Disjunct Distributions of Freshwater Snails Testify to a Central Role of The

Total Page:16

File Type:pdf, Size:1020Kb

Disjunct Distributions of Freshwater Snails Testify to a Central Role of The Schultheiß et al. BMC Evolutionary Biology 2014, 14:42 http://www.biomedcentral.com/1471-2148/14/42 RESEARCH ARTICLE Open Access Disjunct distributions of freshwater snails testify to a central role of the Congo system in shaping biogeographical patterns in Africa Roland Schultheiß1,2*, Bert Van Bocxlaer3,4, Frank Riedel5,6, Thomas von Rintelen7 and Christian Albrecht2 Abstract Background: The formation of the East African Rift System has decisively influenced the distribution and evolution of tropical Africa’s biota by altering climate conditions, by creating basins for large long-lived lakes, and by affecting the catchment and drainage directions of river systems. However, it remains unclear how rifting affected the biogeographical patterns of freshwater biota through time on a continental scale, which is further complicated by the scarcity of molecular data from the largest African river system, the Congo. Results: We study these biogeographical patterns using a fossil-calibrated multi-locus phylogeny of the gastropod family Viviparidae. This group allows reconstructing drainage patterns exceptionally well because it disperses very poorly in the absence of existing freshwater connections. Our phylogeny covers localities from major drainage basins of tropical Africa and reveals highly disjunct sister-group relationships between (a) the endemic viviparids of Lake Malawi and populations from the Middle Congo as well as between (b) the Victoria region and the Okavango/ Upper Zambezi area. Conclusions: The current study testifies to repeated disruptions of the distribution of the Viviparidae during the formation of the East African Rift System, and to a central role of the Congo River system for the distribution of the continent’s freshwater fauna during the late Cenozoic. By integrating our results with previous findings on palaeohydrographical connections, we provide a spatially and temporarily explicit model of historical freshwater biogeography in tropical Africa. Finally, we review similarities and differences in patterns of vertebrate and invertebrate dispersal. Amongst others we argue that the closest relatives of present day viviparids in Lake Malawi are living in the Middle Congo River, thus shedding new light on the origin of the endemic fauna of this rift lake. Keywords: Freshwater biogeography, East African Rift System, Congo, Lake Malawi, Lake Tanganyika, Zambezi Background The three largest drainage systems in present-day Cen- The formation of the East African Rift System (EARS) tral Africa are the Congo-, the Nile-, and the Zambezi played a decisive role in the evolution of Africa’s tropical system (Figure 1). The Congo River covers an area of ~3.7 fauna and flora. The climatic, geological, and hydrolo- million square kilometres and has a length of ~4100 ki- gical consequences of the rifting processes are critical to lometres [2]. It drains part of the EARS (including understand the emergence of the endemic species of the Lake Tanganyika) and borders to the Nile system in the savannahs and the Great Lakes as well as the origin of northeast. The Nile system receives water from Lake humankind. Rifting created, disrupted, redirected, and Albert and Lake Victoria and drains a region of ~3.2 connected major freshwater systems [1]. million square kilometres for almost 7000 kilometres northwards to the Mediterranean Sea. To the south, the * Correspondence: [email protected] Congo system borders to the Zambezi drainage system, 1Division of Genetics and Physiology, Department of Biology, University of which runs ~2600 kilometres, covers an area of 1.3 million Turku, Itäinen Pitkäkatu 4, 20014 Turku, Finland square kilometres [2,3], and includes the southernmost 2Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany of the Great Lakes, Malawi. The central location of the Full list of author information is available at the end of the article EARS to these river systems bears witness to the rift’s © 2014 Schultheiß et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Schultheiß et al. BMC Evolutionary Biology 2014, 14:42 Page 2 of 12 http://www.biomedcentral.com/1471-2148/14/42 Nile Lake Albert drainage system ngo River im Co ruw i A Congo drainage system Lake Muhazi Lake Victoria Ka Lake Tanganyika sa i Lake Mweru N Okavango Lake Malawi drainage Lake Bangweulu system Zambezi drainage U system . Z mbezi O a Za k m a b v e a z n i sample locality g o lake river course Chobe drainage system border Lake 0 100 200 500 km Palaeo-Makgadikgadi Figure 1 Map of tropical Africa with major drainage systems. The map shows the major drainage systems, framed with bold grey lines, and the sampling points of the study. Lakes and rivers referred to in the text are labelled accordingly; the Upper Zambezi is abbreviated as ‘U. Zambezi’. The dashed outline indicates the maximum expansion of Lake Palaeo-Makgadikgadi, modified after Riedel et al. [4]. Locality details for each sampling point are given in Table 1. importance in shaping drainage pattern of tropical Africa, centre of the continent and palaeohydrological research but their history since the Mid-Miocene is only partly re- indicates that the river and its tributaries have a highly solved and arguably complex [2,3]. vicissitudinous drainage history. Temporal connections Most suggestions of palaeohydrological connections in existed to the present day Lake Victoria area [14,15], Lake tropical Africa are based on circumstantial evidence in Turkana [16,17], the Upper Zambezi area [18,19] and the combination with general models of rifting and uplifting Indian Ocean [19], although the latter connection is con- [2] rather than on geomorphological evidence like in other troversial [1]. Hence, the analysis of Congolese samples is parts of the continent where palaeochannels can be traced a prerequisite for our understanding of the evolution and over considerable areas and are reasonably well dated, e.g. distribution of the freshwater fauna of tropical Africa— [5-7]. The consequential lack of a coherent synthesis or including the origins of the endemic radiations in the rift- a model of hydrographical connections since the Mid- lakes Malawi and Tanganyika. Miocene severely hampers our understanding of historical Here we study the historical biogeography of the fresh- biogeography in tropical Africa. This is further compli- water gastropod family Viviparidae, a taxon widely dis- cated by a scarcity of samples from the Congo River sys- tributed in the lotic and lentic environments of tropical tem, e.g. [8-11], but see Goodier et al. [12] and Day et al. Africa [20]. This family is of particular interest to studies [13]. The Congo is the largest freshwater system in the of historical freshwater biogeography because its dispersal Schultheiß et al. BMC Evolutionary Biology 2014, 14:42 Page 3 of 12 http://www.biomedcentral.com/1471-2148/14/42 is mostly limited to habitats with existing freshwater con- nodes were collapsed into a polytomy in Figure 2. The nections [21], rendering it an ideal tracer of past and number of parsimony informative sites and effective sam- present hydrographic connections. The ovoviviparous and pling sizes are provided in Additional file 1 for each frag- dioecious reproduction mode of viviparids minimizes op- ment separately. portunities for successful vector-mediated migration and a The phylogenetic structure revealed by Figure 2 also subsequent establishment of a viable population [22,23]. indicates that morphological identifications and geneal- Accordingly, viviparid fossils are conspicuously absent ogy do not match each other perfectly. A main concern from African water bodies that were never hydrographic- is the systematic position of Bellamya capillata, which ally connected to a source, e.g. crater- and oasis lakes [21]. has been traditionally reported from many localities in We obtained samples from the major drainage systems Africa south of the equator [20]. The type locality for in the region, i.e. that of the Nile, the Okavango, the this taxon is Lake Malawi, and all other localities from Zambezi as well as the Upper and Middle Congo. Using which the species was identified, are in fact inhabited by Bayesian multi-locus phylogenetic analyses and a fossil- populations that are deeply divergent from B. capillata calibrated, relaxed molecular clock we studied the diver- in Lake Malawi. Similar issues exist for other Bellamya sification and distribution of viviparids in Africa. In light species (see Discussion). We thus tentatively name spec- of the impact of the evolution of the EARS on African imens with an ambiguous status in current systematics hydrographic systems and the dependence of our model using ‘confer’ (cf.) to emphasize that taxonomic revisions organism on these systems to disperse, we expect a deep are required. phylogenetic separation between viviparid species east and west of the western branch of the rift system. We Molecular clock estimates furthermore hypothesize this separation to temporarily We focus on estimates for the ages of the following coincide with the disruption of freshwater migration routes three nodes in Clade I (Figure 2): Split A—most recent across the evolving rift. common ancestor (mrca) of the entire clade: 10.47 mil- lion years (My) (95% confidence interval [CI]: 6.69-15.04 Results My); Split B—the split between the Victoria- and the Phylogenetic analyses Okavango group: 6.32 My (CI: 3.58-9.96 My); Split C— The Bayesian analyses of the African Viviparidae yiel- the split between the Congo- and the Malawi group: ded one well-supported Neothauma group from Lake 4.52 My (CI: 2.32-7.70 My).
Recommended publications
  • Molecular Phylogenetic Evidence That the Chinese Viviparid Genus Margarya (Gastropoda: Viviparidae) Is Polyphyletic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Article SPECIAL ISSUE June 2013 Vol.58 No.18: 21542162 Adaptive Evolution and Conservation Ecology of Wild Animals doi: 10.1007/s11434-012-5632-y Molecular phylogenetic evidence that the Chinese viviparid genus Margarya (Gastropoda: Viviparidae) is polyphyletic DU LiNa1, YANG JunXing1*, RINTELEN Thomas von2*, CHEN XiaoYong1 & 3 ALDRIDGE David 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin 10115, Germany; 3 Aquatic Ecology Group, Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK Received February 28, 2012; accepted May 25, 2012; published online February 1, 2013 We investigated the phylogeny of the viviparid genus Margarya, endemic to Yunnan, China, using two mitochondrial gene frag- ments (COI and 16S rRNA). The molecular phylogeny based on the combined dataset indicates that Margarya is polyphyletic, as two of the three well-supported clades containing species of Margarya also comprise species from other viviparid genera. In one clade, sequences of four species of Margarya even cluster indiscriminately with those of two species of Cipangopaludina, indi- cating that the current state of Asian viviparid taxonomy needs to be revised. Additionally, these data suggest that shell evolution in viviparids is complex, as even the large and strongly sculptured shells of Margarya, which are outstanding among Asian viviparids, can apparently be easily converted to simple smooth shells.
    [Show full text]
  • Fecundity of the Chinese Mystery Snail in a Nebraska Reservoir
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications Unit 2013 Fecundity of the Chinese mystery snail in a Nebraska reservoir Bruce J. Stephen University of Nebraska-Lincoln, [email protected] Craig R. Allen University of Nebraska-Lincoln, [email protected] Noelle M. Chaine University of Nebraska-Lincoln, [email protected] Kent A. Fricke University of Nebraska-Lincoln Danielle M. Haak University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/ncfwrustaff Part of the Aquaculture and Fisheries Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; and Wong, Alec, "Fecundity of the Chinese mystery snail in a Nebraska reservoir" (2013). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 121. https://digitalcommons.unl.edu/ncfwrustaff/121 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Bruce J. Stephen, Craig R. Allen, Noelle M. Chaine, Kent A.
    [Show full text]
  • L'exemple Du Bassin De Makgadikgadi-Okavango-Zambezi
    Bassins de rift à des stades précoces de leur développement: l’exemple du bassin de Makgadikgadi-Okavango-Zambezi, Botswana et du bassin Sud-Tanganyika (Tanzanie et Zambie). Composition géochimique des sédiments: traçeurs des changements climatiques et tectoniques Philippa Huntsman-Mapila To cite this version: Philippa Huntsman-Mapila. Bassins de rift à des stades précoces de leur développement: l’exemple du bassin de Makgadikgadi-Okavango-Zambezi, Botswana et du bassin Sud-Tanganyika (Tanzanie et Zambie). Composition géochimique des sédiments: traçeurs des changements climatiques et tec- toniques. Géochimie. Université de Bretagne occidentale - Brest, 2006. Français. tel-00161196 HAL Id: tel-00161196 https://tel.archives-ouvertes.fr/tel-00161196 Submitted on 10 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Remerciements Je tiens tout d’abord à remercier Jean-Jacques Tiercelin et Christophe Hémond, mes directeurs de thèse. Je leur suis très reconnaissante pour leurs conseils et leur sympathie. Je remercie beaucoup Mathieu Benoit et Jo Cotten pour la patience qu’ils ont montré lors de la mesure d’échantillons au cours de ma thèse et pour avoir accepté de travailler sur mes échantillons de sédiments.
    [Show full text]
  • The Hydrology of the Okavango Delta, Botswana—Processes, Data and Modelling
    Regional review: the hydrology of the Okavango Delta, Botswana—processes, data and modelling Christian Milzow & Lesego Kgotlhang & Peter Bauer-Gottwein & Philipp Meier & Wolfgang Kinzelbach Abstract The wetlands of the Okavango Delta accom- Introduction modate a multitude of ecosystems with a large diversity in fauna and flora. They not only provide the traditional The Okavango wetlands, commonly called the Okavango livelihood of the local communities but are also the basis Delta, are spread on top of an alluvial fan located in of a tourism industry that generates substantial revenue for northern Botswana, in the western branch of the East the whole of Botswana. For the global community, the African Rift Valley. Waters forming the Okavango River wetlands retain a tremendous pool of biodiversity. As the originate in the highlands of Angola, flow southwards, upstream states Angola and Namibia are developing, cross the Namibian Caprivi-Strip and eventually spread however, changes in the use of the water of the Okavango into the terminal wetlands on Botswanan territory cover- River and in the ecological status of the wetlands are to be ing the alluvial fan (Fig. 1). Whereas the climate in the expected. To predict these impacts, the hydrology of the headwater region is subtropical and humid with an annual Delta has to be understood. This article reviews scientific precipitation of up to 1,300 mm, it is semi-arid in Botswana work done for that purpose, focussing on the hydrological with precipitation amounting to only 450 mm/year in the modelling of surface water and groundwater. Research Delta area. High potential evapotranspiration rates cause providing input data to hydrological models is also over 95% of the wetland inflow and local precipitation to be presented.
    [Show full text]
  • The Okavango Delta and Its Place in the Geomorphological Evolution of Southern Africa.Pdf
    1-54 McCarthy_105-108 van Dijk copy 2013/09/12 10:53 AM Page 1 1 30th Alex L. du Toit Memorial Lecture THE OKAVANGO DELTA AND ITS PLACE IN THE GEOMORPHOLOGICAL EVOLUTION OF SOUTHERN AFRICA T.S. McCARTHY Island vegetation shows a distinct zonation: the outer fringes are characterized by evergreen trees, followed inwards by deciduous trees, ivory palms, shrubs and grass and finally barren soil. The swamp surrounding the island is densely vegetated with sedges and grasses. SOUTH AFRICAN JOURNAL OF GEOLOGY, 2013, VOLUME 116.1 PAGE 1-54 doi:10.2113/gssajg.116.1.1 1-54 McCarthy_105-108 van Dijk copy 2013/09/12 10:53 AM Page 2 30th Alex L. du Toit Memorial Lecture Alex du Toit in the field with his first wife and only son in the early 1900s. Picture by kind courtesy M.C.J. de Wit, E.O. Köstlin and R.S. Liddle Photo: Gevers SOUTH AFRICAN JOURNAL OF GEOLOGY 1-54 McCarthy_105-108 van Dijk copy 2013/09/12 10:53 AM Page 3 T.S. McCARTHY 3 THE OKAVANGO DELTA AND ITS PLACE IN THE GEOMORPHOLOGICAL EVOLUTION OF SOUTHERN AFRICA T.S. McCARTHY School of Geosciences, University of the Witwatersrand, P.O.Box 3, WITS 2050, Johannesburg, South Africa e-mail: [email protected] © 2013 June Geological Society of South Africa ABSTRACT The Okavango Delta is southern Africa’s largest wetland ecosystem and probably the most pristine large wetland ecosystem in the world. Alex du Toit was the first to recognize the role of faulting in the origin of the Delta, proposing that the Delta lies within a graben structure related to the East African Rift Valley system.
    [Show full text]
  • Revisiting Hydrology of Lake Ngami in Botswana
    urren : C t R gy e o s l e o Kurugundla et al., Hydrol Current Res 2018, 7:2 r a r d c y h DOI: 10.4172/2157-7587.1000301 H Hydrology: Current Research ISSN: 2157-7587 Research Article Open Access Revisiting Hydrology of Lake Ngami in Botswana Kurugundla CN1*, Parida BP2 , Buru JC1 and Paya B3 1Department of Water and Sanitation, Private Bag 002, Maun, Botswana 2Department of Civil Engineering, Private Bag 0061, University of Botswana, Botswana 3Khoemacau Copper Mining, PO Box AD 80, Gaborone, Botswana *Corresponding author: Chandrasekar N. Kurugundla, Department of Water and Sanitation, Private Bag 002, Maun, Botswana, Tel: +2676861462; E-mail: [email protected]; [email protected] Received date: May 17, 2018; Accepted date: May 28, 2018; Published date: June 05, 2018 Copyright: © 2018 Kurugundla CN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Lake Ngami, an integral part of the Okavango Delta in Botswana, is a seasonal shallow lake that depends mostly on spills deriving from Boro River and rarely from Thamalakane River. In essence, the lake water is critical to the local population supporting the fishing industry, farming, livestock and tourism. This work attempts to revisit and to understand the hydrological conditions of the lake, which are of paramount importance for planning and development processes in the lake area. By referring to earlier historical publications and analyzing annual inflow of Okavango River at Mohembo in Botswana from 1932 to 2016, and annual outflow of Lake River to the lake at Mogapelwa from 1974 to 2016, three flooding regimes have been identified for the Lake Ngami namely wet, seasonal and dry.
    [Show full text]
  • University of Cape Town
    UNIVERSITY OF CAPE TOWN DEPARTMENT OF HISTORICAL STUDIES ECONOMIC AND SOCIAL CHANGE IN THE COMMUNITIES OF THE WETLANDS OF CHOBE AND NGAMILAND, WITH SPECIAL REFERENCE TO THE PERIOD SINCE 1960 DISSERTATION SUBMITTED TO THE FACULTY OF HUMANITIES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BY GLORIOUS BONGANI GUMBO GMBGLO001 SUPERVISOR PROFESSOR ANNE KELK MAGER JULY 2010 CONTENTS ABBREVIATIONS ............................................................................................................. v GLOSSARY ...................................................................................................................... vii ACKNOWLEDGEMENTS .............................................................................................. xii INTRODUCTION ............................................................................................................. xii Chapter One: The Commodification of cattle in the wetlands of colonial Botswana, 1880-1965 ........................................................................................................................... 28 Chapter Two: Disease, cattle farming and state intervention in Ngamiland after independence ..................................................................................................................... 54 Chapter Three: ‘Upgrading’ female farming: Women and cereal production in Chobe and Ngamiland .................................................................................................................. 74 Chapter Four: Entrepreneurship
    [Show full text]
  • Discharge of the Congo River Estimated from Satellite Measurements
    Discharge of the Congo River Estimated from Satellite Measurements Senior Thesis Submitted in partial fulfillment of the requirements for the Bachelor of Science Degree At The Ohio State University By Lisa Schaller The Ohio State University Table of Contents Acknowledgements………………………………………………………………..….....Page iii List of Figures ………………………………………………………………...……….....Page iv Abstract………………………………………………………………………………….....Page 1 Introduction …………………………………………………………………………….....Page 2 Study Area ……………………………………………………………..……………….....Page 3 Geology………………………………………………………………………………….....Page 5 Satellite Data……………………………………………....…………………………….....Page 6 SRTM ………………………………………………………...………………….....Page 6 HydroSHEDS ……………………………………………………………….….....Page 7 GRFM ……………………………………………………………………..…….....Page 8 Methods ……………………………………………………………………………..….....Page 9 Elevation ………………………………………………………………….…….....Page 9 Slopes ………………………………………………………………………….....Page 10 Width …………………………………………….…………………………….....Page 12 Manning’s n ……………………………………………………………..…….....Page 14 Depths ……………………………………………………………………...….....Page 14 Discussion ………………………………………………………………….………….....Page 15 References ……………………………….…………………………………………….....Page 18 Figures …………………………………………………………………………...…….....Page 20 ii Acknowledgements I would like to thank OSU’s Climate, Water and Carbon program for their generous support of my research project. I would also like to thank NASA’s programs in Terrestrial Hydrology and in Physical Oceanography for support and data. Without Doug Alsdorf and Michael Durand, this project would
    [Show full text]
  • BOTSWANA Ministry of Mineral, Energy and Water Affairs DEPARTMENT of WATER AFFAIRS
    REPUBLIC OF BOTSWANA Ministry of Mineral, Energy and Water Affairs DEPARTMENT OF WATER AFFAIRS Maun Groundwater Development Project Phase 1: Exploration and Resource Assessment Contract TB 1013126194·95 FINAL REPORT October 1997 Eastend Investments (Pty) Ltd. JOINT VENTURE OF: Water Resources Consultants (Pty) Ltd., Botswana and Vincent Uhf Associates Inc., USA Ministry of Mineral, Energy and Water Affairs DEPARTMENT OF WATER AFFAIRS Maun Groundwater Development Project Phase 1: Exploration and Resource Assessment Contract T8 1013126194-95 FINAL REPORT Executive Summary October 1997 Eastend Investments (Pty) Ltd. JOINT VENTURE OF: Water Resources Consultants (Ply) Ltd.• Botswana and Vincent Uhl Associates Inc., USA MAUN GIIOUNOW"TEA DEVELOfOMEHT PAOJECT PHolSE I FI""llIepan. CONTENTS 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Project Goals and Objectives 1 1.3 Reporting 2 1.4 Project Location and Setting 3 2.0 OVERVIEW OF MAUN WATER SUPPLy 3 3.0 INVESTIGATION PROGRAMME 4 3.1 Inception Period 4 3.2 Field Exploration Programme 5 4.0 DISCUSSION OF RESULTS AND FINDINGS 6 4.1 Shashe Wellfield 7 4.2 Exploration Areas Summary 7 4.3 Groundwater Quality 8 4.4 Natural and Artificial Recharge 9 4.5 Other Findings 9 5.0 RECOMMENDED DEVELOPMENT PLAN 11 5.1 Introduction 11 5.2 Stage 1: Immediate implementation (1998) 12 5.3 Stage 2: Medium Term (2000 - 2012) 13 5.4 Stage 3: Longer Term Development 15 6.0 CAPITAL COSTS 15 7.0 CONCLUSiON 16 8.0 REFERENCES 17 9.0 ACKNOWLEDGEMENTS 27 MAUN GROUNDWATER DEVELOPMENT PROJECT PHASE I FI....I Rtpo<t TABLES E-1.
    [Show full text]
  • Elixir Journal
    46226 Pallavi S. Jadhav et al./ Elixir Appl. Zoology. 105 (2017) 46226-46229 Available online at www.elixirpublishers.com (Elixir International Journal) Applied Zoology Elixir Appl. Zoology. 105 (2017) 46226-46229 Observations on the Morphological Parameters of the Freshwater Snails Bellamya Dissimilis and Lymnaea Acuminata Pallavi S. Jadhav, Priyanka M. Shejwal and Meena U. Patil Department of Zoology,Dr. Babasaheb Ambedkar Marathwada University,Aurangabad-431004 (MS). ARTICLE INFO ABSTRACT Article history: The study was conducted on the morphological aspects such as shell shape and shell Received: 10 March 2017; dimensions of freshwater snails Bellamya dissimilis and Lymnaea acuminata. The shell Received in revised form: of B. dissimilis is globular in shape with broad ovate mouth and 4-5 whirls that are 10 April 2017; dextrally rotated. Shell length and shell width ranges from 2.3-3.9cm and 3.2-5.9cm Accepted: 21 April 2017; respectively. Snail B. dissimilis gives birth to a large number (120-130) of fully developed young ones measures up to 0.2-0.5cm in length. The shell of L. acuminata is Keywords tapering conical with 3-5 whorls that end in dextral opening of shell. Shell length and Freshwater snails, shell width ranges from 1.2-2.7cm and 1.9-3.5cm respectively. The snail is B. dissimilis, L. hermaphrodite and breeds almost throughout the year, this snail contains the egg clutches Acuminata, and each egg clutch contains 170-180 eggs. Morphology. © 2017 Elixir All rights reserved. Introductio n 2008). Total numbers of species inhabiting the freshwater Molluscs are a part of the invertebrate macro fauna of ecosystem are few as compared to marine ecosystem and our freshwater habitats throughout the world.
    [Show full text]
  • Redalyc.Ecology of the Non-Native Snail Sinotaia Cf Quadrata (Caenogastropoda: Viviparidae). a Study in a Lowland Stream of Sout
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Ferreira, Aana Clara; PAZ, ESTEFANÍA L.; Rumi, Alejandra; Ocon, Carolina; Altieri, Paula; Rodrigues Capítulo, Alberto Ecology of the non-native snail Sinotaia cf quadrata (Caenogastropoda: Viviparidae). A study in a lowland stream of South America with different water qualities Anais da Academia Brasileira de Ciências, vol. 89, núm. 2, abril-junio, 2017, pp. 1059- 1072 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32751197025 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2017) 89(2): 1059-1072 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201720160624 www.scielo.br/aabc Ecology of the non-native snail Sinotaia cf quadrata (Caenogastropoda: Viviparidae). A study in a lowland stream of South America with different water qualities ANA CLARA FERREIRA1,2, ESTEFANÍA L. PAZ1,2, ALEJANDRA RUMI2,3, CAROLINA OCON1,2, PAULA ALTIERI 1,2 and ALBERTO RODRIGUES CAPÍTULO1,2 1Instituto de Limnología Dr. Raúl A. Ringuelet, CCT La Plata-CONICET-UNLP, Laboratorio de Bentos, Bvd. 120, 1462, 1900, La Plata, Buenos Aires, Argentina 2Facultad de Ciencias Naturales y Museo/FCNyM, Universidad Nacional de La Plata/ UNLP, Av. 60 and 122, 1900, La Plata, Buenos Aires, Argentina 3División Zoología Invertebrados, Museo de La Plata (FCNyM, UNLP), Av.
    [Show full text]
  • Class G Tables of Geographic Cutter Numbers: Maps -- by Region Or Country -- Eastern Hemisphere -- Africa
    G8202 AFRICA. REGIONS, NATURAL FEATURES, ETC. G8202 .C5 Chad, Lake .N5 Nile River .N9 Nyasa, Lake .R8 Ruzizi River .S2 Sahara .S9 Sudan [Region] .T3 Tanganyika, Lake .T5 Tibesti Mountains .Z3 Zambezi River 2717 G8222 NORTH AFRICA. REGIONS, NATURAL FEATURES, G8222 ETC. .A8 Atlas Mountains 2718 G8232 MOROCCO. REGIONS, NATURAL FEATURES, ETC. G8232 .A5 Anti-Atlas Mountains .B3 Beni Amir .B4 Beni Mhammed .C5 Chaouia region .C6 Coasts .D7 Dra region .F48 Fezouata .G4 Gharb Plain .H5 High Atlas Mountains .I3 Ifni .K4 Kert Wadi .K82 Ktaoua .M5 Middle Atlas Mountains .M6 Mogador Bay .R5 Rif Mountains .S2 Sais Plain .S38 Sebou River .S4 Sehoul Forest .S59 Sidi Yahia az Za region .T2 Tafilalt .T27 Tangier, Bay of .T3 Tangier Peninsula .T47 Ternata .T6 Toubkal Mountain 2719 G8233 MOROCCO. PROVINCES G8233 .A2 Agadir .A3 Al-Homina .A4 Al-Jadida .B3 Beni-Mellal .F4 Fès .K6 Khouribga .K8 Ksar-es-Souk .M2 Marrakech .M4 Meknès .N2 Nador .O8 Ouarzazate .O9 Oujda .R2 Rabat .S2 Safi .S5 Settat .T2 Tangier Including the International Zone .T25 Tarfaya .T4 Taza .T5 Tetuan 2720 G8234 MOROCCO. CITIES AND TOWNS, ETC. G8234 .A2 Agadir .A3 Alcazarquivir .A5 Amizmiz .A7 Arzila .A75 Asilah .A8 Azemmour .A9 Azrou .B2 Ben Ahmet .B35 Ben Slimane .B37 Beni Mellal .B4 Berkane .B52 Berrechid .B6 Boujad .C3 Casablanca .C4 Ceuta .C5 Checkaouene [Tétouan] .D4 Demnate .E7 Erfond .E8 Essaouira .F3 Fedhala .F4 Fès .F5 Figurg .G8 Guercif .H3 Hajeb [Meknès] .H6 Hoceima .I3 Ifrane [Meknès] .J3 Jadida .K3 Kasba-Tadla .K37 Kelaa des Srarhna .K4 Kenitra .K43 Khenitra .K5 Khmissat .K6 Khouribga .L3 Larache .M2 Marrakech .M3 Mazagan .M38 Medina .M4 Meknès .M5 Melilla .M55 Midar .M7 Mogador .M75 Mohammedia .N3 Nador [Nador] .O7 Oued Zem .O9 Oujda .P4 Petitjean .P6 Port-Lyantey 2721 G8234 MOROCCO.
    [Show full text]