Exclusive Backward-Angle Omega Meson Electroproduction

Total Page:16

File Type:pdf, Size:1020Kb

Exclusive Backward-Angle Omega Meson Electroproduction Exclusive Backward-Angle Omega Meson Electroproduction A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Physics University of Regina By Wenliang Li Regina, Saskatchewan October, 2017 c 2017: Wenliang Li ° UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Wenliang Li, candidate for the degree of Doctor of Philosohy in Physics, has presented a thesis titled, Exclusive Backward-Angle Omega Meson Electroproduction, in an oral examination held on October 20, 2017. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: *Dr. Richard Jones, University of Connecticut Supervisor: Dr. Garth Huber, Department of Physics Committee-Member: *Dr. David Hornidge, Adjunct Committee Member: Dr. Zisis Papandreou, Department of Physics Committee Member: Dr. George Lolos, Adjunct Committee Member: **Dr. Allan East, Department of Chemistry & Biochemistry Chair of Defense: Dr. Karen Meagher, Faculty of Graduate Studies & Research *Participated via video conference **Not present at defense Abstract Exclusive meson electroproduction at different squared four-momenta of the exchanged virtual photon, Q2, and at different four-momentum transfers, t and u, can be used to probe QCD’s transition from hadronic degrees of freedom at the long distance scale to quark-gluon degrees of freedom at the short distance scale. Backward-angle meson electroproduction was previously ignored, but is anticipated to offer complimentary information to conventional forward-angle meson electroproduction studies on nucleon structure. This work is a pioneering study of backward-angle ω cross sections through the exclusive 1H(e,e′p)ω reaction using the missing mass reconstruction technique. The extracted cross sec- tions are separated into the transverse (T), longitudinal (L), and LT, TT interference terms. The analyzed data were part of experiment E01-004 (Fπ-2), which used 2.6-5.2 GeV electron beams and HMS+SOS spectrometers in Jefferson Lab Hall C. The primary objective was to detect coincidence π in the forward-angle, where the backward-angle ω events were fortuitously detected. The experiment has central Q2 values of 1.60 and 2.45 GeV2, at W = 2.21 GeV. There was significant coverage in φ and ǫ, which allowed separation of σT,L,LT,TT. The data set has a unique u coverage of u 0, which corresponds to t> 4 GeV2. − ∼ − The separated σ result suggest a flat 1/Q1.33±1.21 dependence, whereas σ seems to hold T ∼ L 9.43±6.28 2 2 a stronger 1/Q dependence. The σL/σT ratio indicate σT dominance at Q = 2.45 GeV at the 90% confidence level. ∼ After translating the results into the t space of the published CLAS data, our data show − evidence of a backward-angle ω electroproduction peak at both Q2 settings. Previously, this phenomenon showing both forward and backward-angle peaks was only observed in the meson photoproduction data. Through comparison of our σT data with the prediction of the Transition Distribution Ampli- tude (TDA) model, and signs of σT dominance, promising indications of the applicability of the TDA factorization are demonstrated at a much lower Q2 value than its preferred range of Q2 > 10 GeV2. These studies have opened a new means to study the transition of the nucleon wavefunction through backward-angle experimental observables. Acknowledgements I would like to express my sincere gratitude to my supervisor Prof. Garth Huber for encouraging me to undertake this Ph.D. project and for his continuous support through the development of this work, and for his meticulous and patient guidance. Working with him has been a deeply ed- ucational and challenging experience. I also cherish the personal bond that we manage to create along these years. I am also very grateful to Henk Blok and Dave Gaskell for their extremely valuable suggestions, comments and supports during this work. A special thanks to Tanja Horn for her great work on generating data Ntuples, this has significantly simplified the analysis. Great appreciation to Jean-Phillipe Lansberg, Bernard Pire, Krill Semenov and Lech Szy- manowski, for providing the invaluable theoretical (TDA model) calculations. Visions offered by Christian Weiss and Mark Strikman have played a critical role throughout the thesis writing. Furthermore, I want to thank the research funding provided by NSERC of Canada and the FGSR of the University of Regina. Since the beginning, Department of Physics has provided amazing supports for my education and research. I would like to thank all members of the depart- ment, include Nader Mobed, George Lolos, Zisis Papandreou, Mauricio Barbi, Pierre Ouimet, Andrei Semenov, Cheryl Risling, Derek Gervais and others. I am also grateful to all the friends and colleagues met at the university: Dilli Paudyal, Ahmed Zafar, Ahmed Foda, Sameep Basnet, Tegan Beattie, Ryan Ambrose, Rory Evans, Nathanael Hogan and others. Together, we have created a pleasant working environment and they really had to put up with my loudness. Finally I would like to dedicate this work to my parents, the Morrison family and the relatives for their kind support and hospitality throughout these years, and most importantly to my wife who cooks wonderfully. This thesis is dedicated to my family Contents Abstract Acknowledgements Dedication Table of Contents i List of Tables vii List of Figures ix 1 Introduction 1 1.1 Dynamical Properties of Hadrons . ...... 4 1.2 Electron Scattering: Access to Hadron Structure . ............ 6 1.3 Experimental Kinematics and Methodology . ........ 8 1.3.1 InteractionReferenceFrame . 8 1.3.2 MandelstamVariables . 8 1.3.3 Exclusive ω Meson Electroproduction . 10 1.3.4 L/TSeparation ............................... 13 1.4 The Fπ-2Experiment ................................ 15 1.5 Past Exclusive ω Electroproduction Experiments . 16 2 Literature review on Backward-Angle ω Meson Production 20 i 2.1 u-ChannelPhysicsOverview . 21 2.1.1 Gateway to u-Channel Physics: t-ChannelPhysics . 23 2.2 ReggeTrajectoryModel ............................. 26 2.2.1 ReggeTrajectory .............................. 26 2.2.2 u and t KinematicLimits.......................... 28 2.2.3 Regge Trajectory in Meson Production . 31 2.2.4 VGLandJMLModels ........................... 32 2.3 GPDandTDA ................................... 35 2.3.1 Two Predictions from TDA Collinear Factorization . ........ 39 3 Experimental Apparatus 41 3.1 Overview ...................................... 41 3.2 Accelerator ..................................... 42 3.3 HallC........................................ 43 3.4 Beamline ...................................... 44 3.4.1 BeamPositionMonitors . 44 3.4.2 BeamEnergyMeasurement . 49 3.4.3 BeamCurrentMonitors . 50 3.4.4 ModificationtoBeamline . 51 3.5 Targets........................................ 52 3.5.1 Cryogenic Targets: LH2 .......................... 53 3.5.2 TargetThickness .............................. 55 3.6 Detectors ...................................... 57 3.6.1 DriftChamber ............................... 57 3.6.2 Hodoscopes................................. 59 3.6.3 CherenkovDetectors ............................ 60 3.6.4 LeadGlassCalorimeter. 62 3.6.5 HMS Aerogel Cherenkov Detector . 63 ii 3.7 TriggerSystem ................................... 64 3.7.1 HMSPre-trigger .............................. 65 3.7.2 SOSPre-trigger............................... 67 3.8 Spectrometer Acceptance and Optics . ....... 67 3.9 Determination of the Spectrometer Kinematic Offsets . ............. 69 4 SIMC and New Analysis Software 71 4.1 SIMC ........................................ 71 4.1.1 SpectrometerModels. 72 4.1.2 IonizationEnergyLoss. 73 4.1.3 MultipleScattering . 74 4.1.4 RadiativeProcess.............................. 75 4.1.5 MonteCarloYield ............................. 77 4.2 TheNewC++AnalysisPlatform . 78 5 Heep Data Analysis 82 5.1 DataSelectionandCorrection . 83 5.1.1 Particle Identification in SOS and HMS . 83 5.1.2 Coincidence Timing vs.Particle Speed in the HMS . ...... 84 5.1.3 EventSelectionCriteria . 87 5.2 BackgroundSubtraction . 88 5.2.1 Random Coincidence Background Subtraction . 88 5.2.2 Cell Wall Contribution and Dummy Target Data Subtraction....... 88 5.3 EfficiencyStudy.................................. 89 5.3.1 Analysis Information . 89 5.3.2 Computer and Electronic Live Time . 90 5.3.2.1 Electronic Live Time . 91 5.3.2.2 Computer Live Time . 95 5.3.3 Spectrometer Tracking Efficiencies . ..... 97 iii 5.3.3.1 Choice of HMS Tracking Efficiency . 99 5.3.3.2 Choice of SOS Tracking Efficiency . 101 5.3.4 CarbonTargetRateStudy . .102 5.3.5 LH2 TargetBoilingStudy . .107 5.3.6 SOS Coincidence Blocking . 108 5.3.7 HMS Aerogel Cherenkov Detector Threshold Cuts . 111 5.3.8 HMS ACD Cut Study for the ω Analysis .................112 5.3.9 hsbeta Distribution and Proton Interaction Correction . 114 5.4 Missing mass and Energy Distributions . .......120 5.5 SimulatingtheHeepReaction . 123 5.6 HeepStudyResults ................................. 125 5.6.1 HeepCoincidenceStudy . .125 5.6.2 HeepSinglesStudy.............................126 5.6.3 Heep with Different Parametrizations . 127 5.7 Results........................................128 6 Omega Analysis 130 6.1 Overview and Introduction to the Iterative Procedure . .............130 6.2 PhysicsSimulationModelinSIMC . 133 6.2.1 ω ProductionModel ............................134 6.2.2 ρ0
Recommended publications
  • Non-Resonant Diagrams in Radiative Four-Fermion Processes
    FR9700401 KEK-CP-015 KEK Preprint 94-46 LAPP-Exp.-94.09 June 1994 H Non-resonant Diagrams in Radiative Four-fermion Processes J. FUJIMOTO, T. ISHIKAWA, S. KAWABATA, Y. KURIHARA, Y. SHIMIZU and D. PERRET-GALLIX Submitted to the Proceedings of Physics at LEP200 and Beyond, Teupitz/Brandenburg, Germany, April 10 -15,1994. L.A.P.P. B.P. 110 F-74941 ANNECY-LE-VIEUX CEDEX • TELEPHONE 50.09.16.00+ • TELECOPIE 50 2794 95 National Laboratory for High Energy Physics, 1994 KEK Reports are available from: Technical Information & Library National Laboratory for High Energy Physics l-lOho,Tsukuba-shi Ibaraki-ken, 305 JAPAN Phone: 0298-64-1171 Telex: 3652-534 (Domestic) (0)3652-534 (International) Fax: 0298-64-4604 Cable: KEK OHO E-mail: LIBRARY®JPNKEKVX (Bitnet Address) [email protected] (Internet Address) Non-resonant diagrams in radiative four-fermion processes J. Fujimoto, T. Ishikawa, S. Kawabata, Y. Kurihara. Y. Shiniizu » and D. Perret-Gallixb * Miuanii-Tateya Collaboration. KEK, Japan bLAPP-IN2P3/CNRS, France + The complete tree level cross section for e c~ —» e~utud-y is computed and discussed in comparison with + + the cross sections for e e~ —• e~utud and e e~ —• udud. Event generators based on the GRACE package for the non-radiative and radiative case are presented. Special interest is brought to the effect of the non-resonant diagrams overlooked so far in other studies. Their contribution to the total cross section is presented for the LEP II energy range and for future linear colliders (-/a =500 GeV). Effects, at the W pair threshold, of order 3% {e~Ptui) and 27% (udud) are reported.
    [Show full text]
  • Selfconsistent Description of Vector-Mesons in Matter 1
    Selfconsistent description of vector-mesons in matter 1 Felix Riek 2 and J¨orn Knoll 3 Gesellschaft f¨ur Schwerionenforschung Planckstr. 1 64291 Darmstadt Abstract We study the influence of the virtual pion cloud in nuclear matter at finite den- sities and temperatures on the structure of the ρ- and ω-mesons. The in-matter spectral function of the pion is obtained within a selfconsistent scheme of coupled Dyson equations where the coupling to the nucleon and the ∆(1232)-isobar reso- nance is taken into account. The selfenergies are determined using a two-particle irreducible (2PI) truncation scheme (Φ-derivable approximation) supplemented by Migdal’s short range correlations for the particle-hole excitations. The so obtained spectral function of the pion is then used to calculate the in-medium changes of the vector-meson spectral functions. With increasing density and temperature a strong interplay of both vector-meson modes is observed. The four-transversality of the polarisation tensors of the vector-mesons is achieved by a projector technique. The resulting spectral functions of both vector-mesons and, through vector domi- nance, the implications of our results on the dilepton spectra are studied in their dependence on density and temperature. Key words: rho–meson, omega–meson, medium modifications, dilepton production, self-consistent approximation schemes. PACS: 14.40.-n 1 Supported in part by the Helmholz Association under Grant No. VH-VI-041 2 e-mail:[email protected] 3 e-mail:[email protected] Preprint submitted to Elsevier Preprint Feb. 2004 1 Introduction It is an interesting question how the behaviour of hadrons changes in a dense hadronic medium.
    [Show full text]
  • The Glib/GTK+ Development Platform
    The GLib/GTK+ Development Platform A Getting Started Guide Version 0.8 Sébastien Wilmet March 29, 2019 Contents 1 Introduction 3 1.1 License . 3 1.2 Financial Support . 3 1.3 Todo List for this Book and a Quick 2019 Update . 4 1.4 What is GLib and GTK+? . 4 1.5 The GNOME Desktop . 5 1.6 Prerequisites . 6 1.7 Why and When Using the C Language? . 7 1.7.1 Separate the Backend from the Frontend . 7 1.7.2 Other Aspects to Keep in Mind . 8 1.8 Learning Path . 9 1.9 The Development Environment . 10 1.10 Acknowledgments . 10 I GLib, the Core Library 11 2 GLib, the Core Library 12 2.1 Basics . 13 2.1.1 Type Definitions . 13 2.1.2 Frequently Used Macros . 13 2.1.3 Debugging Macros . 14 2.1.4 Memory . 16 2.1.5 String Handling . 18 2.2 Data Structures . 20 2.2.1 Lists . 20 2.2.2 Trees . 24 2.2.3 Hash Tables . 29 2.3 The Main Event Loop . 31 2.4 Other Features . 33 II Object-Oriented Programming in C 35 3 Semi-Object-Oriented Programming in C 37 3.1 Header Example . 37 3.1.1 Project Namespace . 37 3.1.2 Class Namespace . 39 3.1.3 Lowercase, Uppercase or CamelCase? . 39 3.1.4 Include Guard . 39 3.1.5 C++ Support . 39 1 3.1.6 #include . 39 3.1.7 Type Definition . 40 3.1.8 Object Constructor . 40 3.1.9 Object Destructor .
    [Show full text]
  • J. Stroth Asked the Question: "Which Are the Experimental Evidences for a Long Mean Free Path of Phi Mesons in Medium?"
    J. Stroth asked the question: "Which are the experimental evidences for a long mean free path of phi mesons in medium?" Answer by H. Stroebele ~~~~~~~~~~~~~~~~~~~ (based on the study of several publications on phi production and information provided by the theory friends of H. Stöcker ) Before trying to find an answer to this question, we need to specify what is meant with "long". The in medium cross section is equivalent to the mean free path. Thus we need to find out whether the (in medium) cross section is large (with respect to what?). The reference would be the cross sections of other mesons like pions or more specifically the omega meson. There is a further reference, namely the suppression of phi production and decay described in the OZI rule. A “blind” application of the OZI rule would give a cross section of the phi three orders of magnitude lower than that of the omega meson and correspondingly a "long" free mean path. In the following we shall look at the phi production cross sections in photon+p, pion+p, and p+p interactions. The total photoproduction cross sections of phi and omega mesons were measured in a bubble chamber experiment (J. Ballam et al., Phys. Rev. D 7, 3150, 1973), in which a cross section ratio of R(omega/phi) = 10 was found in the few GeV beam energy region. There are results on omega and phi production in p+p interactions available from SPESIII (Near- Threshold Production of omega mesons in the Reaction p p → p p omega", Phys.Rev.Lett.
    [Show full text]
  • Strange Particle Theory in the Cosmic Ray Period R
    STRANGE PARTICLE THEORY IN THE COSMIC RAY PERIOD R. Dalitz To cite this version: R. Dalitz. STRANGE PARTICLE THEORY IN THE COSMIC RAY PERIOD. Journal de Physique Colloques, 1982, 43 (C8), pp.C8-195-C8-205. 10.1051/jphyscol:1982811. jpa-00222371 HAL Id: jpa-00222371 https://hal.archives-ouvertes.fr/jpa-00222371 Submitted on 1 Jan 1982 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C8, suppldment au no 12, Tome 43, ddcembre 1982 page ~8-195 STRANGE PARTICLE THEORY IN THE COSMIC RAY PERIOD R.H. Dalitz Department of Theoretical Physics, 2 KebZe Road, Oxford OX1 3NP, U.K. What role did theoretical physicists play concerning elementary particle physics in the cosmic ray period? The short answer is that it was the nuclear forces which were the central topic of their attention at that time. These were considered to be due primarily to the exchange of pions between nucleons, and the study of all aspects of the pion-nucleon interactions was the most direct contribution they could make to this problem. Of course, this was indeed a most important topic, and much significant understanding of the pion-nucleon interaction resulted from these studies, although the precise nature of the nucleonnucleon force is not settled even to this day.
    [Show full text]
  • The Skyrme Model for Baryons
    SU–4240–707 MIT–CTP–2880 # The Skyrme Model for Baryons ∗ a , b J. Schechter and H. Weigel† a)Department of Physics, Syracuse University Syracuse, NY 13244–1130 b)Center for Theoretical Physics Laboratory of Nuclear Science and Department of Physics Massachusetts Institute of Technology Cambridge, Ma 02139 ABSTRACT We review the Skyrme model approach which treats baryons as solitons of an ef- fective meson theory. We start out with a historical introduction and a concise discussion of the original two flavor Skyrme model and its interpretation. Then we develop the theme, motivated by the large NC approximation of QCD, that the effective Lagrangian of QCD is in fact one which contains just mesons of all spins. When this Lagrangian is (at least approximately) determined from the meson sector arXiv:hep-ph/9907554v1 29 Jul 1999 it should then yield a zero parameter description of the baryons. We next discuss the concept of chiral symmetry and the technology involved in handling the three flavor extension of the model at the collective level. This material is used to discuss properties of the light baryons based on three flavor meson Lagrangians containing just pseudoscalars and also pseudoscalars plus vectors. The improvements obtained by including vectors are exemplified in the treatment of the proton spin puzzle. ————– #Invited review article for INSA–Book–2000. ∗This work is supported in parts by funds provided by the U.S. Department of Energy (D.O.E.) under cooper- ative research agreements #DR–FG–02–92ER420231 & #DF–FC02–94ER40818 and the Deutsche Forschungs- gemeinschaft (DFG) under contracts We 1254/3-1 & 1254/4-1.
    [Show full text]
  • Quark Structure of Pseudoscalar Mesons Light Pseudoscalar Mesons Can Be Identified As (Almost) Goldstone Bosons
    International Journal of Modern Physics A, c❢ World Scientific Publishing Company QUARK STRUCTURE OF PSEUDOSCALAR MESONS THORSTEN FELDMANN∗ Fachbereich Physik, Universit¨at Wuppertal, Gaußstraße 20 D-42097 Wuppertal, Germany I review to which extent the properties of pseudoscalar mesons can be understood in terms of the underlying quark (and eventually gluon) structure. Special emphasis is put on the progress in our understanding of η-η′ mixing. Process-independent mixing parameters are defined, and relations between different bases and conventions are studied. Both, the low-energy description in the framework of chiral perturbation theory and the high-energy application in terms of light-cone wave functions for partonic Fock states, are considered. A thorough discussion of theoretical and phenomenological consequences of the mixing approach will be given. Finally, I will discuss mixing with other states 0 (π , ηc, ...). 1. Introduction The fundamental degrees of freedom in strong interactions of hadronic matter are quarks and gluons, and their behavior is controlled by Quantum Chromodynamics (QCD). However, due to the confinement mechanism in QCD, in experiments the only observables are hadrons which appear as complex bound systems of quarks and gluons. A rigorous analytical solution of how to relate quarks and gluons in QCD to the hadronic world is still missing. We have therefore developed effective descriptions that allow us to derive non-trivial statements about hadronic processes from QCD and vice versa. It should be obvious that the notion of quark or gluon structure may depend on the physical context. Therefore one aim is to find process- independent concepts which allow a comparison of different approaches.
    [Show full text]
  • Mass Shift of Σ-Meson in Nuclear Matter
    Mass shift of σ-Meson in Nuclear Matter J. R. Morones-Ibarra, Mónica Menchaca Maciel, Ayax Santos-Guevara, and Felipe Robledo Padilla. Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66450, México. Facultad de Ingeniería y Arquitectura, Universidad Regiomontana, 15 de Mayo 567, Monterrey, N.L., 64000, México. April 6, 2010 Abstract The propagation of sigma meson in nuclear matter is studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in medium effect of sigma-omega mixing. We have also considered, by completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases respect to its value in vacuum and that the contribution of the sigma omega mixing effect on the mass shift is relatively small. Keywords: scalar mesons, hadrons in dense matter, spectral function, dense nuclear matter. PACS:14.40;14.40Cs;13.75.Lb;21.65.+f 1. INTRODUCTION The study of matter under extreme conditions of density and temperature, has become a very important issue due to the fact that it prepares to understand the physics for some interesting subjects like, the conditions in the early universe, the physics of processes in stellar evolution and in heavy ion collision. Particularly, the study of properties of mesons in hot and dense matter is important to understand which could be the signature for detecting the Quark-Gluon Plasma (QGP) state in heavy ion collision, and to get information about the signal of the presence of QGP and also to know which symmetries are restored [1].
    [Show full text]
  • Phenomenology of Gev-Scale Heavy Neutral Leptons Arxiv:1805.08567
    Prepared for submission to JHEP INR-TH-2018-014 Phenomenology of GeV-scale Heavy Neutral Leptons Kyrylo Bondarenko,1 Alexey Boyarsky,1 Dmitry Gorbunov,2;3 Oleg Ruchayskiy4 1Intituut-Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 2Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 3Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 4Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK- 2100 Copenhagen, Denmark E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We review and revise phenomenology of the GeV-scale heavy neutral leptons (HNLs). We extend the previous analyses by including more channels of HNLs production and decay and provide with more refined treatment, including QCD corrections for the HNLs of masses (1) GeV. We summarize the relevance O of individual production and decay channels for different masses, resolving a few discrepancies in the literature. Our final results are directly suitable for sensitivity studies of particle physics experiments (ranging from proton beam-dump to the LHC) aiming at searches for heavy neutral leptons. arXiv:1805.08567v3 [hep-ph] 9 Nov 2018 ArXiv ePrint: 1805.08567 Contents 1 Introduction: heavy neutral leptons1 1.1 General introduction to heavy neutral leptons2 2 HNL production in proton fixed target experiments3 2.1 Production from hadrons3 2.1.1 Production from light unflavored and strange mesons5 2.1.2
    [Show full text]
  • Understanding the J/Psi Production Mechanism at PHENIX Todd Kempel Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Understanding the J/psi Production Mechanism at PHENIX Todd Kempel Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Physics Commons Recommended Citation Kempel, Todd, "Understanding the J/psi Production Mechanism at PHENIX" (2010). Graduate Theses and Dissertations. 11649. https://lib.dr.iastate.edu/etd/11649 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the J= Production Mechanism at PHENIX by Todd Kempel A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Nuclear Physics Program of Study Committee: John G. Lajoie, Major Professor Kevin L De Laplante S¨orenA. Prell J¨orgSchmalian Kirill Tuchin Iowa State University Ames, Iowa 2010 Copyright c Todd Kempel, 2010. All rights reserved. ii TABLE OF CONTENTS LIST OF TABLES . v LIST OF FIGURES . vii CHAPTER 1. Overview . 1 CHAPTER 2. Quantum Chromodynamics . 3 2.1 The Standard Model . 3 2.2 Quarks and Gluons . 5 2.3 Asymptotic Freedom and Confinement . 6 CHAPTER 3. The Proton . 8 3.1 Cross-Sections and Luminosities . 8 3.2 Deep-Inelastic Scattering . 10 3.3 Structure Functions and Bjorken Scaling . 12 3.4 Altarelli-Parisi Evolution .
    [Show full text]
  • Release 0.11 Todd Gamblin
    Spack Documentation Release 0.11 Todd Gamblin Feb 07, 2018 Basics 1 Feature Overview 3 1.1 Simple package installation.......................................3 1.2 Custom versions & configurations....................................3 1.3 Customize dependencies.........................................4 1.4 Non-destructive installs.........................................4 1.5 Packages can peacefully coexist.....................................4 1.6 Creating packages is easy........................................4 2 Getting Started 7 2.1 Prerequisites...............................................7 2.2 Installation................................................7 2.3 Compiler configuration..........................................9 2.4 Vendor-Specific Compiler Configuration................................ 13 2.5 System Packages............................................. 16 2.6 Utilities Configuration.......................................... 18 2.7 GPG Signing............................................... 20 2.8 Spack on Cray.............................................. 21 3 Basic Usage 25 3.1 Listing available packages........................................ 25 3.2 Installing and uninstalling........................................ 42 3.3 Seeing installed packages........................................ 44 3.4 Specs & dependencies.......................................... 46 3.5 Virtual dependencies........................................... 50 3.6 Extensions & Python support...................................... 53 3.7 Filesystem requirements........................................
    [Show full text]
  • The Central Control Room Man-Machine Interface at the Clinton P
    © 1973 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. THE CENTRAL CONTROL ROOM MAN-MACHINE INTERFACE AT THE CLINTON P. ANDERSON MESON PHYSICS FACILITY (LAMPF)* B. L. Hartway, J. Bergstein, C. M. Plopper University of California Los Alamos Scientific Laboratory Los Alamos, New Mexico Summary tial that the data be organized and displayed for the operator in a format which quickly conveyed the status The control system for the Clinton P. Anderson of the whole accelerator or any subsystems under study. Meson Physics Facility (LAMPF) is organized around an Similarly, there had to be a simple but flexible scheme on-line digital computer. Accelerator operations are for the operator to manipulate the various controls. conducted from the Central Control Room (CCR) where two The experience gained from the prototype console identical but independent operator consoles provide the was incorporated in the design for the LAMPF operator's This paper traces the evolution man-machine interface. console. A mockup of the console was built and evalu- of the man-machine interface from the initial concepts ated from many points of view. Several human-factor Special emphasis is given of a computer control system. studies were performed to determine the optimum shape of to the human factors which influenced the development. the console and the location for various controls.
    [Show full text]