Practical Organic Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Practical Organic Chemistry PRACTICAL ORGANIC CHEMISTRY BY JULIUS B. COHEN, PH.D., B.SC. PROFESSOR OF ORGANIC CHEMISTRY, THE UNIVERSITY, LEEDS AND ASSOCIATE OF THE OWENS COLLEGE MACMILLAN AND CO., LIMITED ST. MARTIN'S STREET, LONDON RICHARD CLAY AUD SONS, LIMITED., BREAD STREET HILL, E.C, AND BUNGAY, SUFFOLK. First Edition, 1900. Reprinted 1904, 1907. Second Edition^ 1908, 1910. PREFACE TO THE FIRST EDITION THE present volume is an enlarged edition of that published in 1887, and has been completely rewritten. The preparations have all been carefully revised, some of the former ones omitted and many new ones introduced. The chief additions are the introductory chapters on organic analysis and molecular weight determinations, and an extension of the appendix. The book does not aim at being a complete laboratory guide, but is intended to provide a systematic course of practical in- struction, illustrating a great variety of reactions and processes with a very moderate outlay in materials and apparatus. The objection may be raised that the detailed description of processes makes no demand upon a student's resourcefulness or ingenuity. It must be remembered, however, that the manipulative part of organic chemistry is so unfamiliar to the elementary student that he requires minute directions in order to avoid waste of time and material. Until he..has acquired considerable practical skill he cannot accomplish the experi- mental work requisite for research, and repeated failures will be apt to destroy his confidence in himself. To satisfy, to a.legitimate extent, the prejudices of certain examining bodies, who still adhere to the old system of testing a student's knowledge of practical organic chemistry by means of the qualitative analysis of certain meaningless mixtures, the special tests for some of the more common organic substances have been inserted. At the same time, an attempt has been at the end of the appendix to systematise the analysis of PREFACE TO THE FIRST EDITION organic substances on a broader and therefore more rational basis. The present occasion seems opportune to direct attention to the fact that one of the most familiar, most readily procurable and most cheaply produced of all organic materials is placed beyond the reach of many students by the heavy duty levied upon it. May I, in the name of teachers of organic chemistry, appeal to the Board of Inland Revenue, on behalf of scientific and technical education, to provide institutions for higher education in science with a limited quantity of pure alcohol free of duty, thereby placing schools of chemistry in this country in the same position as those on the Continent ? In conclusion I desire to thank Dr. J. McCrae, who has written the section on Ethyl Tartrate and the use of the Polari- meter, Dr. T. S. Patterson, who has been kind enough to look •over the proofs, and Mr. H. D. Dakin, who has given me sub- stantial assistance in the practical work of revision. J. B. COHEN. THE YORKSHIRE COLLEGE, October; 1900. PREFACE TO THE SECOND EDITION IN the former edition attention was drawn to certain drawbacks which accompanied the study of practical organic chemistry, among which the heavy duty on alcohol and the unsatisfactory nature of the practical tests demanded by public examining bodies were specially emphasised. Teachers and students alike must welcome the changes which have since taken place. An excise duty on alcohol used in the laboratory is no longer exacted from students of science, and substantial reforms have been introduced into practical examina- tions. One important feature in some of the new examination regulations is the recognition of the candidate's signed record of laboratory work. We are, in fact, beginning to discover an inherent .defect in practical chemistry as an examination sub- ject, namely, its resistance to compression into a compact and convenient examination form. The old and drastic method by which chemistry was made to fit into a syllabus consisted in cutting out the core of the subject, or in other words, in removing all the processes which demanded time, skill, and some intelligence, and in reducing the examination to a set of exercises in a kind of legerdemain. This process has been to a large extent abandoned, but a residuum of it s.till remains. It is to be hoped that the kind of practical examination in organic chemistry, which consists in allotting a few hours to the identification of a substance selected from a particular list, will in time be superseded or accompanied by a scheme encouraging candidates to show, in addition to tfceir note-books, evidence of skill and originality, as, for viii PREFACE TO THE SECOND EDITION example, in submitting specimens of new or rare preparations, or in presenting an account of some small investigation. The present edition is much enlarged and contains new pre- parations, reactions and quantitative methods, all of which have been carefully revised. My object has been not to follow any particular syllabus, but to present a variety of processes from which a selection may be made to suit the special needs of different students. My thanks are due to Mr. Joseph Marshall, B.Sc, and several of my senior students, for their assistance in the work of revision. J. B. COHEN THE UNIVERSITY, LEEDS. July, 1908. CONTENTS ORGANIC ANALYSIS— PAGE Qualitative examination i Carbon and Hydrogen I Nitrogen 2 The Halogens 3 Sulphur 3 Phosphorus 3 Quantitative estimation 4 Carbon and Hydrogen 4 Nitrogen 13 The Halogens , 22 Sulphur 28 Determination of molecular weight 28 Vapour density method 29 Cryoscopic or Freezing-point method 32 Ebullioscopic or Boiling-point method 37 Molecular weight of acids 43 Molecular weight of bases 46 PREPARATIONS— General remarks 47 Purification of spirit 48 Ethyl alcohol ; 49 Potassium ethyl sulphate . 50 Crystallisation . 52 Ethyl bromide 54 CONTENTS PREPARATIONS— PACE Dehydration of liquids 56 Determination of specific gravity 56 ,, boiling-point 58 Ether 59 Purification of commercial ether 61 Ethylene bromide 62 Acetaldehyde 64 Methyl alcohol 67 Methyl iodide 68 Amyl alcohol 69 Amyl nitrite 69 Acetone , . 69 Chloroform 70 Acetoxime 71 Melting-point determination 72 Acetic acid 74 Acetyl chloride 74 Acetic anhydride ...... 76 Acetamide 77 Heating under pressure . 78 Acetonitnle 79 Methylamine hydrochloride (Hofmann's reaction) ... 80 Ethyl acetate . 81 Ethyl acetoacetate $3 Distillation in vacuo 84 Monochloracetic acid 87 Monobromacetic acid 89 Glycocoll 90 Glycocoll ester hydrochloride 92 Preparation of hydrogen chloride 93 Diazoacetic ester 94 Diethyl malonate . 96 Ethyl malonic acid 97 Chloral hydrate 99 Trichloracetic acid , 99 Oxalic acid . * $00 CONTENTS PREPARATIONS— rAGE Methyl oxalate 101 Glyoxylic and Glycollic acids 102 Palmitic acid 104 Glycerol 106 Formic acid 106 Distillation in steam 107 Allyl alcohol 109 Isopropyl iodide no Epichlorhydrin in Malic acid 112 Succinic acid 113 Tartaric acid 114 Ethyl tartrate 115 Determination of rotatory power 116 Racemic and Mesotartaric acid . 122 Resolution of Racemic acid (Pasteurs method) ... 123 Pyruvic acid 124 Citric acid 124 Citraconic and Mesaconic acid 125 Urea 126 Thiocarbamide 128 Uric acid 128 Alloxantin 129 Alloxan 130 Caffeine [31 Creatine 132 Tyrosinc and Leucine (E. Fischer's ester method) ... 133 Grape sugar 135 Benzene 136 Purification of Benzene 136 Fractional distillation 136 Bromobenzene 14° Ethyl benzene 141 Nitrobenzene T42 Azoxybenzene r43 Electrolytic reduction of Nitrobenzene 144 CONTENTS PREPARATIONS— I«AC;E Azobenzene *45 Electrolytic reduction of Nitrobenzene 145 Hydrazobenzene 146 Benzidine 14S Phenylhydroxylamine 148 Nitrosobenzene 149 j^-Aminophenol . 149 Aniline 149 Acetanilide 151 ^-Bromacetanilide 152 /-Nitraniline 155 7//-D initrobenzene 154 7/z-Nitraniline 154 ;/z-Phenylenediamine 155 Dtmethylaniline 156 /-Nitrosodimethylaniline 157 Thiocarbanilide 159 Phenyl thiocarbimide 160 Triphenylguanidine 160 Diazobenzene sulphate 161 Toluene from/-toluidine 163 /-Cresol 164 /-Chlorotoluene 165 ^-Chlorobenzoic acid 166 /-Bromotoluene 167 /-Iodotoluene 16S Tolyliodochloride 169 Iodosotoluene 169 p -Tolylcyanide 159 STli acid jyo jyo Terephthalic acid 1yl Diazoaminobenzene 1yl Aminoazobenzene iy2 Phenylhydrazine ly^ Phenyl methyl pyrazolone (Knorr's reaction) .... 175 Sulphaniltc acid x^- CONTENTS PREPARATIONS— PAGE Methyl orange • . 176 Potassium benzene sulphonate 177 Benzenesulphonic chloride • 178 Benzene sulphonamide 179 Phenol 179 Anisole 181 Hexahydrophenol (Sabatier and Senderens5 reaction) . 181 •0- and jz^-Nitrophenol l$3 Picric acid 185 Phenolphthalein V^!86 Fluorescein and Eosin 187 Salicylaldehyde and ^-Hydroxybenzaldehyde (Reimer's reaction) • 188 Salicylic acid (Kolbe's reaction) 190 Quinone and Quinol 192 Benzyl chloride 194. Benzyl alcohol 195 Benzaldehyde 196 a- and /3-Benzaldoximes 197 Benzoic acid 199 Nitro-, Amino-, and Hydroxy-benzoic acid ...... 200 w-Bromobenzoic acid 201 Benzoin 202 B'enzil 203 Benzilic acid 203 Cinnamic acid (Perkin's reaction) 204 Hydrocinnamic acid • 204 Mandelic acid 205 Phenyl methyl carbinol (Grignard's reaction) 206 Benzoyl chloride 208 - Benzamide 209 Ethyl benzoate 209 Quantitative hydrolysis of ethyl benzoate 210 Acetophenone (Friedel-Crafts3 reaction) 210 Acetophenoneoxime 211 Acetophenonesemicarbazone 212 jjv o >NTI:\ r> PREPARATIONS - Beckmann's reaction Benzoylacetone (Claisen's re.t< !i<>;i ... Diphenylmethane . Triphenyl methane Malachite green Naphthalene . Phthalic acid 5-Naphthalencsulphonate of sodium /3-NaphthoI Estimation of methoxyl (ZeiscP> mcthn.i} . „ ,, acetoxyl
Recommended publications
  • Tutorial 2 FORMULAS, PERCENTAGE COMPOSITION
    T-6 Tutorial 2 FORMULAS, PERCENTAGE COMPOSITION, AND THE MOLE FORMULAS: A chemical formula shows the elemental composition of a substance: the chemical symbols show what elements are present and the numerical subscripts show how many atoms of each element there are in a formula unit. Examples: NaCl: one sodium atom, one chlorine atom in a formula unit CaCl2: one calcium atom, two chlorine atoms in a formula unit Mg3N2: three magnesium atoms, two nitrogen atoms in a formula unit The presence of a metal in a chemical formula indicates an ionic compound, which is composed of positive ions (cations) and negative ions (anions). A formula with only nonmetals indicates a + molecular compound (unless it is an ammonium, NH4 , compound). Only ionic compounds are considered in this Tutorial. There are tables of common ions in your lecture text, p 56 (cations) and p 57 (anions). A combined table of these same ions can be found on the inside back cover of the lecture text. A similar list is on the next page; all formulas needed in this and subsequent Tutorial problems can be written with ions from this list. Writing formulas for ionic compounds is very straightforward: TOTAL POSITIVE CHARGES MUST BE THE SAME AS TOTAL NEGATIVE CHARGES. The formula must be neutral. The positive ion is written first in the formula and the name of the compound is the two ion names. EXAMPLE: Write the formula for potassium chloride. The name tells you there are potassium, K+, and chloride, Cl–, ions. Each potassium ion is +1 and each chloride ion is -1: one of each is needed, and the formula for potassium chloride is KCl.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0027386 A1 Kurihara Et Al
    US 20110027386A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0027386 A1 Kurihara et al. (43) Pub. Date: Feb. 3, 2011 (54) ANTMICROBAL. ZEOLITE AND (30) Foreign Application Priority Data ANTMICROBAL COMPOSITION Feb. 22, 2006 (JP) ................................. 2006-045241 (75) Inventors: Yasuo Kurihara, Nagoya-shi (JP); Kumiko Miyake, Nagoya-shi (JP); Publication Classification Masashi Uchida, Nagoya-shi (JP) (51) Int. Cl. Correspondence Address: AOIN 59/6 (2006.01) NIXON & VANDERHYE, PC COB 39/02 (2006.01) 901 NORTH GLEBE ROAD, 11TH FLOOR AOIP I/00 (2006.01) ARLINGTON, VA 22203 (US) (52) U.S. Cl. .......................... 424/618; 423/701; 423/700 (73) Assignee: Sinanen Zeomic Co., Ltd., (57) ABSTRACT Nagoya-Shi (JP) The present invention relates to antimicrobial zeolite which comprises zeolite whereina hardly soluble zinc salt is formed (21) Appl. No.: 12/923,854 within fine pores present therein and an antimicrobial com position which comprises the foregoing antimicrobial Zeolite (22) Filed: Oct. 12, 2010 in an amount ranging from 0.05 to 80% by mass. The antimi crobial Zeolite according to the present invention can widely Related U.S. Application Data be applied, without causing any color change, even to the (63) Continuation of application No. 1 1/705,460, filed on goods which undergo color changes with the elapse of time Feb. 13, 2007. when the conventional antimicrobial zeolite is added. US 2011/002738.6 A1 Feb. 3, 2011 ANTMICROBAL. ZEOLITE AND 3. An antimicrobial composition comprising the foregoing ANTMICROBAL COMPOSITION antimicrobial zeolite as set forth in the foregoing item 1 or 2 in an amount ranging from 0.05 to 80% by mass.
    [Show full text]
  • Diaminomaleonitrile
    PREBIOLOGICAL PROTEIN SYNTHESIS BY CLIFFORD N. MATTHEWS AND ROBERT E. MOSER CENTRAL RESEARCH DEPARTMENT, MONSANTO COMPANY, ST. LOUIS, MISSOURI Communicated by Charles A. Thomas, July 18, 1966 A major concern of chemical evolution research1 4 is to find an answer to the question: How were proteins originally formed on Earth before the appearance of life? A widely held view stimulated by the speculations of Oparin,5 Haldane,6 Bernal,7 and Urey8 is that the formation of polypeptides occurred via two essential steps, a-amino acid synthesis initiated by the action of natural high-energy sources on the components of a reducing atmosphere, followed by polycondensations in the oceans or on land. The results of a dozen years of simulation experiments1-4 appear to support this view. Experiments in which high-energy radiations were applied to reduced mixtures of gases have yielded many of the 20 a-amino acids commonly found in proteins. The pioneering research of M\iller9 showed that glycine, alanine, aspartic acid, and glutamic acid were among the products obtained by passing electric discharges through a refluxing mixture of hydrogen, methane, ammonia, and water. Exten- sions of these studies by Abelson10 and others'-4 showed that a-amino acid synthesis could be effected by almost any source of high energy so long as the starting mix- ture contained water and was reducing. Since mechanism studies by Miller9 indicated that aldehydes and hydrogen cyanide were transient intermediates during the course of the reaction, it was concluded that the a-amino acids were formed by the well-known Strecker route involving hydrolysis of aminoacetonitriles arising from the interactions of aldehydes, hydrogen cyanide, and ammonia.
    [Show full text]
  • Elemental Impurities: Standards-Setting Record
    Elemental Impurities: Standards-Setting Record December 20, 2012 I. Purpose Current official standards expressed in General Chapter <231> Heavy Metals were last updated in USP 28. This document summarizes the standards-setting activities relative to USP’s new Elemental Impurities (EI) standards, which are designed to replace <231>. The document is divided into four sections: work done prior to 2000, and work in each of the three revision cycles of the 21st century. II. Prior to 2000 Prior to 2000, there were a number of publications which appeared in Pharmacopeial Forum (PF) relating to compendial testing for EI, some of which related to <231> and others of which related to the USP monograph for Magnesium Stearate. These are summarized below. PF Stimuli article [1975] page 861(Attachment 1) This publication made the following recommendations with respect to <231>: a. It is recommended that all articles now tested by Method I be evaluated by the three-tube monitor procedure to confirm the suitability of the method (i.e., no complexation due to the sample, no interfering colors, and no precipitation) or use with each article. Note: It is hoped that each producer of the articles involved will look at his products and report directly to the appropriate Director of Revision (Dr. D. Banes for NF and USP articles; Mr. Duarward Dodgen for FCC articles) concerning the suitability, or lack of suitability, of the method for use with his products. b. It is recommended that the three-tube monitor procedure, with or without the zirconium modification, be given consideration as a replacement for the current Method I procedure.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,359,162 B1 Wilms (45) Date of Patent: Mar
    USOO6359162B1 (12) United States Patent (10) Patent No.: US 6,359,162 B1 Wilms (45) Date of Patent: Mar. 19, 2002 (54) METHOD FOR PRODUCING OTHER PUBLICATIONS GLUFOSINATES AND INTERMEDIATE Mundy, Bradford P.; Ellerd, Michael G. “Name Reactions PRODUCTS FOR THE SAME and Reagents in Organic Syntheses'; John Wiley and Sons: New York, 1988: p. 244.* (75) Inventor: Lothar Wilms, Hofheim (DE) Ivan A. Natchev, J. Chem. Soc. Perkin. Trans. 1, pp. (73) Assignee: Hoechst Schering AgrEvo GmbH, 125-131, 1989. Berlin (DE) * cited by examiner (*) Notice: Subject to any disclaimer, the term of this Primary Examiner Fiona T. Powers patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm-Frommer Lawrence & U.S.C. 154(b) by 0 days. Haug LLP (21) Appl. No.: 09/486,031 (57) ABSTRACT (22) PCT Filed: Aug. 8, 1998 Glufosinate and the 2-methyl analog thereof can be prepared in a multi-step Synthesis from methylphosphorus com (86) PCT No.: PCT/EP98/05053 pounds (II) with unsaturated keto compounds (III) via adducts (IV), Subsequent reaction under the conditions of a S371 Date: Feb. 17, 2000 Strecker synthesis and finally hydrolysis of the aminonitrile S 102(e) Date: Feb. 17, 2000 (V): (87) PCT Pub. No.: WO99/09039 Step 1: PCT Pub. Date: Feb. 25, 1999 (30) Foreign Application Priority Data HC-P -- 21 Aug. 20, 1997 (DE) ......................................... 19736 125 (51) Int. Cl." .............................. C07F 9/30; CO7F 9/32; (II) (III) (IV) CO7F 9/6571 (52) U.S. Cl. ......................... 558/82; 558/179; 558/346; 558/386; 562/11; 562/24 Step 2: (58) Field of Search .........................
    [Show full text]
  • A Chemical Study of the Water Extract of Meat
    WILLIAMS Chemical Study of the Water Extract of Meat »**• 5 , J^*—J* . fA fee Chemistry B. S. - v. * 1902 Of w * * * * * * * * * * I > f I * * * * f • " sfglf * * % % .* * * * * H* * f 1 * , , * * * ^ * * * * ^ * ^ ^ ' * * * > ^ + :«t ^ * * , * '/-l^^K' * * * * f ^^^^^^ ^ * * * * * " * * ** * * * * «* i * * * * * * ^ * ^ % ^ m e * * * * * W Criniung anb JTabor. f LIBRARY Illinois. | University of li CLASS. BOOK. volumi;. IBn i ^ Accession No. ' ** ' * S ! H 1 HE* Si * * * * * * * * * .* * * % * * * # * ^ y + ^^^8 1 4 * % * ^ ^ % •- ^ ^ ^» i| **** *** ** ^ * >f t- * + f 4 4* 4v 4k , *fk , • 4 / ^pk 4 s^^^^l^^fc^^lfe7 4 4 4 * * * * i^M^Kv^^r** 4 4» 4 4 * 4 4 ' * JmS^ % 4 * 4 * >ffe^j^|k Us 4 4 , 4* 4 4 4 * >f 4, * *** * || II ^ * * * ^l^i^i^ ^ f ^.4 4. * S^7^fe' * * 4 * 4 fc, 4*-. 4 4- 4 4 * @4 ^444 * 4 «f 4k ' % 4- 4 -4 ^4 ^flPfc ^K; *, 4. 4. 4» * 4 4 *. 4 4 4' 4*' 4* lpl^'4/. vf,:, ... % * 4* 4= 4* 4* 4. * 4 4 . 4- * 4 -4~4^^4%4>4* * * * **** 4 4 4 4 % " 4 4* 4- * * ^ 4 4 4 4 , 4 |^y^p^;>^ 4^.*,- ^,-.4, ,,4 -* ^ 4 4. * * ' * * % I t i 4 # 4- * 4 4 "4 4 * . * ^fV"'^ 1 * * * 4 4- * 4-: * 4* 4 4 % * 4* * * * * 4 4 4 4- . 4 4 * * * 4- 4 % 4 ,". ^H^jw I * 4 * * f * 4 4 4 4 * 4 ; * 4 4^ 4. <** 4,,. 4^ 4 4* 4. 4* 4 4* * 4* 4" ' * 4 * * 4 4. * 4 * * 4 4 * 4 ^ * ^ --4 4v -4 4-4 4 4-4^- % ? 4 4 + ^ 4 4-4 # -A % 4*. 4 4* 4* * . 4- 4 4 4 4 * 4 4'* ^ -4- ^ 4 * * + 4 ^ 4 4 * * *• * ^-^-^^ 4 % * *- * 4* * * ********* % % 4- 4^ 4 4^-^- * * + * ^ % % 4* ^ %^4-%^4.*4 ¥ % * * * * ; 4s '#4^ >|, 4^ 4, : -% * 4, * % 4*4 4^ 4 * 4 ^ 4 4 * 4k 4 4, 4.
    [Show full text]
  • Evidence of Ammonium Salts in Comet 67P As Explanation for the Nitrogen Depletion in Cometary Comae
    Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae Authors: K. Altwegg1*, H. Balsiger1, J.-J. Berthelier2, C. Briois3, M. Combi4, H. Cottin5, J. De Keyser6, F. Dhooghe6, B. Fiethe7, S. A. Fuselier8,9, T. I. Gombosi4, N. Hänni1, M. Rubin1, M. Schuhmann1, I. Schroeder1, T. Sémon1, S. Wampfler2 Affiliations: 1Physikalisches Institut, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland. 2Center for Space and Habitability, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland. 2LATMOS/IPSL-CNRS-UPMC-UVSQ, 4 Avenue de Neptune F-94100, Saint-Maur, France. 3Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR CNRS 7328 – Université d'Orléans, France 4Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA. 5 LISA, UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France 6Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Ringlaan 3, B-1180 Brussels, Belgium. 7Institute of Computer and Network Engineering (IDA), TU Braunschweig, Hans-Sommer- Straße 66, D-38106 Braunschweig, Germany. 8Space Science Directorate, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228, USA. 9Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249 Cometary comae are generally depleted in nitrogen. The main carriers for volatile nitrogen in comets are NH3 and HCN. It is known that ammonia readily combines with many acids like e.g. HCN, HNCO, HCOOH, etc. encountered in the interstellar medium as well as in + - cometary ice to form ammonium salts (NH4 X ) at low temperatures.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Circular of the Bureau of Standards No
    DEPARTMENT OF COMMERCE BUREAU OF STANDARDS George K. Burgess, Director CIRCULAR OF THE BUREAU OF STANDARDS, No. 14S SUMMARY OF TECHNICAL METHODS FOR THE UTILIZATION OF MOLASSES COLLATED FROM PATENT LITERATURE January 28, 1924 PRICE, IS CENTS Sold only by the Superintendent of Documents, Government Ptintine Office Washineton, D. C. WASHINGTON GOVERNMENT PRINTING OFFICE 1924 DEPARTMENT OF COMMERCE BUREAU OF STANDARDS George K. Burgess, Director CIRCULAR OF THE BUREAU OF STANDARDS, No. 145 SUMMARY OF TECHNICAL METHODS FOR THE UTILIZATION OF MOLASSES , COLLATED FROM PATENT LITERATURE January 28, 1924 PRICE, 15 CENTS Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C. WASHINGTON GOVERNMENT PRINTING OFFiCE 1924 SUMMARY OF TECHNICAL METHODS FOR THE UTILI¬ ZATION OF MOLASSES. COLLATED FROM PATENT LITERATURE. ABSTRACT. Economic conditions the world over have made it generally recognized that the future of the American beet-sugar industry is to a great extent dependent on the profitable utilization of the molasses produced. The latter contains numerous val¬ uable substances which have never been successfully recovered outside of Germany. For many years that country has seen fit to veil its developments and discoveries and to maintain the strictest secrecy regarding the operation of its molasses plants. The scientific literature on the subject is practically barren, so far as the actual results achieved in Germany are concerned. In order to carry out the necessary experi¬ mental work for the American industry every possible source of information has been investigated. After a few clues were obtained the United States Patent Office liter¬ ature was searched and eventually over 1,000 German patents on molasses utilization and associated subjects were uncovered.
    [Show full text]
  • 140 ORGANIC ANALYSIS. Elementary Micro-Analysis Of
    140 ABSTEiACTS OF CHEMICAL PAPERR ORGANIC ANALYSIS. Elementary Micro-Analysis of Organic Substances. J. V. Dubsky. (Helv. Chirn. Acta, 1919, 2, 63-75,)-Gas- Volumetric Estimatiort of Nitrogen : The use of Kipp's apparatus for the preparation of air-free carbon dioxide has the draw- back that, owing to the adsorption of the air on the aides of the flask and the marble fragments, tbe gas is unsuitable for the purpose until after one or two days. A more simple and rapid method is to prepare the gas by heating sodium bicarbonate for six to eight minutes in a micro-bicarbonate tube 8 crns. long by 10 to 16 mm. in diameter, cloeed by a cork through which passes a capillary tube. This must fit perfectly into the perforation, or air will be drawn into the - tube. A new form of micro-nitrometer is described. It has a capacity of 1.9 crns., and is sealed by a small amount of mercury, whilst the carbon dioxide is introduoed directly at the base (see diagram). The combustion tube is charged in the manner previously described (Chem. Zeit., 1916, M, 201), but care must be taken that the reduced copper spiral is carefully heated in the Oven to expel the last traces of methyl alcohol. When once reduced, the same spiral may be used for a, series of analyses, provided that tho combustion tube is always allowed to cool in a current of carbon dioxide. It is essential to have a sufficiently long layer of copper oxide in the tube, and for this reason a tube 43 cms.
    [Show full text]
  • Cyanide-Containing Hemoglobin Reagent Composition and Method
    * — llllllllllllllllllllllllllllll OJII Eur°Pean Patent Office <*S Office europeen des brevets (11) EP 0 878 715 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) int. CI.6: G01N 33/72 18.11.1998 Bulletin 1998/47 (21) Application number: 98108384.3 (22) Date of filing: 08.05.1998 (84) Designated Contracting States: (72) Inventor: Malin, Michael J. AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Park Ridge, New Jersey 07056 (US) MCNLPTSE Designated Extension States: (74) Representative: AL LT LV MK RO SI Burkert, Frank et al Bayer AG, (30) Priority: 13.05.1997 US 854914 Konzernbereich RP Patente und Lizenzen (71) Applicant: Bayer Corporation 51368 Leverkusen (DE) Pittsburgh, PA 15205-9741 (US) (54) Cyanide-containing hemoglobin reagent composition and method providing acceptable precision, accuracy and freedom from white cell interference on automated hematology analyzers (57) The invention describes an improved stable reagent composition and method for the determination of hemoglobin (Hb) using whole blood samples and automated hematology analyzers, for example, the TECHNICON H*™ series of instruments as sold by the assignee hereof. The Hb reagent comprises an inor- ganic cyanide salt, at least one surfactant and a base and has a final pH of about 10.0 to about 1 1 .2, prefera- bly about 1 0.4 to about 1 1 .2 or less and more preferably about 10.8 to about 11.2 or less. This reagent is intended for use as a universal Hb determination rea- gent for all of the instruments in the aforementioned series and will provide accurate and precise results without accompanying interference from elevated num- bers of white blood cells, especially as found in abnor- mal blood specimens, and without system-to-system variation in the results obtained.
    [Show full text]
  • Method for Inhibiting Fatigue of Aluminum
    Patentamt JEuropaischesJ European Patent Office @ Publication number: 0 042 205 ^ ^ Office europeen des brevets g) EUROPEAN PATENT APPLICATION g) Application number: 81301540.1 © Int. CI.3: C 23 F X/ C 23 F 11/18 g) Date of filing: 08.04.81 (§) Priority: 13.06.80 US 159128 @ Applicant: EARLY CALIFORNIA INDUSTRIES, INC., P.O. Drawer 21 568, Phoenix Arizona 85036 (US) Crouch Robert L 1509 W. ® Date of publication of application : 23.12.81 @ Lnhvent?r Pierson, No. 3, Bulletin 81/51 Phoenix Arizona 85015 (US) @ Representative: Newens, Leonard Eric et al, F.J. CLEVELAND CO. 40/43 Chancery Lane, London @ Designated Contracting States : FR IT WC2A 1 JQ (GB) @ Method for inhibiting fatigue of aluminum. A method of inhibiting the fatigue of aluminum comprising the steps of immersing aluminum in an aque- ous solution of a water soluble cyanide compound at room temperature and continuously maintaining the alu- minum in contact with the aqueous solution. The aque- ous solution is substantially free of chromium. This invention concerns a method for inhibiting fatigue. More particularly, the invention relates to a method for inhibiting the fatigue of aluminum and aluminum alloys. According to a further aspect, the invention relates to inhibiting fatigue corrosion in aluminum and aluminum alloys. A number of aluminum corrosion inhibitors are well known in the art. Chromates, in particular sodium dichromate, have long been recognized as one of the better corrosion inhibitors of aluminum. Another known aluminum corrosion inhibitor is comprised of an aqueous solution of chromic acid or a water soluble chromic salt and, of ferricyanic or ferrocyanic acid or a water soluble salt thereof.
    [Show full text]