Dai4, Filippo D’Ammando49, Massi- miliano De Pasquale50, Nathalie Degenaar15, Melania Del Santo48, Valerio D’Elia40, Tiziana Di Salvo51, Gerry Doyle52, Maurizio Falanga53, Xilong Fan54;55, Robert D. Ferdman56, Marco Feroci7, Federico Fraschetti57, Duncan K. Galloway58, Angelo F. Gambino51, Poshak Gandhi59, Mingyu Ge3, Bruce Gendre60, Ramandeep Gill61, Diego Gotz¨ 62, Christian Gouiffes` 62, Paola Grandi5, Jonathan Granot61, Manuel Gudel¨ 63, Alexander Heger58;64;121, Craig O.
    [Show full text]
  • Biography Employment Research Outputs
    Associate Professor. David Coward Physics Postal address: The University of Western Australia (M013), 35 Stirling Highway, Room 2.63, Physics Building, Perth campus 6009 Perth Western Australia Australia Email: [email protected] Phone: +61 8 6488 4563 Biography His early work on gravitational waves focused on modelling and simulation of gravitational wave background noise. This work evolved in new directions, including the development of a new data analysis algorithm that uses records of the temporal and spatial pattern of rare events in data to predict the occurrence of even rarer events. The methods found novel applications well beyond their original focus, such as predicting the occurrence of very bright gamma ray bursts. Coward has received a broad mentorship that reflects his refusal to be restricted to a single research niche. In 2004, Coward took the bold step of branching out into gamma ray burst and optical transient astronomy, receiving mentorship from experts in this field including the highly cited Tsvi Piran. Following this Coward received mentorship from B. Schmidt, UWA ICRA leaders, and a team of leading French astronomers, Boer and Klotz, for the installation and operation of the Zadko Telescope (Australia’s premier facility for gamma ray burst follow-up). Coward is a member of the LIGO Scientific Community (burst group), and participates in the E.M. follow-up of gravitational wave events as an “advocate” and is named on an MoU for a joint France/Zadko follow-up. He is also named as an investigator on the high-energy detector satellite mission XMM-Newton. In 2013, Coward was invited to collaborate with the Chinese Academy of Sciences in Antarctic astronomy.
    [Show full text]
  • LETTERA N. 154 444444°°° AAANNNNNNOOO Gennaio-Febbraio 2018 a Tutti I Soci
    GGRRUUPPPPOO AASSTTRROONNOOMMIICCOO TTRRAADDAATTEESSEE LETTERA N. 154 444444°°° AAANNNNNNOOO Gennaio-Febbraio 2018 http://www.gruppoastronomicotradatese.it A tutti i soci Il 3 Ottobre 2017 l’ Accademia svedese delle scienze ha ufficializzato l’ assegnazione del Premio Nobel 2017 per la Fisica ai tre scienziati americani (S. Thonre, B. Barish e R. Weiss) che, con il progetto LIGO-VIRGO, hanno permesso la prima rivelazione di onde gravitazionali. Mai Premio Nobel fu più meritato ed atteso! Anche perché gli eventi gravitazionali sono ormai arrivati a 7 e l’ ultimo (GW170817) del 17 Agosto 2017 ha assunto risonanza epocale, essendo stata per la prima volta scoperta anche una controparte ottica (fusione esplosiva di due pulsar a formare una Kilonova). Inevitabile che a questa scoperta, una delle massime di sempre, sia dedicata quasi tutta questa lettera. Altrettanto obbligatoria è la serata del 5 Marzo 2018 che abbiamo organizzato su questo tema. E in questa occasione non si può dimenticare la grave ingiustizia di 50 anni fa (era il 28 Novembre 1967) quando Joselyn Bell scoprì la prima Pulsar ma il (doveroso) Nobel venne assegnato nel 1974 a A. Hewish suo professore, ma non a lei che, oltre che donna, al momento della scoperta era ancora studentessa. In tema di spazio ‘vicino’ (e in un periodo in cui la NASA si è vista ridotta i fondi per i satelliti di controllo terrestre) è molto importante il positivo lancio a 824 km di altezza, del satellite europeo Sentinel-5P (il 5° del programma Copernicus, voluto nel 1998 dall’ ESA per lo studio della Terra) avvenuta il 13 Ottobre 2017.
    [Show full text]
  • Annualreport2017.Pdf
    Wigner RCP 2017 Annual Report Wigner Research Centre for Physics Hungarian Academy of Sciences Budapest, Hungary 2018 Wigner Research Centre for Physics Hungarian Academy of Sciences Budapest, Hungary 2018 Published by the Wigner Research Centre for Physics, Hungarian Academy of Sciences Konkoly Thege Miklós út 29-33 H-1121 Budapest Hungary Mail: POB 49, H-1525 Budapest, Hungary Phone: +36 (1) 392-2512 Fax: +36 (1) 392-2598 E-mail: [email protected] http://wigner.mta.hu © Wigner Research Centre for Physics ISSN: 2064-7336 Source of the lists of publications: MTMT, http://www.mtmt.hu This yearbook is accessible at the Wigner RCP Homepage, http://wigner.mta.hu/en/yearbook Wigner RCP 2017 – Annual Report Edited by T.S. Biró, V. Kozma-Blázsik, B. Selmeci Proofreaders: I. Bakonyi, P. Ván Closed on 15. April, 2018 List of contents Foreword from the Director of the Institute for Solid State Physics and Optics .................. 6 Awards and prizes ............................................................................................................ 9 Key figures and organizational chart ............................................................................... 11 Most important events of the year 2017 ......................................................................... 13 International scientific cooperation ................................................................................ 16 Rogante Engineering Office and the Budapest Neutron Centre — 20 years of cooperation .....................................................................................................................................
    [Show full text]
  • API Publications 2016-2019
    2016 King, A. and Muldrew, S. I., Black hole winds II: Hyper-Eddington winds and feedback, 2016, MNRAS, 455, 1211 Carbone, D., Exploring the transient sky: from surveys to simulations, 2016, AAS, 227, 421.03 van den Heuvel, E., The Amazing Unity of the Universe, 2016 (book), Springer Ellerbroek, L. E. ., Planet Hunters: the Search for Extraterrestrial Life, 2016 (book), Reak- tion Books Lef`evre, C., Pagani, L., Min, M., Poteet, C., and Whittet, D., On the importance of scattering at 8 µm: Brighter than you think, 2016, A&A, 585, L4 Min, M., Rab, C., Woitke, P., Dominik, C., and M´enard, F., Multiwavelength optical prop- erties of compact dust aggregates in protoplanetary disks, 2016, A&A, 585, A13 Babak, S., Petiteau, A., Sesana, A., Brem, P., Rosado, P. A., Taylor, S. R., Lassus, A., Hes- sels, J. W. T., Bassa, C. G., Burgay, M., and 26 colleagues, European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries, 2016, MNRAS, 455, 1665 Sclocco, A., van Leeuwen, J., Bal, H. E., and van Nieuwpoort, R. V., Real-time dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators, 2016, A&C, 14, 1 Tramper, F., Sana, H., Fitzsimons, N. E., de Koter, A., Kaper, L., Mahy, L., and Moffat, A., The mass of the very massive binary WR21a, 2016, MNRAS, 455, 1275 Pinilla, P., Klarmann, L., Birnstiel, T., Benisty, M., Dominik, C., and Dullemond, C. P., A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap, 2016, A&A, 585, A35 van den Heuvel, E., Neutron Stars, 2016, ASCO Conference, 20 Van Den Eijnden, J., Ingram, A., and Uttley, P., The energy dependence of quasi periodic oscillations in GRS 1915+105, 2016, AAS, 227, 411.07 Calzetti, D., Johnson, K.
    [Show full text]