UNITED STATES PATENT Office 2,639,267 TEOCYANOGEN CONTAINING COMPOSITIONS Harry F

Total Page:16

File Type:pdf, Size:1020Kb

UNITED STATES PATENT Office 2,639,267 TEOCYANOGEN CONTAINING COMPOSITIONS Harry F Patented May 19, 1953 2,639,267 UNITED STATES PATENT office 2,639,267 TEOCYANOGEN CONTAINING COMPOSITIONS Harry F. Pfann, Pittsburgh, Pa., assignor to Kop pers Compaay, Inc., Pittsburgh, Pa., a corpo ration of Delaware No Drawing. Application April 13, 1948, serial No. 20,840 Claims. (C. 252-182) 2 This invention relates to the manufacture of and thereupon treated with hydrogen peroxide as free thiocyanogen (SCN)2 and derivatives pre in the foregoing procedure. pared by the reaction of thiocyanogen with or in either of the above processes, the organic ganic compounds. compound to be reacted with the free thiocyano Heretofore thiocyanogen has been commonly gen may be added prior to the introduction of the made by treating either a metal thiocyanate with hydrogen peroxide or, the solution of free thio elemental bromine, or by reacting a metal thio cyanogen in the solvent may be added to the cyanate in Solution with copper sulfate to form organic compound which is to be thiocyanated. cupric thiocyanate which in turn is decomposed For most commercial processes, it is preferred to to produce free thiocyanogen. While both of prepare the solution of alkali thiocyanate and these processes are workable and yield free thio reactant organic compound in the solvent, and Cyanogen, they are subject to certain limitations. then add at a controlled rate the hydrogen per The reaction of elemental bromine with thiocya oxide which is to effect the liberation of the free nates is a costly process because of the expensive thiocyanogen. The rate of oxidation of the thio bronine which is required. The reaction of thi cyanic acid by the hydrogen peroxide should be ocyanates with copper Sulfate yields large quan such as to permit simultaneous reaction of the tities of the voluminous, insoluble precipitate of free thiocyanogen without the accumulation of cuprous thiocyanate from which separation of appreciable quantities of it. Such control of the the other desired reaction products is somewhat reaction will lead to the formation of thiocyano difficult. Because of these and other considera derivatives with a minimum of undesirable by tions, it is highly desirable to provide a more products such as perthiocyanic acid and related WOrkable and less expensive procedure for the compounds. preparation of free thiocyanogen. As a reaction medium there may be used any The primary object of the present invention is non-reactive liquid which is both a Solvent for to provide a process for the production of free the thiocyanic acid, or for the alkali thiocyanate thiocyanogen from inexpensive raw materials , if it is used, and also a solvent for hydrogen per and with the production of a minimurn of diffi oxide and the organic compound to be reacted Cultly handled co-products. upon. Examples of solvents whith are suitable Another object of this invention is to provide include methyl alcohol, ethyl alcohol, isopropyl a process for the production of free thiocyanogen alcohol, and tert.-butyl alcohol. Acetic acid may in such a medium that it may be readily reacted also be used, as may the lower fatty acid esters with Organic compounds to nake thiocyanogen such as ethyl acetate. Ether derivatives such as derivatives. dioxane and the methyl ether of ethylene glycol A further object of the invention is to provide or the ethyl ether of diethylene glycol are like a cyclic process for the production of free thio wise. Suitable. cyanogen in which process no co-products or by As an oxidizing agent, it is desirable to use products are formed which are not easily removed hydrogen peroxide of between 30 and 90% purity from the reaction medium in a simple cyclic sys in order to minimize the quantities handled and te. to minimize dilution of the reaction medium, I have now discovered that thiocyanogen may Hydrogen peroxide of higher concentration is be produced by using hydrogen peroxide as an 40 effective but at the present time it is relatively oxidizing agent to react upon thiocyanic acid or more expensive than the lower concentration upon solutions of thiocyanates in acid medium. products. Hydrogen peroxide of concentrations The reaction is presumed to proceed according to lower than 30% is workable, but involves the the following equation: 45 undesirable factor of great dilution of the reac tion mixtures. Suitable acids for reaction with the alkali thio. Accordingly, thiocyanic acid dissolved in a suit cyanates to form thiocyanic acid include sulfuric able reaction medium such as ethyl alcohol may and phospholic acid. Nitric acid may be used be treated with hydrogen peroxide to form free 50 under certain conditions, but it is generally de thiocyanogen and water. The reaction medium sired to avoid an acid possessing oxidizing prop should be acidic. erties when working in a medium containing Alternatively, a solution of a metal thiocyanate reactive organic compounds such as ethyl alcohol. dissolved in a solvent, may be made acid with a The halogen acids such as hydrochloric and strong acid such as sulfuric or phosphoric acid, 55 hydrobromic acid are normally to be avoided be 2,639,267 3 4 cause of their reactivity with hydrogen peroxide, inorganic salts or acids which are present in Control of the reaction temperature is impor Solutions of free thiocyanogen prepared by con tant. If the temperature is permitted to rise Ventional methods, was taken for reaction. With appreciably above 50° C., the rate of polymeriza a thiocyanogen acceptor as described in Example tion of free thiocyanogen to perthiocyanic acid 5 IV below. becomes excessive. At temperatures below 0° C. the rate of reaction of hydrogen peroxide with Eacample III thiocyanic acid is too low for practical purposes. For the production of thiocyano-meta-tolui Preferred temperatures are between 10° C. and dine, the following reactants were charged to a 30° C. O kettle in the order shown: The following reactive organic compounds can be treated With free thiocyanogen in order to Methanol ------------------------------ 500 prepare thiocyanogen derivatives: aromatic Sodium thiocyanate--------------------- 48.5 amines Such as aniline and its homologs, includi Meta-toluidine ------------------------- 26.7 Sulfuric acid, conc--------------------- 510 ing ethyl aniline, diethyl aniline, butyl aniline, Acetic acid, glacial---------------------- 50.0 dibutyl aniline, diphenyl amine, and substituted Hydrogen peroxide---------------------- 68.0 anilineS Such as the chloro and nitro anilines; phenol derivatives such as the nitro phenols, Methanol ------------------------------ 4.0 chlorophenols, and ortho-cresol; hydroxyphenols The addition of the sulfuric acid caused the Such as resorcinol, catechol, pyrogallol, and 20 precipitation of the meta-toluidine sulfate. This phloroglucinol; unsaturated Organic compounds formed a heavy slurry which was diluted and Such as butadiene, isobutylene, vinylcyclohexene, partially dissolved with acetic acid. Over a styrene monomer, dicyclopentadiene, allyl chlo period of 2 to 3 hours there was added, in in ride, allyl alcohol, drying oils and their fatty Crements, the hydrogen peroxide which had been acids, and other olefinic compounds. In the 25 mixed with an equal volume of methanol. The Specification and claims the above listed con temperature of the reaction mixture was main pounds will be referred to as “thiocyanogen ac tained at 18-21° C. during the addition of most ceptors.' of the peroxide, and was finally permitted to rise Illustrative Of the processes Which may be used to 30° C. at the end of the reaction. The color to carry out the present reactions are the follow 30 of the mixture which had remained light during ing examples, which examples are given by Way the addition of most of the hydrogen peroxide, of illustration but are in no sense to be considered turned quite dark at the end when an excess of limiting as to the Scope of the present invention. free thiocyanogen was present. In the following examples all quantities represent The reaction mixture was poured into a large parts by Weight. Volume of Water made alkaline by the addition EaCample I of Sodium hydroxide, and the alkaline mixture To produce a Solution of free thiocyanogen in Was extracted once with benzene to recover the a mixture of alcohol and water, the following thiocyano-meta-toluidine. The benzene solu reactants were added in the indicated order to tion, after being treated with an adsorbent acti a Suitable vessel equipped for agitation and 4. vated carbon such as “Darco,' was filtered, and cooling. the benzene removed by distilation at reduced pressure to leave a residue of crude thiocyano Water ----------------------------------- 150 meta-toluidine amounting to 74% of theory. Methanol -------------------------------- 100 After several recrystallizations from ethanol Sulfuric acid, concentrated.---------------- 25 45 Water mixtures a white crystalline product was Sodium thiocyanate-0.3 mole------------- 25 obtained having a melting point range of 78-800 C. Hydrogen peroxide, 30%-0.27 mole------- 30 Eacample IV To the Solution of sodium thiocyanate in an alcohol-Water Solvent the Sulfuric acid WaS grad For the preparation of the thiocyanogen addi ually added with simultaneous cooling and agi 50 tion products of olefinic hydrocarbons and other tation. The resultant solution of thiocyanic acid thiocyanogen acceptors of limited Solubility in was cooled to 10° C. and the hydrogen peroxide polar solvents, it is desirable to Carry out the was then gradually added. The free thiocyanic reaction in an ether solution. For such cases acid was obtained as a clear orange-colored solu Solutions of free thiocyanogen, as prepared by tion in alcohol-water solvent. Preferably the 55 Example II, are used as the source of thiocyano. free thiocyanic acid may be used for reaction gen. Thus, to a solution of higher molecular with a thiocyanogen acceptor such as described Weight olefin such as decene-1 dissolved in car in Example IV below. In order to minimize the bon tetrachloride there is slowly added a solution polymerization of the thiocyanic acid to perthio of free thiocyanogen in ether.
Recommended publications
  • The Identification of Olefins As Thiocyanates
    THE IDENTIFICATION OF OLEFI NS AS THIOCYANATES 1 .. .SEP 2"/ i 938 THE IDENTIFICATION OF OLEFINS AS THIOCYANAT ES/ ( ' By George A. Dysinger I\ Bachelor of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma 1937 Submitted to the Department of Chemistry Oklahoma Agricultural and Mechanical College In partial fulfillme.nt of the requirements for the Degree of MASTER OF SCIENCE 1938 . ... .. '.'' .. ~ . ..... .. • • • • • • • • J • : ... ·:· .· ~- . .. ,. r f • • • - • • • • •• J • •• ; • • • ii !)fp 27 1938 APPROVED: HeadOttinm~- of : e Department of Onemistry ~~~e~ 108550 iii ACKNOWLEDGEMENT The author wishes to expres.s his sincere appreciation to Dr. o. c. Dermer under whose direction and with whose help this work has been done. He also wishes to acknowledge the assistance rendered by Everett L. Ada.ms in supplying apparatus and chemicals. iv TABLE OF CONTENTS Page Introduotion • . .. • . • • • 1 Historical Review. • . • • . • . 2 Experimental . • • • • . • . • . • • 6 Discussion of Results . .. ao Summary • • • • . • • • 22 Bibliography • • • • • • • • • • • • • • • • • • 23 Autobiography • • • • • . • • • • • • • • • . • 24 1 INTRODUCTION At present, the identification of low boiling unsatu­ rated hydrocarbons which yield only liquid addition products with the halogens and hydrogen halides is often a matter of considerable difficulty. This f'aot is sufficient reason for the study here described. In some cases, espeoially among terpen.es, the compounds formed by adding NOCl, 1203 , or »2o4 at one or more of the double bonds have been used as derivatives but these are i nconvenient to make,. of un­ certain composition, and decidedly unstable! This work con- '\, sists of (l) a'ttempts to find a convenient samll scale meth- od for adding (S0N)2 to olef1ns, (2) the determinations of the melting points of the derivatives, and (3) quantitatiye analysis of derivatives to prove their structure and purity.
    [Show full text]
  • United States Patent Office Patented Jan
    3,071,593 United States Patent Office Patented Jan. 1, 1963 2 3,071,593 O PREPARATION OF AELKENE SULFES Paul F. Warner, Philips, Tex., assignor to Philips Petroleum Company, a corporation of Delaware wherein each R is selected from the group consisting of No Drawing. Filed July 27, 1959, Ser. No. 829,518 5 hydrogen, alkyl, aryl, alkaryl, aralkyl and cycloalkyl 8 Claims. (C. 260-327) groups having 1 to 8 carbon atoms, the combined R groups having up to 12 carbon atoms. Examples of Suit This invention relates to a method of preparing alkene able compounds are ethylene oxide, propylene oxide, iso sulfides. Another aspect relates to a method of convert butylene oxide, a-amylene oxide, styrene oxide, isopropyl ing an alkene oxide to the corresponding sulfide at rela O ethylene oxide, methylethylethylene oxide, 3-phenyl-1, tively high yields without refrigeration. 2-propylene oxide, (3-methylphenyl) ethylene oxide, By the term "alkene sulfide' as used in this specifica cyclohexylethylene oxide, 1-phenyl-3,4-epoxyhexane, and tion and in the claims, I mean to include not only un the like. substituted alkene sulfides such as ethylene sulfide, propyl The salts of thiocyanic acid which I prefer to use are ene sulfide, isobutylene sulfide, and the like, but also 5 the salts of the alkali metals or ammonium. I especially hydrocarbon-substituted alkene sulfides such as styrene prefer ammonium thiocyanate, sodium thiocyanate, and oxide, and in general all compounds conforming to the potassium thiocyanate. These compounds can be reacted formula with ethylene oxide in a cycloparaffin diluent to produce 20 substantial yields of ethylene sulfide and with little or S no polymer formation.
    [Show full text]
  • House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, Or Isothiocyanate Radicals
    House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals Agriculture Handbook No. 403 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Contents Page Methods 1 Results and discussion 3 Thiocyanic acid esters 8 Straight-chain nitriles 10 Propionitrile derivatives 10 Conclusions 24 Summary 25 Literature cited 26 This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. ¿/áepé4áaUÁí^a¡eé —' ■ -"" TMK LABIL Mention of a proprietary product in this publication does not constitute a guarantee or warranty by the U.S. Department of Agriculture over other products not mentioned. Washington, D.C. Issued July 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents House Fly Attractants and Arrestants: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals BY M. S. MAYER, Entomology Research Division, Agricultural Research Service ^ Few chemicals possessing cyanide (-CN), thio- cyanate was slightly attractive to Musca domes- eyanate (-SCN), or isothiocyanate (~NCS) radi- tica, but it was considered to be one of the better cals have been tested as attractants for the house repellents for Phormia regina (Meigen).
    [Show full text]
  • Material Safety Data Sheet
    Material Safety Data Sheet Silver Thiocyanate (Powder), 99% (Titr.) ACC# 55179 Section 1 - Chemical Product and Company Identification MSDS Name: Silver Thiocyanate (Powder), 99% (Titr.) Catalog Numbers: AC419390000, AC419390250 Synonyms: None. Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300 Section 2 - Composition, Information on Ingredients CAS# Chemical Name Percent EINECS/ELINCS 1701-93-5 Thiocyanic Acid, Silver(1+) Salt 99 216-934-9 Section 3 - Hazards Identification EMERGENCY OVERVIEW Appearance: white powder. Caution! May cause eye and skin irritation. May cause respiratory and digestive tract irritation. Light sensitive. Moisture sensitive. The toxicological properties of this material have not been fully investigated. Target Organs: None known. Potential Health Effects Eye: May cause eye irritation. The toxicological properties of this material have not been fully investigated. Skin: May cause skin irritation. The toxicological properties of this material have not been fully investigated. Ingestion: May cause irritation of the digestive tract. The toxicological properties of this substance have not been fully investigated. Ingestion of soluble silver salts may cause argyria, characterized by permanent blue-gray pigmentation of the skin, mucous membranes, and eyes. Ingestion of silver compounds may cause abdominal pain, rigidity, convulsions and shock. Inhalation: May cause respiratory tract irritation. The toxicological properties of this substance have not been fully investigated. Chronic: No information found. Section 4 - First Aid Measures Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids.
    [Show full text]
  • Thiocyanate Reagent Product Code R-1305K Recommended Use Use As Directed by Manufacturer for Purposes Directly Related to Water Testing
    SAFETY DATA SHEET 1. Identification Product identifier Thiocyanate Reagent Product code R-1305K Recommended use Use as directed by manufacturer for purposes directly related to water testing. Recommended restrictions None known Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name Anderson Chemical Company Address 325 South Davis Avenue Litchfield, MN 55355 United States Telephone (320) 693-2477 Monday─Friday, 8:00 a.m.–4:30 p.m. Website www.accomn.com E-mail [email protected] Emergency phone number (800) 424-9300 2. Hazard(s) identification Physical hazards This mixture does not meet the classification criteria according to OSHA HazCom 2012. Health hazards This mixture does not meet the classification criteria according to OSHA HazCom 2012. Environmental hazards Not currently regulated by OSHA. For additional information, refer to section 12 of the SDS. Label elements None required Signal word None required Hazard statement None required Precautionary statement Prevention None required Response None required Storage None required Disposal None required Hazard(s) not otherwise classified None Supplemental information None 3. Composition/information on ingredients Mixtures Chemical name Common name and synonyms CAS number % Deionized water Dihydrogen oxide 7732-18-5 95–99 Potassium thiocyanate Thiocyanic acid, potassium salt 333-20-0 0.1–5 4. First-aid measures Inhalation Move to fresh air. Give oxygen or artificial respiration if needed. Get medical attention immediately. Skin contact Immediately wash skin with soap and water. If symptoms persist or in all cases of concern, seek medical advice. Material name: Thiocyanate Reagent; R-1305K SDS U.S. Page 1 of 8 Eye contact Immediately flush eyes with plenty of water for at least 20 minutes.
    [Show full text]
  • Ammonium Thiocyanate
    AMMONIUM THIOCYANATE PRODUCT IDENTIFICATION CAS NO. 1762-95-4 EINECS NO. 217-175-6 FORMULA NH 4SCN MOL WT. 76.12 H.S. CODE 2838.00 TOXICITY Oral Rat LD50: 750 mg/kg SYNONYMS Thiocyanic acid, ammonium salt; Amthio; ammonium sulfocanide; ammonium sulphocyanide; ammonium rhodanide; ammonium sulphocyanate; Ammonium Rhodonide; Amthio; Ammonium sulfocyanate; DERIVATION CLASSIFICATION PHYSICAL AND CHEMICAL PROPERTIES PHYSICAL STATE Colorless, deliquescent crystals MELTING POINT 150 C BOILING POINT SPECIFIC GRAVITY 1.31 SOLUBILITY IN WATER Soluble SOLVENT SOLUBILITY Soluble : acetone, alcohol, and ammonia pH 4.5-6.0 (5% sol) VAPOR DENSITY AUTOIGNITION NFPA RATINGS Health: 2 Flammability: 1 Reactivity: 1 REFRACTIVE INDEX FLASH POINT 190 C STABILITY Stable under ordinary conditions APPLICATIONS Cyanic acid (the isomer of fulminic acid) is an unstable (explosive), poisonous, volatile, clear liquid with the structure of H-O-C¡ÕN (the oxoacid formed from the pseudohalogen cyanide), which is readily converted to cyamelide and fulminic acid. There is another isomeric cyanic acid with the structure of H-N=C=O, called isocyanic acid. Cyanate group (and isocyanate group) can react with itself. Cyanuric acid (also called pyrolithic acid), white monoclinic crystal with the structure of [HOC(NCOH) 2N], is the trimer of cyanic acid. The trimer of isocyanic acid is called biuret. • Cyanic acid: H-N=C=O or H-O-C¡ÕN • Fulminic acid: (H-C=N-O) or H-C¡ÕN-O • Isocyanic acid: H-N=C=O • Cyanuric acid: HOC(NCOH) 2N • Biuret: (NH 2)CO) 2 NH Cyanic acid hydrolyses to ammonia and carbon dioxide in water. The salts and esters of cyanic acid are cyanates.
    [Show full text]
  • Extraction of Cyanides from Waste Solutions of Cyanidation of .Lotation
    Chemistry for Sustainable Development 12 (2004) 431436 431 Extraction of Cyanides from Waste Solutions of Cyanidation of lotation Concentrates from Kholbinskoye Gold Deposit A. A. KOCHANOV1, A. A. RYAZANTSEV1, A. A. BATOEVA2, D. B. ZHALSANOVA2, A. M. BADALYAN3 and O. V. POLYAKOV3 1Siberian Transport University, Ul. D. Kovalchuk 191, Novosibirsk 630049 (Russia) E-mail: [email protected] 2Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ul. Sakhyanovoy 6, Ulan Ude 670047 (Russia) 3A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Akademika Lavrentyeva 3, Novosibirsk 630090 (Russia) (Received April 21, 2003; in revised form January 6, 2004) Abstract Processes that occur during extraction of cyanides from cyanidation solutions using centrifugal bubbling apparatuses (CBA) as reactors have been studied. In the eddy chamber of CBA (ðÍ < 3), one can observe virtually complete removal of HCN from solution and precipitation of heavy metals in the form of insoluble x - 1 compounds. The electronic absorption spectra of solutions treated in CBA suggest that destruction of [Cu(CN)x] , + 2+ 2 oxidation of Cu to Cu by air oxygen, and oxidation of thiocyanates in the presence of SO23, forming 2 HCN and SO4 , are also accompanied by the emergence of stable intermediate products (SCN)2 and (SCN)x of oxidation in solution. INTRODUCTION formed after acidification of the waste process- ing solutions of cyanidation to ðÍ 62.5 fol- Cyanides are widely used in extraction of lowed by absorption of HCN by alkaline solu- precious metals, mainly fine gold and silver, tions.
    [Show full text]
  • United States Patent Office Patented Feb
    3,644,463 United States Patent Office Patented Feb. 22, 1972 2 agent that is introduced. Thus, for example, good yields 3,644,463 of 1,2-vinylene-bisthiocyanate are obtained by adding PRODUCTION OF ALEPHATIC 1,2-BISTHIOCYANATES acetylene gas, while the addition of ethylene results in the Richard Parke Welcher, Old Greenwich, Conn., assignor production of 1,2-dithiocyanoethane. The corresponding to American Cyanamid Company, Stamford, Conn. monoalkyl-substituted vinylene bisthiocyanates are pro No Drawing. Filed May 15, 1968, Ser. No. 729,375 duced when monoalkyl acetylene containing an alkyl radi Int, C. C07c 161/02 cal of from 1 to 16 carbn atoms are used, such as methyl U.S. C. 260-454 5 Claims acetylene, heptyne, octyne, octadecyne, and the like. Monoalkyl-dithiocyanoethanes are produced in similar O manner when monoalkylethylenes containing alkyl radi cals of 1-16 carbon atoms are used; typical of these are ABSTRACT OF THE DISCLOSURE propylene, isobutylene, octylethylene, hexadecyl-ethylene Aliphatic 1,2-bisthiocyanates are produced by first pre and the like. Dialkyl ethylenes may likewise be used, the paring a solution of thiocyanogen in a water-insoluble preferred reagents being those wherein the two alkyl sub liquid organic solvent such as toluene having an aqueous stituents taken together have a total of from 2 to 16 car solution of an inorganic halide admixed therewith, draw bon atoms. Aryl-substituted olefins such as styrene may ing off the aqueous phase, adding an alpha-olefin or acetyl also be used. The principles of the invention can also ene and reacting at a temperature below about 20° C.
    [Show full text]
  • Cyanogera Bromide and Cyanogen. by AUGUSTUSEDWARD DIXON and JOHNTAYLOR
    View Article Online / Journal Homepage / Table of Contents for this issue 974 DIXON AND TAYLOR: GI.- Cyanogera Bromide and Cyanogen. By AUGUSTUSEDWARD DIXON and JOHNTAYLOR. CYANOGENbromide, in cold aqueous solution, or in the presence of such dilute acids as do not of themselves chemically decompose it, shows no evidence of suffering ionic dissociation. The dilute aqueous solution has the same odour as the solid compound; even after long keeping it yields with silver nitrate no turbidity; it is neutral to litmus, and the pungent vapour fails to give the guaiacum and copper sulphate reaction for hydrogen cyanide ; moreover, the solution is a very feeble conductor of electricity. Although the mixture produced by treating cyanogen bromide with alkali hydroxide contains but alkali bromide and alkali cyanate, Chattaway and Wadmore are of opinion (T., 1902, 81, 199) that hypobromite must first be formed, and then reduced. That cyanate is not directly formed in the reaction with alkali hydroxide is proved from the following facts: (1) Alkali cyanate is not reduced to cyanide by hydriodic acid, ferrous sulphate and alkali, sulphurous acid, alkali sulphite, or even by treatment with aluminium and alkali hydroxide. Further, it has no action on carbamide, either alone or in presence of alkali, (2) If cyanogen bromide is treated with alkali iodide, followed -by alkali, the mixture contains cyanide, but no cyanate, and, when acidified, yields free iodine. (3) If it is treated with ferrous sulphate, and subsequently with alkali and ferric salt, the mixture on acidification gives Prussian- blue, but contains no cyanate. Published on 01 January 1913.
    [Show full text]
  • CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011
    CSAT Top-Screen Questions January 2009 Version 2.8 CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011 Change Log .........................................................................................................3 CVI Authorizing Statements...............................................................................4 General ................................................................................................................6 Facility Description.................................................................................................................... 7 Facility Regulatory Mandates ................................................................................................... 7 EPA RMP Facility Identifier....................................................................................................... 9 Refinery Capacity....................................................................................................................... 9 Refinery Market Share ............................................................................................................. 10 Airport Fuels Supplier ............................................................................................................. 11 Military Installation Supplier................................................................................................... 11 Liquefied Natural Gas (LNG) Capacity................................................................................... 12 Liquefied Natural Gas Exclusion
    [Show full text]
  • Thesis Reference
    Thesis Experimental and theoretical studies of boron and hydrogen containing compounds in relation to potential hydrogen storage and ionic conduction applications SHARMA, Manish Abstract This thesis deals with the fundamental studies of some materials containing boron-hydrogen bonds which can potentially be used either as the hydrogen storage materials (M(BH4)2, M=Alkaline earth metal), as the solid electrolytes for batteries (Na2B12H12) or as reducing agents for CO2 (Mg(BH4)2). First part of thesis deals with borohydrides (BH4-). Synthesis and characterization of halide-free Sr(BH4)2, Ba(BH4)2 and Eu(BH4)2 is reported. Crystallographic study of these compounds helped in identifying several new phases and a new species metal borohydride hydride (M2(BH4)H3). In depth study of B-H bond breaking is reported via isotope exchange reaction in Ca(BH4)2.A practical example of borohydride as reducing agent is reported by showing the reduction of CO2 with gamma-Mg(BH4)2. The second part of the thesis focuses on closoboranes derived from the B12H122- ion. Compounds of this family have recently attracted great interest as solid ionic conductors for Li and Na ions.Results of DFT calculations on isolated B12H122- anions and halogen (F, Cl or Br) substituted anions were analysed in detail. Synthesis of Na2B12(SCN)H11 is [...] Reference SHARMA, Manish. Experimental and theoretical studies of boron and hydrogen containing compounds in relation to potential hydrogen storage and ionic conduction applications. Thèse de doctorat : Univ. Genève, 2017, no. Sc. 5101 DOI : 10.13097/archive-ouverte/unige:96376 URN : urn:nbn:ch:unige-963769 Available at: http://archive-ouverte.unige.ch/unige:96376 Disclaimer: layout of this document may differ from the published version.
    [Show full text]
  • United States Patent Office 2,395,455
    Patented Feb. 26, 1946 2,395,455 UNITED STATES PATENT OFFICE 2,395,455 . DHYDRONoRPoLYCYCLOPENTADIENYL SOBOCYANATES Herman A. Bruson, Philadelphia, Pa., assignor to The Resinous Products & Chemical Company, Philadelphia, Pa., a corporation of Delaware No Drawing. Application January 13, 1945, Seria No. 57239 9 Claims (CL 260-454) This invention relates to addition-rearrange endomethylene group and possess two double. ment products of nascent thiocyanic acid (HSCN) bonds, only one of which, however, responds to and polycyclopentadienes having two double the reaction with thiocyanic acid even when in bonds and one to four endomethylene cycles per excess. Individual, relatively pure, polycyclo molecule. It further relates to a method for the 5 pentadienes may be used or mixtures of these preparation of these new products. hydrocarbons. In accordance with the disclosure of the pres The reaction of polycyclopentadienes and nas ent application, which is a continuation-in-part cent thiocyanic acid takes place particularly rap of application Serial No. 476,646, filed February idly in the presence of water-at temperatures 20, 1943, thiocyanic acid is reacted in the pres 0 of about 60° C. to about 110° C., although some ence of water with polycyclopentadienes having what lower and higher temperatures may be used. the formula: In the preferred temperature range little, if any, polymerization of thiocyanic acid occurs. This acid is generated in situ from a thiocyanate salt 5 and a strong, non-Oxidizing acid which is strong er than thiocyanic acid. The reaction between polycyclopentadiene and thiocyanic acid is carried out by mixing a salt of thiocyanic acid, water, and polycyclopentadi so ene, heating the mixture to a reacting tempera ture, preferably 60° C.
    [Show full text]