Energetics and Biomechanics of Locomotion by Red Kangaroos (Macropus Rufus)

Total Page:16

File Type:pdf, Size:1020Kb

Energetics and Biomechanics of Locomotion by Red Kangaroos (Macropus Rufus) Comparative Biochemistry and Physiology Part B 120 (1998) 41–49 Review Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus) Rodger Kram a,*, Terence J. Dawson b a Department of Integrati6e Biology, Uni6ersity of California, Berkeley CA 94720-3140, USA b School of Biological Sciences, Uni6ersity of New South Wales, Sydney NSW 2052, Australia Received 15 May 1997; received in revised form 22 September 1997; accepted 7 October 1997 Abstract As red kangaroos hop faster over level ground, their rate of oxygen consumption (indicating metabolic energy consumption) remains nearly the same. This phenomenon has been attributed to exceptional elastic energy storage and recovery via long compliant tendons in the legs. Alternatively, red kangaroos may have exceptionally efficient muscles. To estimate efficiency, we measured the metabolic cost of uphill hopping, where muscle fibers must perform mechanical work against gravity. We found that −1 uphill hopping was much more expensive than level hopping. The maximal rate of oxygen consumption measured (3 ml O2 kg s−1) exceeds all but a few vertebrate species. However, efficiency values were normal, 30%. At faster level hopping speeds the effective mechanical advantage of the extensor muscles of the ankle joint remained the same. Thus, kangaroos generate the same muscular force at all speeds but do so more rapidly at faster hopping speeds. This contradicts a recent hypothesis for what sets the cost of locomotion. The cost of transport (J kg−1 m−1) decreases at faster hopping speeds, yet red kangaroos prefer to use relatively slow speeds that avoid high levels of tendon stress. © 1998 Elsevier Science Inc. All rights reserved. Keywords: Locomotion; Biomechanics; Kangaroos; Metabolic energy; Oxygen consumption; Energetics; Musculoskeletal; Tendon; Macropus rufus 1. Introduction fully satisfactory answers. What mechanisms can ac- count for the remarkable energetics? Why don’t red Some 25 years ago, Dawson and CR Taylor reported kangaroos hop at very fast speeds on a regular basis, that red kangaroos (Macropus rufus)1 consume since it appears to be a cheaper way to travel a given metabolic energy at nearly the same rate whether they distance? Although this paper does not fully resolve hop slowly (2 m s−1) or as fast as6ms−1 [17]. In the these questions, we present some unique data that adds ensuing years, several species of wallabies have also new insight is presented. been shown to have a nearly constant rate of energy In the original report, Dawson and Taylor [17] sug- consumption across hopping speed [5,48]. The biome- gested that the remarkable energetics of hopping are chanics of the phenomenon have been investigated ‘‘probably due to a greater storage and recovery of [4,5,7,9,24,30,35,37] but two questions still do not have energy in the elastic elements... in the rear limbs’’. Several research groups have explored this possibility. Alexander and Vernon [4] estimated that at6ms−1, elastic energy storage saves a red kangaroo up to 70% * Corresponding author. Tel.: +1 510 6439370; fax: +1 510 6436264; e-mail: [email protected] of the metabolic energy which would otherwise be 1 In 1973, this species was known as Megaleia rufa. required. However, subsequent measurements suggest 0305-0491/98/$19.00 © 1998 Elsevier Science Inc. All rights reserved. PII S0305-0491(98)00022-4 42 R. Kram, T.J. Dawson / Comparati6e Biochemistry and Physiology, Part B 120 (1998) 41–49 that some of their assumptions were in error and that approach or by the newer cost of generating force this 70% value is probably too high [9]. Ker et al. approach. [30] estimated that in the wallaby, Macropus rufo- Regardless of the mechanism behind the energetics, griseus, at least one third of the mechanical energy the behavior of red kangaroos seems to violate an- per hop is stored and recovered elastically. Griffiths other general ‘rule’ of animal locomotion. That ‘rule’ [24] studied the wallaby, Thylogale billardierii, using a is that within each gait, animals prefer to use the combination of kinematic and force sensing tendon speed that minimizes the amount of energy required buckles. He reported about 41% savings due to elastic to travel a unit distance (i.e. minimize the cost of energy reutilization but no increase in elastic savings transport). This idea was established for human walk- at faster speeds. Most recently, Biewener and ing more than 60 years ago [34]. Hoyt and Taylor Baudinette [9] studied the Tammar wallaby, Macropus [27] demonstrated that the idea applies to the three eugenii, over a range of hopping speeds and suggested basic gaits of quadrupeds and there are many other that without the elastic energy storage in the ankle examples in nature [3]. Because metabolic rate re- extensor tendons, the metabolic rate would be nearly mains nearly constant at faster hopping speed in red twice as great as that observed. kangaroos, the cost per unit distance monotonically Traditionally, there has been an assumed link be- decreases. If red kangaroos were to follow the rule of tween the metabolic cost and the mechanical work preferring to travel at the speed with the lowest cost done in running [13]. However, muscle consumes of transport, they would prefer to hop at their maxi- metabolic energy when it generates force isometrically mum speed on a regular basis. Red kangaroos are even though it does no work. The idea has emerged reported to be capable of hopping as fast as 14 m that tendons act largely as springs and that muscles s−1 yet they normally travel at much slower speeds act primarily as tension generators. If true, the [15]. All measurements of oxygen consumption for metabolic cost of level running would be dominated red kangaroo locomotion have been made during by the cost of generating muscular force rather than treadmill hopping where air resistance is zero. reflecting the mechanical work done by muscle Baudinette et al. [5] suggested that at higher speeds, [31,44,45]. Recent direct measurements of muscle fiber air resistance may play an increasingly important role length changes in running turkeys support this view such that a minimum cost of transport would be of muscles as primarily acting as tension generators reached at about 12 m s−1. However, there are no [39]. However, even if elastic storage and recovery of empirical metabolic data beyond6ms−1. Moreover, mechanical energy is such that no additional mechani- red kangaroos rarely hop as fast as 12 m s−1. cal work output of muscle is needed at faster hopping Biomechanical limitations may explain the behav- speeds, an energetic puzzle still remains. ioral preference of red kangaroos for moving at According to the cost of generating force approach speeds below the energetically optimal speed. In some [31], metabolic rate increases at faster speeds because situations, quadrupeds appear to select their gait muscle forces must be developed more quickly, re- based on acceptable levels of musculoskeletal stress quiring muscle fibers with faster intrinsic speeds. rather than minimizing metabolic cost [21]. Animals Muscle fibers with faster intrinsic speeds are less eco- appear to choose speeds that allow for some safety nomical force generators. Thus, in most animals, factor in terms of avoiding dangerous levels of bone, metabolic cost increases with running or hopping muscle or tendon stress (stress=force/cross sectional speed. Kram and Taylor [31] proposed that the time area) [11,36]. While Biewener and Baudinette’s [9] of foot–ground contact reflects the time of muscle data for Tammar wallabies (B6 kg) indicate that force development. In a variety of animals, across a muscle and tendon stresses do not approach critical wide speed range, they found that metabolic rate is levels even at speeds of 10 m s−1, Bennett and GC inversely proportional to foot–ground contact time Taylor’s [7] insightful analysis suggests that large hop- [31]. ping macropodids might easily reach critical tendon Macropodids maintain a nearly constant hop fre- stress levels. However, Bennett and Taylor’s [7] allo- quency over their normal speed range but the fraction metric comparison did not examine a large speed of the stride period when the feet are on the ground range for any one species. Thus, better estimates of (duty factor) decreases at faster speeds [7] Therefore, mechanical stresses in red kangaroos over a range of contact time decreases at faster hopping speeds. Thus, speeds are needed to consider if stress levels can ex- red kangaroos appear to be an exception to the cost plain their locomotor behavior. of generating force approach; at faster hopping Given these unresolved issues, three experiments speeds, contact time decreases but metabolic rate re- were conducted that pertain to the energetics and mains nearly constant. At present, the unusual en- biomechanics of red kangaroo locomotion. ergetics of red kangaroo locomotion are not 1. During level hopping, muscle fibers may do little explained by the traditional mechanical work based work because the tendons can store and recover en- R. Kram, T.J. Dawson / Comparati6e Biochemistry and Physiology, Part B 120 (1998) 41–49 43 ergy from hop to hop. On the other hand, the muscles 2.2. Oxygen consumption measurements of red kangaroos may be exceptionally efficient. We wanted to understand the various functions of muscle One female (body mass 20.4 kg) was cooperative and during locomotion (perform work versus generate ten- readily trained to hop on a motorized treadmill. We sion) and the associated metabolic cost. We hypothe- attempted to train a much larger male kangaroo to hop sized that red kangaroos have exceptionally efficient on the treadmill but we were unsuccessful. The tread- muscles compared to other similarly sized animals. To mill was located in a temperature controlled room that test this hypothesis, we measured the rate of oxygen was cooled to approximately 5°C to prevent the animal consumption during uphill hopping and calculated the from overheating.
Recommended publications
  • Red-Necked Wallaby (Bennett’S Wallaby) Macropus Rufogriseus
    Red-necked Wallaby (Bennett’s Wallaby) Macropus rufogriseus Class: Mammalia Order: Diprotodontia Family: Macropodidae Characteristics: Red-necked wallabies get their name from the red fur on the back of their neck. They are also differentiated from other wallabies by the white cheek patches and larger size compared to other wallaby species (Bioweb). The red-necked wallaby’s body fur is grey to reddish in color with a white or pale grey belly. Their muzzle, paws and toes are black (Australia Zoo). Wallabies look like smaller kangaroos with their large hindquarters, short forelimbs, and long, muscular tails. The average size of this species is 27-32 inches in the body with a tail length of 20-28 inches. The females weigh about 25 pounds while the males weigh significantly more at 40 pounds. The females differ from the males of the species in that they have a forward opening pouch (Sacramento Zoo). Range & Habitat: Flat, high-ground eucalyptus Behavior: Red-necked wallabies are most active at dawn and dusk to avoid forests near open grassy areas in the mid-day heat. In the heat, they will lick their hands and forearms to Tasmania and South-eastern promote heat loss. (Animal Diversity) These wallabies are generally solitary Australia. but do forage in small groups. The males will have boxing matches with one another to determine social hierarchy within populations. They can often be seen punching, wrestling, skipping, dancing, standing upright, grabbing, sparring, pawing, and kicking. All members of the kangaroo and wallaby family travel by hopping. Red-necked wallabies can hop up to 6 feet in the air.
    [Show full text]
  • Tammar Wallaby Macropus Eugenii (Desmarest, 1817)
    Tammar Wallaby Macropus eugenii (Desmarest, 1817) Description Dark, grizzled grey-brown above, becoming rufous on the sides of the body and the limbs, especially in males. Pale grey-buff below. Other Common Names Dama Wallaby (South Australia) Distribution The Western Australian subspecies of the Tammar Wallaby was previously distributed throughout most of the south-west of Western Australia from Kalbarri National Park to Cape Arid on the south coast Photo: Babs & Bert Wells/DEC and extending to western parts of the Wheat belt. Size The Tammar Wallaby is currently known to inhabit three islands in the Houtman Abrolhos group (East and West Wallabi Island, and an introduced population on North Island), Garden Island near Perth, Kangaroo Island wallabies Middle and North Twin Peak Islands in the Archipelago of the Head and body length Recherche, and several sites on the mainland - including, Dryandra, Boyagin, Tutanning, Batalling (reintroduced), Perup, private property 590-680 mm in males near Pingelly, Jaloran Road timber reserve near Wagin, Hopetoun, 520-630 mm in females Stirling Range National Park, and Fitzgerald River National Park. The Tammar Wallaby remains relatively abundant at these sites which Tail length are subject to fox control. 380-450 mm in males They have been reintroduced to the Darling scarp near Dwellingup, 330-440 mm in females Julimar Forest near Bindoon, state forest east of Manjimup, Avon Valley National Park, Walyunga National Park, Nambung National Park and to Karakamia and Paruna Sanctuaries. Weight For further information regarding the distribution of this species Western Australian wallabies please refer to www.naturemap.dec.wa.gov.au 2.9-6.1 kg in males Habitat 2.3-4.3 kg in females Dense, low vegetation for daytime shelter and open grassy areas for feeding.
    [Show full text]
  • Ecology of the Koala, Phascolarctos Cinereus
    I give eonsent to this eopy of ny thesis, r,,rhen d.eposited. in the Universit.y Library, being avail-abl-e 1'or loan and. photocopying. Date . ?! ÛP,"+ .13:r.o.. S igned. CONTENTS SUM MA RY ACKNOWLEDGEMENTS lil INTRODUCTION I PA,RT I FIELD STUDIES INTRODUCTION O.l Kongoroo lslqnd B O.2 Floro ond Founo il 0.3 Philpott's Study l3 O.4 Methods t5 0.5 Results 25 I THE DISTRIBUTION AND ABUN DANCE OF KOALAS I. I The Distribution of Koalos 29 | .2 The Abundonce of Koo lqs 34 2 BREEDING, GROWTH AND DEVELOPA,\E¡.¡T 2.1 Breeding 39 2.2 Pouch Young 40 2.3 Growth, Ageing ond LongevitY 49 2.4 Sexucrl Moturity 54 I SUMMARY The distribution of koalas u'ithin Flinders Chase was fou-nd to be made up of areas centred on the occurrences of manna guilr , Euca.ly¡rtus viminalis. Some koalas br:owsed chiefly iri trees of other species but tlrere liÌere ferv animals, if any, that clid not feed on the foliage of E. r'iminalis rnore or less regularly. The composition of populations in sever¿rl sürcly areas changed from üirne to time but over aE long as three successir¡e years of observat:lorr the numhers remained ::emarkably constant. The koalas bred in the surnmer: arrd early auturnn, and a high proporüon of feinales successfully raised a single young to independence each year. Growth of the yourìg was :lapid over the first Lhree yearr!; it slowed. down thereafter and anirnals reached firll size in tlieir fourth and fiffh years.
    [Show full text]
  • Antipredator Behaviour of Red-Necked Pademelons: a Factor Contributing to Species Survival?
    Animal Conservation (2002) 5, 325–331 © 2002 The Zoological Society of London DOI:10.1017/S1367943002004080 Printed in the United Kingdom Antipredator behaviour of red-necked pademelons: a factor contributing to species survival? Daniel T. Blumstein1,2, Janice C. Daniel1,2, Marcus R. Schnell2,3, Jodie G. Ardron2,4 and Christopher S. Evans4 1 Department of Organismic Biology, Ecology and Evolution, 621 Charles E. Young Drive South, University of California, Los Angeles, CA 90095-1606, USA 2 Cooperative Research Centre for the Conservation and Management of Marsupials, Macquarie University, Sydney, NSW 2109, Australia 3 Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia 4 Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia (Received 15 January 2002; accepted 17 June 2002) Abstract Australian mammals have one of the world’s worst records of recent extinctions. A number of stud- ies have demonstrated that red foxes (Vulpes vulpes) have a profound effect on the population biol- ogy of some species. However, not all species exposed to fox predation have declined. We studied the antipredator behaviour of a species that has not declined – the red-necked pademelon (Thylogale thetis), and contrasted it with previous studies on a species that has declined – the tammar wallaby (Macropus eugenii), to try to understand behavioural factors associated with survival. We focused on two antipredator behaviours: predator recognition and the way in which antipredator vigilance is influ- enced by the presence of conspecifics. We found that predator-naïve pademelons responded to the sight of certain predators, suggesting that they had some degree of innate recognition ability.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • Post-Release Monitoring of Western Grey Kangaroos (Macropus Fuliginosus) Relocated from an Urban Development Site
    animals Article Post-Release Monitoring of Western Grey Kangaroos (Macropus fuliginosus) Relocated from an Urban Development Site Mark Cowan 1,* , Mark Blythman 1, John Angus 1 and Lesley Gibson 2 1 Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Wildlife Research Centre, Woodvale, WA 6026, Australia; [email protected] (M.B.); [email protected] (J.A.) 2 Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-8-9405-5141 Received: 31 August 2020; Accepted: 5 October 2020; Published: 19 October 2020 Simple Summary: As a result of urban development, 122 western grey kangaroos (Macropus fuliginosus) were relocated from the outskirts of Perth, Western Australia, to a nearby forest. Tracking collars were fitted to 67 of the kangaroos to monitor survival rates and movement patterns over 12 months. Spotlighting and camera traps were used as a secondary monitoring technique particularly for those kangaroos without collars. The survival rate of kangaroos was poor, with an estimated 80% dying within the first month following relocation and only six collared kangaroos surviving for up to 12 months. This result implicates stress associated with the capture, handling, and transport of animals as the likely cause. The unexpected rapid rate of mortality emphasises the importance of minimising stress when undertaking animal relocations. Abstract: The expansion of urban areas and associated clearing of habitat can have severe consequences for native wildlife. One option for managing wildlife in these situations is to relocate them.
    [Show full text]
  • Biparental Care and Obligate Monogamy in the Rock-Haunting Possum, Petropseudes Dahli, from Tropical Australia
    ANIMAL BEHAVIOUR, 2000, 59, 1001–1008 doi:10.1006/anbe.1999.1392, available online at http://www.idealibrary.com on Biparental care and obligate monogamy in the rock-haunting possum, Petropseudes dahli, from tropical Australia MYFANWY J. RUNCIE CRC for Sustainable Development of Tropical Savannas, Northern Territory University (Received 10 May 1999; initial acceptance 9 June 1999; final acceptance 30 December 1999; MS. number: 6222R) Monogamy is rare among mammals, including marsupials. I studied the social organization of the little-known rock-haunting possum in Kakadu National Park in Northern Australia. Preliminary field observations revealed that the majority of possums live in cohesive groups consisting of a female–male pair and young, suggesting a monogamous mating system. I used radiotracking to determine home range patterns, and observations to measure the degree of symmetry between the sexes in maintaining the pair bond and initiating changes in group activity. I also measured the extent of maternal and paternal indirect and direct care. Nocturnal observations and radiotelemetric data from 3 years showed that six possum groups maintained nonoverlapping home ranges with long-term consorts and young sharing dens. Males contributed more than females to maintaining the pair bond but they contributed equally to parental care. For the first time, the parental behaviours of bridge formation, embracing, marshalling of young, sentinel behaviour and tail beating are reported in a marsupial. Males participated to a high degree in maintaining relationships with one mate and their offspring. Collectively, these results suggest that the mating system of this wild population of rock-haunting possums is obligate social monogamy.
    [Show full text]
  • Dipodomys Ingens)
    Species Status Assessment Report for the Giant Kangaroo Rat (Dipodomys ingens) Photo by Elizabeth Bainbridge Version 1.0 August 2020 Prepared by the U.S. Fish and Wildlife Service August 2020 GKR SSA Report – August 2020 EXECUTIVE SUMMARY The U.S. Fish and Wildlife Service listed the giant kangaroo rat (Dipodomys ingens) as endangered under the Endangered Species Act in 1987 due to the threats of habitat loss and widespread rodenticide use (Service 1987, entire). The giant kangaroo rat is the largest species in the genus that contains all kangaroo rats. The giant kangaroo rat is found only in south-central California, on the western slopes of the San Joaquin Valley, the Carrizo and Elkhorn Plains, and the Cuyama Valley. The preferred habitat of the giant kangaroo rat is native, sloping annual grasslands with sparse vegetation (Grinnell, 1932; Williams, 1980). This report summarizes the results of a species status assessment (SSA) that the U. S. Fish and Wildlife Service (Service) completed for the giant kangaroo rat. To assess the species’ viability, we used the three conservation biology principles of resiliency, redundancy, and representation (together, the 3Rs). These principles rely on assessing the species at an individual, population, and species level to determine whether the species can persist into the future and avoid extinction by having multiple resilient populations distributed widely across its range. Giant kangaroo rats remain in fragmented habitat patches throughout their historical range. However, some areas where giant kangaroo rats once existed have not had documented occurrences for 30 years or more. The giant kangaroo rat is found in six geographic areas (units), representing the northern, middle, and southern portions of the range.
    [Show full text]
  • Kangaroos, Dendrolagus Matschiei (Macropodidae), in Upper Montane Forest
    Spatial Requirements of Free-Ranging Huon Tree Kangaroos, Dendrolagus matschiei (Macropodidae), in Upper Montane Forest Gabriel Porolak1,2,3*, Lisa Dabek3, Andrew K. Krockenberger1,2 1 Centre for Tropical Biodiversity and Climate Change, James Cook University, Cairns, Australia, 2 School of Marine and Tropical Biology, James Cook University, Cairns, Australia, 3 Department of Field Conservation, Woodland Park Zoo, Seattle, Washington, United States of America Abstract Tree kangaroos (Macropodidae, Dendrolagus) are some of Australasia’s least known mammals. However, there is sufficient evidence of population decline and local extinctions that all New Guinea tree kangaroos are considered threatened. Understanding spatial requirements is important in conservation and management. Expectations from studies of Australian tree kangaroos and other rainforest macropodids suggest that tree kangaroos should have small discrete home ranges with the potential for high population densities, but there are no published estimates of spatial requirements of any New Guinea tree kangaroo species. Home ranges of 15 Huon tree kangaroos, Dendrolagus matschiei, were measured in upper montane forest on the Huon Peninsula, Papua New Guinea. The home range area was an average of 139.6626.5 ha (100% MCP; n = 15) or 81.8628.3 ha (90% harmonic mean; n = 15), and did not differ between males and females. Home ranges of D. matschiei were 40–100 times larger than those of Australian tree kangaroos or other rainforest macropods, possibly due to the impact of hunting reducing density, or low productivity of their high altitude habitat. Huon tree kangaroos had cores of activity within their range at 45% (20.964.1 ha) and 70% (36.667.5 ha) harmonic mean isopleths, with little overlap (4.862.9%; n = 15 pairs) between neighbouring females at the 45% isopleth, but, unlike the Australian species, extensive overlap between females (20.865.5%; n = 15 pairs) at the complete range (90% harmonic mean).
    [Show full text]
  • Exotic to Australia
    Fact sheet Introductory statement Foot and mouth disease (FMD) is a highly contagious viral vesicular disease of cloven hoofed animals. It is a major issue in international trade in livestock and livestock products. Australia is free of the disease and it is vital that it remains so. The 2001 outbreak in the United Kingdom resulted in over 10 million cattle and sheep being slaughtered at a cost of over GBP 8 billion in order to eradicate the disease. This fact sheet summarises what is known about FMD and Australian native wildlife. WHA also manages an fact sheet that briefly summarises information on FMD and feral animals “Foot and Mouth Disease (General Information)”. Aetiology and natural hosts FMD is caused by an aphthovirus belonging to the family Picornaviridae. It is a single stranded non enveloped 25 nm RNA virus. There are seven serotypes: A, O, C, SAT 1, SAT 2, SAT 3, and Asia 1. All cloven hoofed animals are considered susceptible. Cases have also been reported in elephants, hedgehogs and some rodents. World distribution and occurrences in Australia FMD is endemic in Africa, the Middle East, Asia and parts of South America. The disease has almost been eradicated from Europe with the most recent cases occurring in the United Kingdom and Cyprus in 2007. FMD has not occurred in Australia for over 130 years, and then only in livestock. Minor outbreaks occurred in 1801, 1804, 1871 and 1872 (Geering et al 1995). However, a case was reported in an eastern grey kangaroo (Macropus giganteus) held in a zoo in India (Bhattacharya et al 2003).
    [Show full text]
  • The Kangaroo Island Tammar Wallaby
    The Kangaroo Island Tammar Wallaby Assessing ecologically sustainable commercial harvesting A report for the Rural Industries Research and Development Corporation by Margaret Wright and Phillip Stott University of Adelaide March 1999 RIRDC Publication No 98/114 RIRDC Project No. UA-40A © 1999 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0 642 57879 6 ISSN 1440-6845 "The Kangaroo Island Tammar Wallaby - Assessing ecologically sustainable commercial harvesting " Publication No: 98/114 Project No: UA-40A The views expressed and the conclusions reached in this publication are those of the author and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Researcher Contact Details Margaret Wright & Philip Stott Department of Environmental Science and Management University of Adelaide ROSEWORTHY SA 5371 Phone: 08 8303 7838 Fax: 08 8303 7956 Email: [email protected] [email protected] Website: http://www.roseworthy.adelaide.edu.au/ESM/ RIRDC Contact Details Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6272 4539 Fax: 02 6272 5877 Email: [email protected] Website: http://www.rirdc.gov.au Published in March 1999 Printed on environmentally friendly paper by Canprint ii Foreword The Tammar Wallaby on Kangaroo Island, South Australia, is currently managed as a vertebrate pest.
    [Show full text]
  • Eastern Grey Kangaroo Macropus Giganteus Shaw 1790 As a Vulnerable Species in Part 1 of Schedule 2 of the Act
    NSW SCIENTIFIC COMMITTEE Preliminary Determination The Scientific Committee, established by the Threatened Species Conservation Act, has made a Preliminary Determination NOT to support a proposal to list the Eastern Grey Kangaroo Macropus giganteus Shaw 1790 as a Vulnerable species in Part 1 of Schedule 2 of the Act. Rejection of nominations is provided for by Part 2 of the Act. The Scientific Committee has found that: 1. Macropus giganteus Shaw 1790 (family Macropodidae), known as the Eastern Grey Kangaroo, is a large, highly sexually dimorphic macropod. Head-body to 2302 mm (males), 1857 mm (females); tail to 1090 mm (males), 842 mm (females); weight to 85 kg (males), 42 kg (females). Grey-brown dorsally, paler ventrally and on legs. Ears long, dark brown outside, pale grey inside with whitish fringe. Distal third of tail blackish. Muzzle finely haired (Menkhorst and Knight 2001; Johnson 2006; Coulson 2008). 2. Macropus giganteus is endemic to Australia. It is widely distributed in eastern Australia from Cape York Peninsula, Queensland, to far southeast South Australia and northeastern Tasmania. It is found throughout New South Wales (NSW). In western NSW, northwestern Victoria and southwestern Queensland M. giganteus is sympatric with its sister species the Western Grey Kangaroo (Macropus fuliginosus) (Johnson 2006; Coulson 2008). Eastern and Western Grey Kangaroos were recognised as separate species only in the 1970s (Kirsch and Poole 1972). Macropus giganteus mostly occurs where annual rainfall is >250 mm (Caughley et al. 1987b) in sclerophyll forest, woodland (including mallee), shrubland and heathland. It can also occur in modified habitats including farmland with remnant native vegetation, pine plantations and golf courses (Menkhorst and Knight 2001; Johnson 2006; Coulson 2008; Dawson 2012).
    [Show full text]