Colour, Pigments and Dyes Science, Art & Nature

Total Page:16

File Type:pdf, Size:1020Kb

Colour, Pigments and Dyes Science, Art & Nature COLOUR, PIGMENTS AND DYES SCIENCE, ART & NATURE Ken Derham Halesworth U3A Science Group, April 2019 WHAT IS COLOUR? • Colour is a characteristic of human visual perception. • This perception of colour derives from the stimulation of cone cells in the human eye by electromagnetic radiation in the visible spectrum. Wikipedia VISIBLE LIGHT A triangular prism dispersing a beam of white light. The longer wavelengths (red) and the shorter wavelengths (blue) are separated. Wikipedia Violet light - Shorter wavelength, higher frequency has higher energy E = h v (Planck’s equation) WHY DO OBJECTS APPEAR COLOURED? Objects appear different colours because they absorb some colours (wavelengths) and reflected or transmit other colours. The colours we see are the wavelengths that are reflected or transmitted. White objects appear white because they reflect all colours. Black objects absorb all colours so no light is reflected. TRANSMITTED LIGHT PRIMARY COLOURS: ADDITIVE MIXING OF LIGHT • Mix Red, Green, and Blue light, you get white light. • Red, green, and blue (RGB) are referred to as the primary colours of light. • Mixing the colours generates new colours, as shown on the colour wheel. This is additive colour. • As more colours are added, the result becomes lighter, heading towards white. • RGB is used to generate colour on a computer screen, a TV, and other electronic displays. PRIMARY COLOURS: SUBTRACTIVE MIXING OF PIGMENTS • Mixing colours using paint, or ink, uses subtractive colour mixing. • The primary colours of light are red, green, and blue. • If you subtract these from white you get cyan, magenta, and yellow. • Mixing the colours generates new colours as shown on the colour wheel. • Mixing these three primary colours generates black. As you mix colours, they tend to get darker, ending up as black. • The CMYK colour system (cyan, magenta, yellow, and black) is the colour system used for printing. PRIMARY COLOURS AND MIXING OF COLOURS PIXELS • "Pixels" (short for "Picture Elements") are small dots that make up the images on digital displays (computers, TVs, digital cameras etc). • The screen is divided up into a matrix of thousands or even millions of pixels. • Typically, you cannot see the individual pixels, because they are so small. This is good, because most people prefer to look at smooth, clear images rather than blocky, "pixelated" ones. • A resolution of 640x480 is comprised of a matrix of 640 by 480 pixels, or 307,200 in all. That's a lot of little dots. • Each pixel can only be one colour at a time. However, since they are so small, pixels often blend together to form various shades and blends of colours. PIXELS Schematic of a Pixel Matrix PIXELS • Reproduction of an image created with 16 million pixels, each corresponding to a different colour on the full set of RGB colours. • The human eye can distinguish about 10 million different colours COLOURANTS: PIGMENTS AND DYES • Most pigments are dry colourants, usually ground into a fine powder. • For use in paint, this powder is added to a binder (or vehicle), a relatively neutral or colourless material that suspends the pigment and gives the paint its adhesion. • A distinction is usually made between • a pigment, which is insoluble in its vehicle (resulting in a suspension), and • a dye, which either is itself a liquid or is soluble in its vehicle (resulting in a solution). • A colourant can act as either a pigment or a dye depending on the vehicle involved. PIGMENTS Dan Brady - https://www.flickr.com/photos/11853009@N07/1382064216 , https://commons.wikimedia.org/w/index.php?curid=3534510 EARLY HISTORY OF PIGMENTS • The earliest known pigments were natural minerals. • Natural iron oxides give a range of colours and are found in many cave paintings. • Two examples include Red Ochre, anhydrous Fe2O3, and . hydrated Yellow Ochre - Fe2O3 H2O • Charcoal—or carbon black—has also been used as a black pigment since prehistoric times. • Pigments and paint grinding equipment believed to be between 350,000 and 400,000 years old have been found in a cave in Zambia HISTORY OF PIGMENTS • Before the Industrial Revolution, the range of colour available for art and decorative uses was limited. Most were mineral pigments or pigments of biological origin. • Pigments from unusual sources such as botanical materials, animal waste, insects, and molluscs were harvested and traded over long distances. • Some colours were costly or impossible to obtain, given the range of pigments that were available. Blue and purple came to be associated with royalty because of their rarity. ULTRAMARINE • Ultramarine is a deep blue pigment which was originally made by grinding lapis lazuli into a powder. • The name comes from the Latin ultramarinus, literally "beyond the sea", because the pigment was imported into Europe from mines in Afghanistan by Italian traders during the 14th and 15th centuries. • Ultramarine was the finest and most expensive blue used by Renaissance painters. It was often used for the robes of the Virgin Mary, and symbolized holiness and humility. • It remained an extremely expensive pigment until a synthetic ultramarine was invented in 1826. ULTRAMARINE Lapis lazuli Natural ultramarine Synthetic ultramarine blue USE OF ULTRAMARINE Masaccio, 1426 Sassoferrato, 1654 CHEAPER ALTERNATIVE Azurite, Cu3(CO3)2(OH)2, i.e. copper(II) mixture of carbonate and hydroxide • More widely available • But not stable in air • Presumably looked nice in a fresh painting but did not last SYNTHETIC PIGMENTS – PRUSSIAN BLUE • Prussian blue (Turnbull's blue) was the first modern synthetic blue pigment. • Ferric ferrocyanide: Fe7(CN)18 or Fe4[Fe(CN)6]3 · xH2O SYNTHETIC PIGMENTS – PRUSSIAN BLUE • Prepared as a very fine colloidal dispersion. Its appearance depends on the size of the colloidal particles (PB cf TB) • Prussian blue pigment is significant since it was the first stable and relatively lightfast blue pigment to be widely used • Easily made, cheap, nontoxic, and intensely coloured • Prussian blue has attracted many applications. It was almost immediately widely used in oil, watercolour, and dyeing • 12,000 tonnes of Prussian blue are produced annually especially for use in black and blue inks. USES OF PRUSSIAN BLUE IN ART The Great Wave off Van Gogh's Starry Night uses Kanagawa by Hokusai makes Prussian and cerulean blue extensive use of Prussian blue pigments CERULEAN BLUE • Cobalt stannate (CoSnO3), introduced as a pigment in the 1860s. • Very stable and lightfast blue with limited hiding power. • Cerulean blue has a fairly true blue but it doesn't have the opacity or richness of cobalt blue. • Not recommended for use in watercolor painting because of chalkiness in washes. • In oil, it was particularly valuable to landscape painters for skies. SOME METAL-BASED PIGMENTS • Aluminium pigment: Aluminium powder • Cadmium: cadmium yellow, cadmium red, cadmium green, cadmium orange, cadmium sulfoselenide • Chromium: chrome yellow and chrome green (viridian) • Cobalt pigments: cobalt violet, cobalt blue, cerulean blue, aureolin (cobalt yellow) • Copper pigments: Azurite, Han purple, Han blue, Egyptian blue, Malachite, Paris green, Phthalocyanine Blue BN, Phthalocyanine Green G, verdigris • Iron oxide: sanguine, caput mortuum, oxide red, red ochre, Venetian red, Prussian blue • Lead pigments: lead white, cremnitz white, Naples yellow, red lead, lead-tin-yellow • Manganese : manganese violet, YInMn blue • Mercury pigments: vermilion • Titanium pigments: titanium yellow, titanium beige, titanium white, titanium black • Zinc pigments: zinc white, zinc ferrite, zinc yellow TECHNICAL INNOVATIONS ENABLED… … ARTISTIC INNOVATION • Claude Monet • In the Woods at Giverny: Blanche Hoschedé at Her Easel DYES AND BIOLOGICAL COLOURANTS • Biological pigments were often difficult to acquire, and the details of their production were kept secret by the manufacturers. • Tyrian Purple is a pigment made from the mucus of one of several species of Murex snail. • Production of Tyrian Purple for use as a fabric dye began as early as 1200 BCE by the Phoenicians, and was continued by the Greeks and Romans • The pigment was expensive and complex to produce, and items coloured with it became associated with power and wealth. • Greek historian Theopompus, writing in the 4th century BCE, reported that "purple for dyes fetched its weight in silver at Colophon [in Asia Minor]." DYES • The discovery in 1856 of mauveine, the first aniline dye, was a forerunner for the development of hundreds of synthetic dyes and pigments like azo and diazo compounds which are the source of a wide spectrum of colours. • Mauveine was discovered by an 18-year-old chemist, William Henry Perkin, who went on to exploit his discovery in industry and become wealthy. • His success attracted a generation of followers, as young scientists went into organic chemistry to pursue riches. • Within a few years, chemists had synthesized a substitute for madder in the production of Alizarin Crimson. • By the closing decades of the 19th century, textiles, paints, and other commodities in colours such as red, crimson, blue, and purple had become affordable WILLIAM HENRY PERKIN (1838-1907) • Discovered Mauveine in 1856 when attempting to synthesise Quinine from analine in his home lab in Cable Street DEVELOPMENT OF THE DYE INDUSTRY • Perkin patented Mauveine • With support of his father and brother, Perkin set up a small factory to manufacture analine purple in Greenford, west London, in 1857 • This expanded as new synthetic dyes were invented • In Germany other companies developed
Recommended publications
  • Boosting the Activity of Prussian-Blue Analogue As Efficient Electrocatalyst
    www.nature.com/scientificreports OPEN Boosting the activity of Prussian- blue analogue as efcient electrocatalyst for water and urea oxidation Yongqiang Feng 1*, Xiao Wang1, Peipei Dong1, Jie Li2, Li Feng1, Jianfeng Huang1*, Liyun Cao1, Liangliang Feng1, Koji Kajiyoshi3 & Chunru Wang 2* The design and fabrication of intricate hollow architectures as cost-efective and dual-function electrocatalyst for water and urea electrolysis is of vital importance to the energy and environment issues. Herein, a facile solvothermal strategy for construction of Prussian-blue analogue (PBA) hollow cages with an open framework was developed. The as-obtained CoFe and NiFe hollow cages (CFHC and NFHC) can be directly utilized as electrocatalysts towards oxygen evolution reaction (OER) and urea oxidation reaction (UOR) with superior catalytic performance (lower electrolysis potential, faster reaction kinetics and long-term durability) compared to their parent solid precursors (CFC and NFC) and even the commercial noble metal-based catalyst. Impressively, to drive a current density of 10 mA cm−2 in alkaline solution, the CFHC catalyst required an overpotential of merely 330 mV, 21.99% lower than that of the solid CFC precursor (423 mV) at the same condition. Meanwhile, the NFHC catalyst could deliver a current density as high as 100 mA cm−2 for the urea oxidation electrolysis at a potential of only 1.40 V, 24.32% lower than that of the solid NFC precursor (1.85 V). This work provides a new platform to construct intricate hollow structures as promising nano-materials for the application in energy conversion and storage. Hydrogen energy has been considered as one of the most promising alternatives to traditional fossil fuels such as coal and oil which have inevitably involved in the tough environmental and unsustainable energetic issues1,2.
    [Show full text]
  • Yinmn Blue Revolutionary Blue for Industrial and Artist Color Materials
    YInMn Blue Revolutionary Blue for Industrial and Artist Color Materials In September 2017, The Shepherd Color Company The high temperature calcination production process makes announced the groundbreaking "YInMn Blue" technology for the Blue 10G513 highly inert. While it is highly IR refl ective, commercial sale for use in industrial coatings and plastics. it is extremely opaque in the visible and UV parts of the As of May 2020, YInMn has U.S. EPA TSCA approval. This solar spectrum. The inertness means that it can be used in means that YInMn blue is now fully approved for use in a wide range of coatings and plastics and have excellent industrial applications, including artist color materials. weathering properties. Commercially known as Blue 10G513, this pigment Blue 10G513 is ideal for: represents one example of Shepherd Color’s dedication • High-performance IR-refl ective building products to providing new and impactful pigment chemistries to the - Pre-painted metal coatings, plastics and other materials markets. YInMn Blue - Roofi ng granules 10G513 follows our one-of-a-kind NTP Yellow and RTZ - Polymeric roofi ng Orange, which together push the edge of the durable color - Roofi ng tiles envelope. • Anti-counterfeiting features • Glass enamels The new Blue is revolutionary because it is a new pigment - Spandrel and decorative chemistry that expands the range of colors available that • Artist color materials stay cooler when exposed to the sun, allowing building material manufacturers to meet regulatory requirements and building owners to potentially save energy. ABOUT THE SHEPHERD COLOR COMPANY Founded in 1981, The Shepherd Color Company produces a wide range of high-performance Complex Inorganic Color Pigments (CICPs) used in a variety of industries.
    [Show full text]
  • Watercolor Basics with Susan Donohoe
    Watercolor Basics with Susan Donohoe BASICS SUPPLY LIST FOR - TECHNIQUES - Day 1 The lists are long, beginners should bring what they have. They SHOULD NOT go out and buy supplies just to have them. I will bring supplies that they can use to fill in the blanks. Better for them to learn in the workshop what is best for them to buy instead of wasting their money. Personal Needs for each day: Please bring any of these items that you will require. A cushion for your chair, the day can get long for your backside. Your lunch each day. There is a microwave and a small refrigerator for your use. Keep it simple. Hydration-bring plenty of liquid to stay hydrated. A sweater or work shirt to stay comfortable as the room temperature may fluctuate throughout the day. Brushes: Preferred brands: Escoda, Holbein, Cheap Joe’s, Loew-Cornell, Da Vinci, Halcyon One of each if you have them: Round: #6, #10, #14, #18+ (the biggest round brush you own - no need to buy one.) Flat: 1/2”, 1”, 2”, Hake (if you have one) Scrubber brushes: assorted sizes. (These brushes can be purchased at Michael’s or JoAnn’s. They are stiff brushes similar to oil painting brushes. They are sometimes called fabric brushes.) Paper: Arches #140 - Cold Press - 1 full sheet. If you know how and wish to do so prior to class, you can tear the full sheet into 4 equal 1/4 sheet pieces. Paint: Artist Grade Paint only!!!! Preferred Brands: Holbein, Daniel Smith, Mission, Aquarelle Sennelier, M.
    [Show full text]
  • 45110 Ultramarine Violet, Reddish
    45110 Ultramarine Violet, reddish Product name: Ultramarine Violet, reddish Chemical name: Sodium-aluminium-sulfo-silicate Color index: C.I. Pigment violet 15 : 77007 C.A.S. No.: 12769-96-9 EINECS No.: 2-358-110 Specification: Color shade DE CIEL (max): 1.00 lightening 1:5,4 with TiO2 in impact-resistant polystyrene Coloring strength (compared to standard): ± 5 % Oversize (45 µm): max. 0.05 % Volatile moiety (105°C): max. 1.30 % Free sulfur: max. 0.05 % Water soluble parts: max. 1.00 % Typical Data: Color grade: 49 Density: 2.35 Bunk density (g/cm 3) 0.63 Oil adsorption: 34.5 Middle particle size (µm): 1.85 Fastness/Resistance Temperature resistance: > 260°C Light fastness (full color): excellent (7 - 8) Light fastness (lightening): excellent (7 - 8) Alkali resistance: excellent Acid resistance: weak Safety Information Acute oral toxicity (LD50, rat): > 10 g/kg Skin irritation: not irritant and not sensitizing Eye irritation: not irritant Exposition limit: 6 mg/m 3 (MAK Value) Ecology: not hazardous Regulations Ultramarine violet is a non toxic pigment. It is universally authorized as coloring agent for objects being in contact with food and for the manufacture of toys. Storage, Stability and Handling Transportation and storage: Do not store near acid substances. Non-compatible substances: Acids. Decomposition products: Hydrogen sulfide is released after contact with acids. Special protective measures: None, however, avoid contact with excessive dust. Special measures in case of release: Clean-up immediately. Avoid spilling of large amounts of dust. Dispose of spilled material in accordance with local and national regulations. Page 1 of 1 Kremer Pigmente GmbH & Co.
    [Show full text]
  • Tucson Art Academy Online Skip Whitcomb
    TUCSON ART ACADEMY ONLINE SKIP WHITCOMB PAINTS WHITE Any good to professional quality Titanium or Titanium/Zinc White in large tubes(150-200ML) size. Jack Richeson Co., Gamblin, Vasari, Utrecht, Winsor & Newton are all good brands, as are several other European manufacturers. I strongly recommend staying away from student grade paints, they do not mix or handle the same as higher/professional grade paints. YELLOWS Cadmium Yellow Lemon Cadmium Yellow Lt. (warm) Cad. Yellow Medium or Deep Indian Yellow ORANGES Cadmium Yellow Orange (optional) Cadmium Orange REDS Cadmium Red Light/ Pale/ Scarlet (warm) Cadmium Red Deep Permanent Alizarin Crimson Permanent Rose (Quinacridone) BLUES Ultramarine Blue Deep or Dark Cobalt Blue Prussian Blue or Phthalo Blue GREENS Viridian Viridian Hue (Phthalo Green) Chrome Oxide Green Olive Green Sap Green Yellow Green VIOLETS Mauve Blue Shade (Winsor&Newton) Dioxazine Violet or Purple EARTH COLORS Yellow Ochre Raw Sienna Raw Umber Burnt Sienna Terra Rosa Indian Red Venetian Red Burnt Umber Van Dyke Brown BLACKS Ivory Black Mars Black Chromatic Black Blue Black MARS COLORS Mars Yellow Mars Orange Mars Red Mars Violet IMPORTANT TO NOTE!! Please don’t be intimidated by this list! You will not be required to have all ​ ​ ​ ​​ ​ ​ these colors on hand for our class. This is intended to be a recommendation for the studio. Specific colors on this list will come in handy for mixing in certain color plans. I will be happy to make suggestions along the way A good working palette for the studio would be: Cad. Yellow Lemon, Cad. ​​ ​ Yellow Pale(warm), and/or Cad.
    [Show full text]
  • Copper Acetoarsenite Hazard Summary Identification
    Common Name: COPPER ACETOARSENITE CAS Number: 12002-03-8 RTK Substance number: 0529 DOT Number: UN 1585 Date: September 1988 Revision: January 1999 ----------------------------------------------------------------------- -------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Copper Acetoarsenite can affect you when breathed in The following exposure limits are for inorganic Arsenic and may be absorbed through your skin. (measured as Arsenic): * Skin contact can cause irritation, burning, itching, thickening and color changes. OSHA: The legal airborne permissible exposure limit * Eye contact can cause irritation and burns. (PEL) is 0.01 mg/m3 averaged over an 8-hour * Breathing Copper Acetoarsenite can irritate the nose and workshift. throat and can cause ulcers and a hole in the “bone” dividing the inner nose. NIOSH: The recommended airborne exposure limit is * Repeated exposure can cause poor appetite, a metallic or 0.002 mg/m3, which should not be exceeded garlic taste, nausea, vomiting, stomach pain and diarrhea. during any 15 minute work period. * High or repeated exposure may damage the nerves causing weakness, "pins and needles," and poor coordination in the ACGIH: The recommended airborne exposure limit is arms and legs. 0.01 mg/m3 averaged over an 8-hour workshift. * Copper Acetoarsenite may damage the liver and kidneys. The exposure limits for Copper fume are: IDENTIFICATION Copper Acetoarsenite is an emerald-green crystalline (sand- OSHA: The legal airborne permissible exposure limit like) powder. It is used as an insecticide, wood preservative, (PEL) is 0.1 mg/m3 averaged over an 8-hour and paint pigment for ships and submarines. workshift. REASON FOR CITATION NIOSH: The recommended airborne exposure limit is * Copper Acetoarsenite is on the Hazardous Substance List 0.1 mg/m3 averaged over a 10-hour workshift.
    [Show full text]
  • Pale Intrusions Into Blue: the Development of a Color Hannah Rose Mendoza
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Pale Intrusions into Blue: The Development of a Color Hannah Rose Mendoza Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY SCHOOL OF VISUAL ARTS AND DANCE PALE INTRUSIONS INTO BLUE: THE DEVELOPMENT OF A COLOR By HANNAH ROSE MENDOZA A Thesis submitted to the Department of Interior Design in partial fulfillment of the requirements for the degree of Master of Fine Arts Degree Awarded: Fall Semester, 2004 The members of the Committee approve the thesis of Hannah Rose Mendoza defended on October 21, 2004. _________________________ Lisa Waxman Professor Directing Thesis _________________________ Peter Munton Committee Member _________________________ Ricardo Navarro Committee Member Approved: ______________________________________ Eric Wiedegreen, Chair, Department of Interior Design ______________________________________ Sally Mcrorie, Dean, School of Visual Arts & Dance The Office of Graduate Studies has verified and approved the above named committee members. ii To Pepe, te amo y gracias. iii ACKNOWLEDGMENTS I want to express my gratitude to Lisa Waxman for her unflagging enthusiasm and sharp attention to detail. I also wish to thank the other members of my committee, Peter Munton and Rick Navarro for taking the time to read my thesis and offer a very helpful critique. I want to acknowledge the support received from my Mom and Dad, whose faith in me helped me get through this. Finally, I want to thank my son Jack, who despite being born as my thesis was nearing completion, saw fit to spit up on the manuscript only once.
    [Show full text]
  • Sports Publishing Fall 2018
    SPORTS PUBLISHING Fall 2018 Contact Information Editorial, Publicity, and Bookstore and Library Sales Field Sales Force Special Sales Distribution Elise Cannon Skyhorse Publishing, Inc. Two Rivers Distribution VP, Field Sales 307 West 36th Street, 11th Floor Ingram Content Group LLC One Ingram Boulevard t: 510-809-3730 New York, NY 10018 e: [email protected] t: 212-643-6816 La Vergne, TN 37086 f: 212-643-6819 t: 866-400-5351 e: [email protected] Leslie Jobson e: [email protected] Field Sales Support Manager t: 510-809-3732 e: [email protected] International Sales Representatives United Kingdom, Ireland & Australia, New Zealand & India South Africa Canada Europe Shawn Abraham Peter Hyde Associates Thomas Allen & Son Ltd. General Inquiries: Manager, International Sales PO Box 2856 195 Allstate Parkway Ingram Publisher Services UK Ingram Publisher Services Intl Cape Town, 8000 Markham, ON 5th Floor 1400 Broadway, Suite 520 South Africa L3R 4T8 Canada 52–54 St John Street New York, NY, 10018 t: +27 21 447 5300 t: 800-387-4333 Clerkenwell t: 212-581-7839 f: +27 21 447 1430 f: 800-458-5504 London, EC1M 4HF e: shawn.abraham@ e: [email protected] e: [email protected] e: IPSUK_enquiries@ ingramcontent.com ingramcontent.co.uk India All Other Markets and Australia Penguin Books India Pvt. Ltd. General International Enquiries Ordering Information: NewSouth Books 7th Floor, Infinity Tower C Ingram Publisher Services Intl Grantham Book Services Orders and Distribution DLF Cyber City, Phase - III 1400 Broadway,
    [Show full text]
  • Analyses of Commercial Fertilizers and Other Substances Useful to Agriculture William Carter Stubbs
    Louisiana State University LSU Digital Commons LSU Agricultural Experiment Station Reports LSU AgCenter 1892 Analyses of commercial fertilizers and other substances useful to agriculture William Carter Stubbs Follow this and additional works at: http://digitalcommons.lsu.edu/agexp Recommended Citation Stubbs, William Carter, "Analyses of commercial fertilizers and other substances useful to agriculture" (1892). LSU Agricultural Experiment Station Reports. 489. http://digitalcommons.lsu.edu/agexp/489 This Article is brought to you for free and open access by the LSU AgCenter at LSU Digital Commons. It has been accepted for inclusion in LSU Agricultural Experiment Station Reports by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. AE"ALYS~S OF COMM'ERCIAL FERTiLIZERS AND OTHER SUBSTANCES USEFUL TO AGRICULTURE. ' tsSUED BY THE BUREAU OF AGRidULTURE, I BURE.AU OF AGRIOfL!J'URE. GOV. MURrHY J. FOSTER, Presif]ent. WM. GA,RIG, Vioe-PrMident Hoo.rd, o\ SuperviljOrs . .H. ' C. NEWSOM, CommiS11ioner of Agt·ioulture. ~l'l'.A'l'ION S'l'.AFJI', WH. C. STUBBS, Ph. D., Dir11otbr. , D. N . .BARROW, B. S., Assisto.nt Director. Baton Roue;e, La. I J. a:LEE, B. s .. Assistant Diteotor, Calhoun, La. J. T. CRAWLEY, .A. M., Chemiet, Audubon Park, New Orleaa,. L&. R'. T. ·BURWELL. H. E .. .lllnobirii~t, Audubon Park, Now Orleane, Le... B. B. ROSS, M S., 'chemist, Baton Rouge, La. ll. E. bLOUIN, 111. S., Assiet11.nt Chemist, Baton Ro11ge, La. A.. T. P~ESCO'!'T, M.A., Bot'c'ui~t. H. A. llOllGAN, li. S. A., Entomologist. F. B.
    [Show full text]
  • Phthalocyanine Green Aluminum Pigment Prepared by Inorganic Acid Radical/Radical Polymerization for Waterborne Textile Applications
    Int J Ind Chem DOI 10.1007/s40090-016-0084-x RESEARCH Phthalocyanine green aluminum pigment prepared by inorganic acid radical/radical polymerization for waterborne textile applications 1,2 2 2 1 Benjamin Tawiah • Benjamin K. Asinyo • William Badoe • Liping Zhang • Shaohai Fu1 Received: 16 January 2016 / Accepted: 17 May 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Polymer-encapsulated phthalocyanine green preparation of polymer-encapsulated aluminum pigments aluminum pigment was prepared via inorganic acid radical/ for waterborne textile applications. radical polymerization route, and its properties were investigated by FT-IR, TGA, XPS, SEM, and TEM. SEM Keywords Aluminum pigment Á Phthalocyanine green Á and TEM images showed that the aluminum pigment was Polymer encapsulation Á Radical polymerization Á encapsulated by a thin film of polymer which ensured good Inorganic acid radical anti-corrosive performance in alkaline (pH 12) and acidic (pH 1) mediums. XPS results showed significant chemical shifts, and increase in binding energies to higher levels Introduction after raw aluminum pigment was phosphate coated and colored by phthalocyanine green pigment. TGA results Colored aluminum pigments having colorful pigment suggest a marginal reduction in its thermal stability. Major adhered closely, uniformly and firmly on its surface are absorbance peaks, such as aluminum phosphate (AlPO4), suitably used in paints, automotive metallic finish, printing different monomer units and CH2 stretching vibration of inks, molded resins and in decoration finish of plastics phthalocyanine green G were highlighted in the FTIR [1–3]. The application of aluminum pigment has expanded spectra of the colored aluminum matrix.
    [Show full text]
  • Explore the Limitless Possibilities of Coloured Glass Decorative
    Explore the limitless possibilities of coloured glass Decorative This laminated product consists of a range Features and benefits DécorColour™ of ‘base’ coloured interlayers that can be . Wide range of colour options available combined to result in thousands of coloured by combining base interlayers* laminate options. DécorColour can be combined with Viridian Seraphic Design™ for a patterned Description coloured option The Viridian DécorColour™ range consists of 11 . Custom made to size only transparent colours – shades of blue, pink, yellow . Wide range of applications and grey. The foundation colours are Sapphire, Aquamarine, Ruby Red, Coral Rose, Sahara Sun, Colour codes are represented by the following 0001 Coral Rose Golden Light, Evening Shadow, Smoke Grey, Deep 0002 Aquamarine Red, True Blue and Tangerine. The translucent 0003 Smoke Grey 0004 Sahara Sun colours available are Cool White and Arctic Snow. 0005 Ruby Red There are also opaque options in Pure White and 0006 Sapphire Black (refer to colour chart insert). The interlayers 0007 Evening Shadow 0008 Golden Light are manufactured using heat and light-stable 0009 Arctic Snow Applications pigments, not dyes, which enables you to use 000A Cool White . colour that is lightfast. As the colour is laminated 000C Deep Red Internal partitions 000D True Blue . Wall panelling between two sheets of glass, the product is easy 000E Tangerine . Lift lobbies to clean and maintain. Being laminated, it is also 000F Polar White 000G Absolute Black . Fully framed doors Grade A safety glass. 000H Ocean Grey . Feature panelling in schools, restaurants and offices . Furniture such as table tops, Colours for designer laminate DécorColour™ desks, shelves, display cases .
    [Show full text]
  • Origin of the Exotic Blue Color of Copper-Containing Historical
    Article pubs.acs.org/IC Origin of the Exotic Blue Color of Copper-Containing Historical Pigments Pablo García-Fernandez,́ * Miguel Moreno, and JoséAntonio Aramburu Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain *S Supporting Information ABSTRACT: The study of chemical factors that influence pigment coloring is a field of fundamental interest that is still dominated by many uncertainties. In this Article, we investigate, by means of ab initio calculations, the origin of the unusual bright blue color displayed by historical Egyptian Blue (CaCuSi4O10) and Han Blue (BaCuSi4O10) pigments that is surprisingly not found in other 6− compounds like BaCuSi2O6 or CaCuO2 containing the same CuO4 chromophore. We show that the differences in hue between these systems are controlled by a large red-shift (up to 7100 cm−1) fi 6− produced by an electrostatic eld created by a lattice over the CuO4 chromophore from the energy of the 3z2-r2 → x2-y2 transition, a nonlocal phenomenon widely ignored in the realm of transition metal chemistry and strongly dependent upon the crystal structure. Along 4− this line, we demonstrate that, although SiO4 units are not involved in the chromophore itself, the introduction of sand to create CaCuSi4O10 plays a key role in obtaining the characteristic hue of the Egyptian Blue pigment. The results presented here demonstrate the opportunity for tuning the properties of a given chromophore by modifying the structure of the insulating lattice where it is located. ■ INTRODUCTION even then they remained rare.
    [Show full text]