Fungal Species Associated with Fruit and Vegetables Transported to the J.G

Total Page:16

File Type:pdf, Size:1020Kb

Fungal Species Associated with Fruit and Vegetables Transported to the J.G CZECH POLAR REPORTS 9 (1): 78-87, 2019 Fungal species associated with fruit and vegetables transported to the J.G. Mendel station and the influence of UV-C treatment on their fungal community Monika Laichmanová*, Ivo Sedláček Masaryk University, Faculty of Science, Department of Experimental Biology, Czech Collection of Microorganisms, Kamenice 5, 625 00 Brno, Czech Republic Abstract The aim of this study was to investigate the fungal community associated with fruits and vegetables transported into the Antarctic region and observe qualitative changes of their surface mycobiota after UV-C treatment. This measure is used to prevent the post- harvest diseases of stored fruits and vegetables and reduce the risk of introducing non- native species to the Antarctic environment. In total, 82 strains of filamentous fungi were isolated from the surfaces of 64 pieces of fresh fruits and vegetables before and after their UV-C treatment. They were assigned to the genera Penicillium, Fusarium, Mucor, Cladosporium, and Acremonium. After the UV-C treatment of the examined fruits and vegetables, spores of the genera Fusarium, Cladosporium and Acremonium were not detected, while spores of the genera Penicillium and Mucor were more resistant and stayed viable after the treatment. Penicillium strains prevailed in the examined samples. Their introduction to the Antarctic environment could represent a potential risk for endemic autochthonous organisms. Key words: non-native, fungi, fresh food, Antarctic region, UV-C treatment, post- harvest diseases DOI: 10.5817/CPR2019-1-7 Introduction The Antarctic continent is frequently in Antarctic microbial communities includ- described as the last unspoiled region of ing viruses, bacteria, archaea, algae, fungi Earth. However, an increase in human ac- and microeukaryotes. The microbial settle- tivities such as tourism and scientific pro- ment is strongly affected by the geograph- grams over the past three decades has af- ic isolation of the Antarctic continent, ex- fected the Antarctic environment. Several treme climatic conditions and the availabil- thousand researchers and tourists visit the ity of nutrients in the environment (Ruisi continent each year (Onofri et al. 2007). et al. 2007). Human impacts have reflected by changes ——— Received February 22, 2019, accepted April 26, 2019. *Corresponding author: M. Laichmanová <[email protected]> Acknowledgements: The authors wish to thank the scientific infrastructure of the J. G. Mendel Czech Antarctic Station, part of the Czech Polar Research Infrastructure (CzechPolar2), and its crew for their assistance, supported by the Ministry of Education, Youth and Sports of the Czech Republic (LM2015078) and the Czech Antarctic Foundation for their support. 78 M. LAICHMANOVÁ and I. SEDLÁČEK Most Antarctic filamentous fungi repre- Arctowski Polar Station. Hughes et al. sent common mesophilic, anamorphic spe- (2011, 2018) focused on fungi associated cies widespread in the biosphere (Onofri et with fresh produce (fruit and vegetables) al. 2007). Some of them are transported to and wooden cargo packaging transferred Antarctica by natural means such as wind, to the Antarctic region. ocean debris, birds and marine mammals Fruit and vegetables are mainly colo- (Hughes and Convey 2012) but they are nised by fungi causing post-harvest dis- unable to grow under Antarctic conditions, eases. Many of these fungi are present at while others, termed indigenous, are well anamorphic stage and belong to the phy- adapted and able to grow and reproduce lum Ascomycota. Important post-harvest even at low temperatures (Ruisi et al. pathogens are represented by the anamor- 2007). More than 1000 fungal species were phic genera Penicillium, Aspergillus, Bo- reported from the Antarctic and sub-Ant- trytis, Fusarium, Alternaria, etc. (Coates arctic regions but only 2-3% of them are et al. 1997). considered to be endemic (Hughes et al. To protect the Antarctic biodiversity 2018). Increasing human activities are an- against the unintended introduction of not- other mean for the transportation of alloch- native species to that region, the Com- thonous biological material to Antarctica. mittee for Environmental Protection com- Microorganisms are introduced in associa- piled a Non-native species manual ([2] - tion with cargo, fresh food, personal cloth- CEP 2017). This manual includes practical ings, building materials, vehicles, aircraft guidelines and resources to support the and ship holds (Hughes and Convey 2012, prevention of the introduction of non- Hughes et al. 2018). The dissemination of native species. Hughes et al. (2011) sug- non-native species in Antarctica is recently gested a provisional list of measures re- the most discussed issue associated with ducing the risk of introductions of non- human activity ([1] - COMNAP and SCAR native species to the Antarctic region as- 2010, Cowan et al. 2011, Hughes et al. sociated with fresh food. One of the 2011, 2015, 2018; Osyczka et al. 2012, measures regarding the storage of fresh Augustyniuk-Kram et al. 2013, [2] - CEP fruits and vegetables on a station is the use 2017, Galera et al. 2018). Human pollution of germicidal lamps (UV-C) in storage is particularly noticeable near the scientific areas. stations and locations visited by tourists. UV-C radiation is lethal to most micro- So far, the investigation of the ecological organisms, including bacteria, viruses, fun- impacts of humans on the Antarctic eco- gi, yeast and algae (Begum et al. 2009). In systems has focused on the importation of practice, it is used for a treatment of air, plant propagules and invertebrates (Hughes liquids and surfaces of objects where a ster- et al. 2010, Lityńska-Zając et al. 2012, ile environment is needed. In many stud- Chwedorzewska et al. 2013, Huiskes et al. ies, the germicidal effect of the UV-C 2014, Molina-Montenegro et al. 2015) but radiation on fungi causing a post-harvest less attention has been paid to the intro- decay has been demonstrated (Rodov et al. duction of fungal propagules. To the best 1992, Valero et al. 2007, Gündüz and Pazir of our knowledge, only the few following 2012, Uyar and Uyar 2018). studies dealing with this issue were pub- The aim of this work was to investigate lished. Czarnecki and Bialasiewicz (1987), fungal communities associated with fruits Osyczka et al. (2012) and Augustyniuk- and vegetables transported to the Johann Kram et al. (2013) analysed of fungal prop- Gregor Mendel Station located on James agules from the air, food, timber, clothes, Ross Island and observe changes in these boots and equipment transported to the H. communities after the UV-C treatment. 79 FUNGAL SPECIES TRANSPORTED TO ANTARCTICA ON FRESH FOOD Material and Methods Sample collection In total, 8 kinds of fresh fruits and veg- 8 pieces of each kind of fresh food were etables were tested for the presence of fila- randomly wiped by sterile cotton swabs mentous fungi within the polar expedition Fungi-Quick into the transport medium during austral summer season 2012/13. All for mold and yeast. Afterwards, all wiped fruits and vegetables were purchased in pieces of the fruits and vegetables were Punta Arenas (Chile) shops and transport- treated by a germicidal lamp from two ed by ship to the J. G. Mendel station (60° sides. The treatment time was 5 min. from 48´ 2.3˝ S; 57° 52´ 56.7˝ W) located on each side (Gündüz and Pazir 2012). Sub- James Ross Island. Examined fruits and sequently, all pieces of the fruits and veg- vegetables included lemons (Citrus limon), etables were again randomly wiped by the grapefruits (Citrus paradisi), limes (Citrus transport swabs. The swabs were stored in limetta), oranges (Citrus limonia), apples the refrigerator at 5°C and then transported (Malus domestica), potatoes (Solanum tu- to the laboratories of the Czech Collection berosum), garlic (Allium sativum) and cab- of Microorganisms (CCM - Masaryk Uni- bage (Brassica oleracea convar. capitata versity, Brno, [3]). var. alba). Immediately after unpacking, Isolation and identification In total, 128 swab specimens were qual- tion. Fungal isolates were identified using itatively analysed in the CCM laboratories. morphological taxonomic keys (Zycha et The swab specimens were inoculated onto al. 1969, Domsch et al. 1980, Frisvad and the surface of three isolation media: PDA Samson 2004, Leslie and Summerell 2006). (Potato Dextrose Agar), DRBC (Dichloran Penicillium and Fusarium species identifi- Rose Bengal Agar with chloramphenicol) cation was supported by biochemical anal- and MEA (2% Malt Extract Agar). Each yses using the Biolog FF MicroPlateTM sample was seed on two plates of each of (Biolog, USA) as a complement to the tra- the three media and incubated at 25°C for ditional methods. Publications by Bridge 5–10 days. Morphologically different colo- et al. (2010), Onofri et al. (2007) and stud- nies from each sample were subcultured ies dealing with Antarctic mycobiota pub- on MEA in order to obtain pure cultures. lished after 2010 were used to determine if The identification of fungal samples was the identified fungal species had previous- done on the basis of traditional methods ly been recorded from Antarctica. of macroscopic and microscopic examina- Results In total, 82 isolates of filamentous fungi lium (72%) and the remaining isolates were retrieved from the surface of the fresh belonged to the genus Fusarium (16%), fruits and vegetables. Fifty-four colonies Mucor (7%), Cladosporium (4%) and Acre- were isolated before and 28 colonies after monium (1%). Among them 45 strains the UV-C treatment. Identified fungi were were assigned into 13 species within the represented by 5 genera. The majority of genera Fusarium, Mucor, and Penicillium. the isolates belonged to the genus Penicil- Roughly two thirds of them have previous- 80 M. LAICHMANOVÁ and I. SEDLÁČEK ly been recorded from the Antarctic re- mycetes were not isolated from any sam- gions (Table 1). Penicillium expansum and ples after the exposure to the UV-C radia- Penicillium solitum were the most fre- tion. By contrast, Penicillium species dom- quently isolated species and also occurred inated after the UV-C treatment (Fig.
Recommended publications
  • Chapter 11 Marine Fungi Associated with Antarctic Macroalgae
    Chapter 11 Marine Fungi Associated with Antarctic Macroalgae Mayara B. Ogaki, Maria T. de Paula, Daniele Ruas, Franciane M. Pellizzari, César X. García-Laviña, and Luiz H. Rosa Abstract Fungi are well known for their important roles in terrestrial ecosystems, but filamentous and yeast forms are also active components of microbial communi- ties from marine ecosystems. Marine fungi are particularly abundant and relevant in coastal systems where they can be found in association with large organic substrata, like seaweeds. Antarctica is a rather unexplored region of the planet that is being influenced by strong and rapid climate change. In the past decade, several efforts have been made to get a thorough inventory of marine fungi from different environ- ments, with a particular emphasis on those associated with the large communities of seaweeds that abound in littoral and infralittoral ecosystems. The algicolous fungal communities obtained were characterized by a few dominant species and a large number of singletons, as well as a balance among endemic, indigenous, and cold-­ adapted cosmopolitan species. The long-term monitoring of this balance and the dynamics of richness, dominance, and distributional patterns of these algicolous fungal communities is proposed to understand and model the influence of climate change on the maritime Antarctic biota. In addition, several fungal isolates from marine Antarctic environments have shown great potential as producers of bioactive natural products and enzymes and may represent attractive sources of biotechno- logical products. M. B. Ogaki · M. T. de Paula · D. Ruas · L. H. Rosa (*) Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil e-mail: [email protected] F.
    [Show full text]
  • Penicillium Arizonense, a New, Genome Sequenced Fungal Species
    www.nature.com/scientificreports OPEN Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in Received: 07 June 2016 Accepted: 26 September 2016 secreted metabolites Published: 14 October 2016 Sietske Grijseels1,*, Jens Christian Nielsen2,*, Milica Randelovic1, Jens Nielsen2,3, Kristian Fog Nielsen1, Mhairi Workman1 & Jens Christian Frisvad1 A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping ofP. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts ofP. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new speciesP. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species. Penicillia are important cell factories for the production of antibiotics and enzymes, and several species of the genus also play a central role in the production of fermented food products such as cheese and meat.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.
    [Show full text]
  • Diversity and Bioprospection of Fungal Community Present in Oligotrophic Soil of Continental Antarctica
    Extremophiles (2015) 19:585–596 DOI 10.1007/s00792-015-0741-6 ORIGINAL PAPER Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica Valéria M. Godinho · Vívian N. Gonçalves · Iara F. Santiago · Hebert M. Figueredo · Gislaine A. Vitoreli · Carlos E. G. R. Schaefer · Emerson C. Barbosa · Jaquelline G. Oliveira · Tânia M. A. Alves · Carlos L. Zani · Policarpo A. S. Junior · Silvane M. F. Murta · Alvaro J. Romanha · Erna Geessien Kroon · Charles L. Cantrell · David E. Wedge · Stephen O. Duke · Abbas Ali · Carlos A. Rosa · Luiz H. Rosa Received: 20 November 2014 / Accepted: 16 February 2015 / Published online: 26 March 2015 © Springer Japan 2015 Abstract We surveyed the diversity and capability of understanding eukaryotic survival in cold-arid oligotrophic producing bioactive compounds from a cultivable fungal soils. We hypothesize that detailed further investigations community isolated from oligotrophic soil of continen- may provide a greater understanding of the evolution of tal Antarctica. A total of 115 fungal isolates were obtained Antarctic fungi and their relationships with other organisms and identified in 11 taxa of Aspergillus, Debaryomyces, described in that region. Additionally, different wild pristine Cladosporium, Pseudogymnoascus, Penicillium and Hypo- bioactive fungal isolates found in continental Antarctic soil creales. The fungal community showed low diversity and may represent a unique source to discover prototype mol- richness, and high dominance indices. The extracts of ecules for use in drug and biopesticide discovery studies. Aspergillus sydowii, Penicillium allii-sativi, Penicillium brevicompactum, Penicillium chrysogenum and Penicil- Keywords Antarctica · Drug discovery · Ecology · lium rubens possess antiviral, antibacterial, antifungal, Fungi · Taxonomy antitumoral, herbicidal and antiprotozoal activities.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade.
    [Show full text]
  • Haloalkalitolerant and Haloalkaliphilic Fungal Diversity of Acıgöl/Turkey
    MANTAR DERGİSİ/The Journal of Fungus Nisan(2021)12(1)33-41 Geliş(Recevied) :07.12.2020 Research Article Kabul(Accepted) :10.01.2021 Doi: 10.30708.mantar.836325 Haloalkalitolerant and Haloalkaliphilic Fungal Diversity of Acıgöl/Turkey Fatma AYVA1, Rasime DEMİREL2*, Semra ILHAN3, Lira USAKBEK KYZY4, Uğur ÇİĞDEM5, Niyazi Can ZORLUER6, Emine IRDEM5, Ercan ÖZBİÇEN4, Esma OCAK5, Gamze TUNCA4 * Corresponding author e-mail: [email protected] 1 Eskisehir Technical University, Faculty of Science, Department of Biology, TR-26470 Eskisehir, Turkey Orcid ID: 0000-0002-7072-2928/ [email protected] 2 Eskisehir Technical University, Faculty of Science, Department of Biology, TR-26470 Eskisehir, Turkey Orcid ID: 0000-0001-8512-1597/ [email protected] 3 Eskişehir Osmangazi University, Faculty of Science and Letters, Department of Biology, TR- 26040 Eskisehir, Turkey Orcid ID: 0000-0002-3787-2449/ [email protected] 4 Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences, Department of Biology, TR-26040, Eskisehir, Turkey Orcid ID: 0000-0002-9424-4473/ [email protected] Orcid ID: 0000-0001-5646-6115/ ercanozbı[email protected] Orcid ID: 0000-0002-4126-8340/ [email protected] 5 Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences, Department of Biotechnology and Biosafety, TR-26040, Eskisehir, Turkey Orcid ID: 0000-0003-4790-494X/ [email protected] Orcid ID: 0000-0002-2955-298X/ [email protected] Orcid ID: 0000-0002-9085-4151/ [email protected] 6 Eskişehir Osmangazi University, Faculty of Science and Letters, Programme of Biology, TR- 26040 Eskisehir, Turkey Orcid ID: 0000-0002-2394-2194/ [email protected] Abstract: Microfungi are the most common microorganisms found in range from environment.
    [Show full text]
  • 1 Fungus-Bacterium Associations Are Widespread in Fungal Cultures Isolated from a Semi-Arid Natural Grassland in Germany L.A.H
    1 1 Fungus-bacterium associations are widespread in fungal cultures isolated from a semi-arid 2 natural grassland in Germany 3 L.A.H. Muller1,2,*, M.-B. Ballhausen1,2,*, D.R. Andrade-Linares3, L. Pinek1,2, P. Golubeva1,2 and 4 M.C. Rillig1,2. 5 1 Institut für Biologie - Ökologie der Pflanzen, Freie Universität Berlin, Altensteinstr. 6, 14195 6 Berlin, Germany. 7 2 Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 8 14195 Berlin, Germany. 9 3 Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, 10 Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany. 11 * These authors contributed equally 12 13 Corresponding author: 14 Matthias C. Rillig 15 Freie Universität Berlin - Institute of Biology 16 Altensteinstraße 6 17 14195 Berlin 18 Germany 19 E-mail: [email protected] 20 Tel.: +49 30 838 53165 21 Fax: +49 30 838 53886 2 22 Abstract 23 We report on a study that aimed at establishing a large soil-fungal culture collection 24 spanning a wide taxonomic diversity and systematically screening the collection for bacterial 25 associations. Fungal cultures were isolated from soil samples obtained from a natural 26 grassland in eastern Germany and bacterial associations were assessed by PCR-amplification 27 and sequencing of bacterial 16S rRNA. In addition, intraspecies genetic diversities of a subset 28 of the isolated species were estimated by double-digest restriction associated DNA 29 sequencing. A total of 688 fungal cultures, representing at least 106 fungal species from 36 30 different families, were obtained and even though clonal isolates were identified in almost 31 all fungal species subjected to ddRAD-seq, relatively high genetic diversities could be 32 observed in some of the isolated species.
    [Show full text]
  • Monitoring Rhizosphere Microbial Communities of Tomato
    MONITORING RHIZOSPHERE MICROBIAL COMMUNITIES OF TOMATO SARAH JANE DEERY Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy December 2012 ABSTRACT Tomato is an economically important crop that can be devastated by many root infecting pathogens. The development of alternative and sustainable crop cultivation techniques and disease control methods is a must for the tomato industry, due to more strict government regulations and concerns over the sustainability of conventional chemical-intensive agriculture (Dixon and Margerison, 2009). In this thesis, the molecular fingerprinting method Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and next generation sequencing method (pyrosequencing) were used, targeting ITS1, ITS2 and 23S ribosomal DNA to characterize and examine microbial community assemblages in the rhizosphere of tomato. These molecular techniques were employed alongside traditional cultivation, microscopy and plant health assessment techniques to determine the effects of growth media, plant age and disease control methods on rhizosphere microbial populations and tomato root health. Plant age and media were found to significantly affect microbial community assemblages; conversely, microbial populations were not altered by soil amendments or rootstock disease control measures used. These findings suggest that the factors influencing rhizosphere community structure can be ranked by importance. Furthermore, if the most influential factors are kept consistent then rhizosphere microbial structures are robust and difficult to perturb with changes in a factor contributing less control over microbial community composition. No direct link between crop health assessments and rhizosphere microbial community diversity or presence of root pathogens could be established. Furthermore, high abundance of potential pathogens and poor crop health assessments during the growing season did not always result in poor health or disease symptoms at the end of cropping assessment in our trials.
    [Show full text]
  • Phylogeny of Penicillium and the Segregation of Trichocomaceae Into Three Families
    available online at www.studiesinmycology.org StudieS in Mycology 70: 1–51. 2011. doi:10.3114/sim.2011.70.01 Phylogeny of Penicillium and the segregation of Trichocomaceae into three families J. Houbraken1,2 and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: Jos Houbraken, [email protected] Abstract: Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit.
    [Show full text]
  • Diversity and Control of Spoilage Fungi in Dairy Products: an Update
    microorganisms Review Diversity and Control of Spoilage Fungi in Dairy Products: An Update Lucille Garnier 1,2 ID , Florence Valence 2 and Jérôme Mounier 1,* 1 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France; [email protected] 2 Science et Technologie du Lait et de l’Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France; fl[email protected] * Correspondence: [email protected]; Tel.: +33-(0)2-90-91-51-00; Fax: +33-(0)2-90-91-51-01 Received: 10 July 2017; Accepted: 25 July 2017; Published: 28 July 2017 Abstract: Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods.
    [Show full text]
  • Pečiulytė, D., Dirginčiutė-Volodkienė, V. Effect of Long-Term Industrial
    EKOLOGIJA. 2010. Vol. 56. No. 3–4. P. 132–143 DOI: 10.2478/v10055-010-0019-3 © Lietuvos mokslų akademija, 2010 © Lietuvos mokslų akademijos leidykla, 2010 Eff ect of long-term industrial pollution on microorganisms in soil of deciduous forests situated along a pollution gradient next to a fertilizer factory 3. Species diversity and community structure of soil fungi Dalė Pečiulytė*, Th e present study was conducted to establish whether a long-term (57 years) chemi- cal industry pollution could infl uence fungal community structure in deciduous forest Vaidilutė Dirginčiutė-Volodkienė soil. Th is paper presents results of two-year investigations of soil fungi in seven decidu- ous forest plots located at a diff erent distance (0.7–15 km) from the emission source Institute of Botany, (ES) – a fertilizer factory in Central Lithuania. Fungal abundance as colony forming Žaliųjų Ežerų 49, units (CFUs) was determined by the plate dilution technique, and the identifi cation of LT-08406 Vilnius, fungi to a species was based of their micro- and macromorphology. Th eir abundance Lithuania varied from 0.88 to 2.59 thousand CFU g–1 dry weight soil and was signifi cantly neg- atively correlated with the distance from the ES (Spearman’s correlation rs = – 0.78). Phosphorus and humus content was the major factor to infl uence the fungal abundance (rs = 0.88 and 0.79, respectively). Copper and lead were the two pollutants (out of Cu, Cd, Ni, Pb, Zn and As investigated), which exerted a signifi cant impact on the community structure. In total, 158 species out of 11 394 isolates were identifi ed.
    [Show full text]
  • Public Release of Subsurface Management Plan
    Oregon Caves National Monument Subsurface Management Plan 1 TABLE OF CONTENTS I. INTRODUCTION A. Purpose and Significance........................................................................................ 4 B. Legislative and Administrative Requirements......................................................... 5 II. PRESENT RESOURCE STATUS............................................................................. 7 III. DATA COLLECTION A. Cave Classification………………………………………………………………... 12 B. Inventories…………………………………………………………………………. 12 IV. RESOURCE PROTECTION A. Visitor Use 1. Carrying Capacity……………………………………….……………………….12 2. Caving Permits…………………………………………………………………. 13 B. Interpretation 1. Publications............................................................................................ 15 2. Interpretive Tours................................................................................... 16 3. Outreach Programs................................................................................ 16 4. Audio-visual.......................................................................................... 16 5. Visitor Survey....................................................................................... 16 C. Ranger Patrols.......................................................................................................... 17 D. Cave Locations.................................. E. Gates......................................................................................................................... 18 F. Cave Alteration........................................................................................................
    [Show full text]