Post- Operative Pain- Relief

Total Page:16

File Type:pdf, Size:1020Kb

Post- Operative Pain- Relief PPoosstt-- OOppeerraattiivvee PPaaiinn-- RReelliieeff • Pain is often the patient’s presenting symptom. It can provide useful clinical information and it is your responsibility to use this information to help the patient and alleviate suffering. • Manage pain wherever you see patients (emergency, operating room and on the ward) and anticipate their needs for pain management after surgery and discharge. • Do not unnecessarily delay the treatment of pain; for example, do not transport a patient without analgesia simply so that the next practitioner can appreciate how much pain the person is experiencing. • Pain management is our job. Pain Management and Techniques • Effective analgesia is an essential part of postoperative management. • Important injectable drugs for pain are the opiate analgesics. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as diclofenac (1 mg/kg) and ibuprofen can also be given orally and rectally, as can paracetamol (15 mg/kg). • There are three situations where an opiate might be given: pre- operatively, intra-operatively, post-operatively. •• Opiate premedication is rarely indicated, although an injured patient in pain may have been given an opiate before coming to the operating room. • Opiates given pre- or intraoperatively have important effects in the postoperative period since there may be delayed recovery and respiratory depression, even necessitating mechanical ventilation. (continued to next page) PPoosstt-- OOppeerraattiivvee PPaaiinn-- RReelliieeff ((ccoonnttiiinnuueedd)) • Short acting opiate fentanyl is used intra-operatively to avoid this prolonged effect. • Naloxone antagonizes (reverses) all opiates, but its effect quickly wears off. • Commonly available inexpensive opiates are pethidine and morphine. • Morphine has about ten times the potency and a longer duration of action than pethidine. (continued next page) • Ideal way to give analgesia postoperatively is to: - Give a small intravenous bolus of about a quarter or a third of the maximum dose (e.g. 25 mg pethidine or 2.5 mg morphine for an average adult) - Wait for 5–10 minutes to observe the effect: the desired effect is analgesia, but retained consciousness - Estimate the correct total dose (e.g. 75 mg pethidine or 7.5 mg morphine) and give the balance intramuscularly. - With this method, the patient receives analgesia quickly and the correct dose is given. • If opiate analgesia is needed on the ward, it is most usual to give an intramuscular regimen: ¾ Morphine: – Age 1 year to adult: 0.1–0.2 mg/kg – Age 3 months to 1 year: 0.05–0.1 mg/kg ¾ Pethidine: give 7–10 times the above doses if using pethidine. • Opiate analgesics should be given cautiously if the age is less than 1 year. They are not recommended for babies aged less than 3 months unless very close monitoring in a neonatal intensive care unit is available. (continued to next page) PPoosstt-- OOppeerraattiivvee PPaaiinn RReelliieeff ((ccoonnttiiinnuueedd)) Anaesthesia & Pain Control in Children • Ketamine anaesthesia is widely used for children in rural centres (see pages 14–14 to 14–21), but is also good for pain control. • Children suffer from pain as much as adults, but may show it in different ways. • Make surgical procedures as painless as possible: - Oral paracetamol can be given several hours prior to operation - Local anaesthetics (bupivacaine 0.25%, not to exceed 1 ml/kg) administered in the operating room can decrease incisional pain - Paracetamol (10–15 mg/kg every 4–6 hours) administered by mouth or rectally is a safe and effective method for controlling postoperative pain - For more severe pain, use intravenous narcotics (morphine sulfate 0.05–0.1 mg/kg IV) every 2–4 hours - Ibuprofen 10 mg/kg can be administered by mouth every 6–8 hours - Codeine suspension 0.5–1 mg/kg can be administered by mouth every 6 hours, as needed. .
Recommended publications
  • Effect of Intranasal Ketamine Vs Fentanyl on Pain
    1 PROTOCOL SYNOPSIS 2 STUDY TITLE: 3 Pain Reduction with Intranasal Medications for Extremity Injuries (PRIME): A Randomized Clinical 4 Noninferiority Trial of Intranasal Ketamine vs. Fentanyl 5 6 PROTOCOL TITLE 7 Pain Reduction with Intranasal Medications for Extremity injuries (PRIME) 8 9 PRINCIPAL INVESTIGATOR: 10 Theresa M. Frey, MD 11 Assistant Professor Clinical Pediatrics 12 Division of Pediatric Emergency Medicine 13 Cincinnati Children’s Hospital Medical Center 14 513-636-7966 15 [email protected] 16 17 CO-INVESTIGATORS: 18 Matthew R. Mittiga, MD 19 Todd A. Florin, MD, MSCE 20 Michelle C. Caruso, PharmD, BCPS 21 Nanhua Zhang, PhD 22 Yin Zhang, MS 23 24 I. ABSTRACT 25 26 Introduction: Inadequate pain control in the emergency department, particularly in the pediatric 27 population, is a major health concern. The intranasal route of medication administration is gaining 28 popularity secondary to its rapid onset of action, minimal discomfort for the patient and relative 29 simplicity. When pediatric patients present with moderate to severe pain from traumatic injuries, 30 opioids are currently the most frequently used class of analgesia, but they may not always be the best 31 option for numerous reasons. Sub-dissociative dosing of ketamine has been shown to be an effective 32 alternative to opioids in providing adequate pain relief. 33 34 Objectives: The objectives of this study are to 1) determine if intranasal ketamine is non-inferior to 35 intranasal fentanyl in reduction of pain in children presenting with extremity injuries and 2) define and 36 compare the level of sedation and respiratory side effect profile associated with intranasal ketamine and 37 fentanyl.
    [Show full text]
  • Opioid Tolerance in Methadone Maintenance Treatment: Comparison
    Gutwinski et al. Harm Reduction Journal (2016) 13:7 DOI 10.1186/s12954-016-0095-0 RESEARCH Open Access Opioid tolerance in methadone maintenance treatment: comparison of methadone and levomethadone in long-term treatment Stefan Gutwinski*, Nikola Schoofs, Heiner Stuke, Thomas G. Riemer, Corinde E. Wiers and Felix Bermpohl Abstract Background: This study aimed to investigate the development of opioid tolerance in patients receiving long-term methadone maintenance treatment (MMT). Methods: A region-wide cross-sectional study was performed focusing on dosage and duration of treatment. Differences between racemic methadone and levomethadone were examined. All 20 psychiatric hospitals and all 110 outpatient clinics in Berlin licensed to offer MMT were approached in order to reach patients under MMT fulfilling the DSM IV criteria of opiate dependence. In the study, 720 patients treated with racemic methadone or levomethadone gave information on the dosage of treatment. Out of these, 679 patients indicated the duration of MMT. Results: Treatment with racemic methadone was reported for 370 patients (54.5 %), with levomethadone for 309 patients (45.5 %). Mean duration of MMT was 7.5 years. We found a significant correlation between dosage and duration of treatment, both in a conjoint analysis for the two substances racemic methadone and levomethadone and for each substance separately. These effects remained significant when only patients receiving MMT for 1 year or longer were considered, indicating proceeding tolerance development in long-term treatment. When correlations were compared between racemic methadone and levomethadone, no significant difference was found. Conclusions: Our data show a tolerance development under long-term treatment with both racemic methadone and levomethadone.
    [Show full text]
  • Biased Versus Partial Agonism in the Search for Safer Opioid Analgesics
    molecules Review Biased versus Partial Agonism in the Search for Safer Opioid Analgesics Joaquim Azevedo Neto 1 , Anna Costanzini 2 , Roberto De Giorgio 2 , David G. Lambert 3 , Chiara Ruzza 1,4,* and Girolamo Calò 1 1 Department of Biomedical and Specialty Surgical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; [email protected] (J.A.N.); [email protected] (G.C.) 2 Department of Morphology, Surgery, Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; [email protected] (A.C.); [email protected] (R.D.G.) 3 Department of Cardiovascular Sciences, Anesthesia, Critical Care and Pain Management, University of Leicester, Leicester LE1 7RH, UK; [email protected] 4 Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44122 Ferrara, Italy * Correspondence: [email protected] Academic Editor: Helmut Schmidhammer Received: 23 July 2020; Accepted: 23 August 2020; Published: 25 August 2020 Abstract: Opioids such as morphine—acting at the mu opioid receptor—are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in β-arrestin 2 gene knockout (βarr2( / )) animals indicate that morphine analgesia is potentiated − − while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in βarr2( / ) mice. Moreover, − − studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs.
    [Show full text]
  • Effects of Prophylactic Ketamine and Pethidine to Control Postanesthetic Shivering: a Comparative Study
    Biomedical Research and Therapy, 5(12):2898-2903 Original Research Effects of prophylactic ketamine and pethidine to control postanesthetic shivering: A comparative study Masoum Khoshfetrat1, Ali Rosom Jalali2, Gholamreza Komeili3, Aliakbar Keykha4;∗ ABSTRACT Background: Shivering is an undesirable complication following general anesthesia and spinal anesthesia, whose early control can reduce postoperative metabolic and respiratory complications. Therefore, this study aims to compare the effects of prophylactic injection of ketamine and pethi- dine on postoperative shivering.Methods: This double-blind clinical trial was performed on 105 patients with short-term orthopedic and ENT surgery. The patients were randomly divided into three groups; 20 minutes before the end of the surgery, 0.4 mg/kg of pethidine was injected to the first group, 0.5 mg/kg of ketamine was injected to the second group, and normal saline was injected to the third group. After the surgery, the tympanic membrane temperature was measured at 0, 10, 20, and 30 minutes. The shivering was also measured by a four-point grading from zero (no shiv- ering) to four (severe shivering). Data were analyzed by one-way ANOVA, Kruskal Wallis, Chi-square 1Doctor of Medicine (MD), Fellow of and Pearson correlation. Results: The mean age of patients was 35.811.45 years in the ketamine Critical Care Medicine (FCCM), group, 34.811.64 years in the normal saline group, and 33.1110.5 years in the pethidine group. Department of Anesthesiology and The one-way ANOVA showed no significant difference in the mean age between the three groups Critical Care, Khatam-Al-Anbiya (P=0.645).
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Nitrous Oxide in Emergency Medicine Í O’ Sullivan, J Benger
    214 ANALGESIA Emerg Med J: first published as 10.1136/emj.20.3.214 on 1 May 2003. Downloaded from Nitrous oxide in emergency medicine Í O’ Sullivan, J Benger ............................................................................................................................. Emerg Med J 2003;20:214–217 Safe and predictable analgesia is required for the identify these zones as there is considerable vari- potentially painful or uncomfortable procedures often ation between people. He also emphasised the importance of the patient’s pre-existing beliefs. If undertaken in an emergency department. The volunteers expect to fall asleep while inhaling characteristics of an ideal analgesic agent are safety, 30% N2O then a high proportion do so. An appro- predictability, non-invasive delivery, freedom from side priate physical and psychological environment increases the actions of N2O and may allow lower effects, simplicity of use, and a rapid onset and offset. doses to be more effective. Unlike many other Newer approaches have threatened the widespread use anaesthetic agents, N2O exhibits an acute toler- of nitrous oxide, but despite its long history this simple ance effect, whereby its potency is greater at induction than after a period of “accommoda- gas still has much to offer. tion”. .......................................................................... MECHANISM OF ACTION “I am sure the air in heaven must be this Some writers have suggested that N2O, like wonder-working gas of delight”. volatile anaesthetics, causes non-specific central nervous system depression. Others, such as 4 Robert Southey, Poet (1774 to 1843) Gillman, propose that N2O acts specifically by interacting with the endogenous opioid system. HISTORY N2O is known to act preferentially on areas of the Nitrous oxide (N2O) is the oldest known anaes- brain and spinal cord that are rich in morphine thetic agent.
    [Show full text]
  • Opioid Receptorsreceptors
    OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors.
    [Show full text]
  • Update on the Management of Pain, Agitation, and Delirium in the ICU
    Update on the Management of Pain, Agitation, and Delirium in the ICU Kevin E. Anger, Pharm.D., BCPS Gilles Fraser, Pharm.D., MCCM Paul M. Szumita, Pharm.D., BCCCP, Manager Investigational Drug Clinical Pharmacist in Critical BCPS, FCCM Service Brigham and Women’s Care Clinical Pharmacy Practice Manager Hospital Maine Medical Center Brigham and Women’s Hospital Boston, Massachusetts Portland, Maine Boston, Massachusetts Disclosures • Faculty have nothing to disclose. Objectives • Describe recent literature on management of pain, agitation, and delirium (PAD) in the intensive care unit (ICU). • Apply key concepts in the selection of sedatives, analgesics, and antipsychotic agents in critically ill patients. • Recommend methods to overcome key barriers to optimizing pain, sedation, and delirium pharmacotherapy in critically ill patients. Case-Based Approach to Pain Management in the ICU Kevin E. Anger, Pharm.D., BCPS Manager Investigational Drug Service Brigham and Women’s Hospital Boston, Massachusetts Time for a Poll How to vote via the web or text messaging From any browser From a text message Pollev.com/ashp 22333 152964 How to vote via text message How to vote via the web Question #1 DT is a 70 yo male w/ COPD, S/P XRT for NSC lung CA, now admitted to the medical ICU for respiratory failure secondary to pneumonia meeting ARDS criteria. Significant home medications include oxycodone sustained release 40mg TID, oxycodone 10- 20mg Q4hrs PRN pain, Advair 500/50mcg BID, ASA 81mg QD, and albuterol neb Q4hrs PRN. DT is intubated is currently
    [Show full text]
  • Recommended Methods for the Identification and Analysis of Fentanyl and Its Analogues in Biological Specimens
    Recommended methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2017 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/53 Original language: English © United Nations, November 2017. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr. Barry Logan, Center for Forensic Science Research and Education, at the Fredric Rieders Family Founda- tion and NMS Labs, United States; Amanda L.A.
    [Show full text]
  • What Are the Treatments for Heroin Addiction?
    How is heroin linked to prescription drug abuse? See page 3. from the director: Research Report Series Heroin is a highly addictive opioid drug, and its use has repercussions that extend far beyond the individual user. The medical and social consequences of drug use—such as hepatitis, HIV/AIDS, fetal effects, crime, violence, and disruptions in family, workplace, and educational environments—have a devastating impact on society and cost billions of dollars each year. Although heroin use in the general population is rather low, the numbers of people starting to use heroin have been steadily rising since 2007.1 This may be due in part to a shift from abuse of prescription pain relievers to heroin as a readily available, cheaper alternative2-5 and the misperception that highly pure heroin is safer than less pure forms because it does not need to be injected. Like many other chronic diseases, addiction can be treated. Medications HEROIN are available to treat heroin addiction while reducing drug cravings and withdrawal symptoms, improving the odds of achieving abstinence. There are now a variety of medications that can be tailored to a person’s recovery needs while taking into account co-occurring What is heroin and health conditions. Medication combined with behavioral therapy is particularly how is it used? effective, offering hope to individuals who suffer from addiction and for those around them. eroin is an illegal, highly addictive drug processed from morphine, a naturally occurring substance extracted from the seed pod of certain varieties The National Institute on Drug Abuse (NIDA) has developed this publication to Hof poppy plants.
    [Show full text]
  • Pharmacists' Roles on the Pain Management Team, Fall 2014
    Fall 2014, Volume 8, Issue 2 Canadian Pharmacy > Research > Health Policy > Practice > Better Health Pharmacists’ Roles on the Pain Management Team harmacists are an important resource for managing pain in their patients, in order to both optimize treatment and Pprevent the unintended consequences of potent analgesics. While the role of pharmacists in pain management was first addressed inthe Translator Summer 2012 edition1, this rapidly evolving area of pharmacy practice has generated a number of innovative models that highlight the unique role of the pharmacist. As Canadian pharmacists embrace expanded scopes of practice, there is an opportunity to specifically leverage their services to assist patients in managing their pain. This issue of the Translator highlights four different approaches to enhanced involvement of pharmacists in the management of chronic pain: n Pharmacist-led management of chronic pain: a randomized controlled exploratory trial from the UK n A pharmacist-initiated intervention trial in osteoarthritis n A pharmacist-led pain consultation for patients with concomitant substance use disorders n The impact of pharmacists in translating evidence to patients with low back pain 1 The Translator, Summer 2012, 6:3 Pharmacist-led management of chronic pain in primary care: results from a randomized controlled exploratory trial Bruhn H, Bond CM, Elliott AM, et al. Pharmacist-led management of chronic pain in primary care; results from a randomized controlled exploratory trial. BMJ Open 2013;3:e002361. Issue: In the UK, an estimated 80% of medication review of each patient’s medical chronic pain sufferers still report pain after Pharmacist prescribing and records, followed by a face-to-face consul- four years of follow-up.1 Most patients refer reviewing pain medication may tation.
    [Show full text]
  • Fentanyl Infographic 24X36
    FENTANYL WHAT IS IT? Fentanyl can be found in prescription form, introduced to the medical community in the 1960s Fentanyl analogues are now being Fentanyl is a potent synthetic and prescribed to relieve severe pain post-surgery created in clandestine laboratories to opioid analgesic, 50 to 100x or during end-of-life care . In its prescription form, be sold and used illegally. In it's non- more powerful than fentanyl is sold under the brand names Actiq®, prescription form, fentanyl is found in morphine. Duragesic®, and Sublimaze®. When prescribed by a powder form, spiked on blotter paper; physician, fentanyl is often administered via mixed with heroin; or as tablets that injection, transdermal patch, or in lozenges. attempt to mimic other opioids. Effects: Like other opioids, Fentanyl binds to Through Fentanyl's effects on the Euphoria, relaxation, drowsiness, opioid receptors in the reward centers opioid receptors in the brain stem nausea, confusion, constipation, of the brain, increasing dopamine however, it can inhibit normal sedation, tolerance, addiction, levels to cause a surge in endorphins breathing, causing breathing to stop respiratory depression and arrest, and feelings of pleasure. altogether, leading to death. unconsciousness, coma, and death. WHY DOES IT MATTER? 540% While the fast-acting nature of the effects of fentanyl may create a more powerful and immediate euphoria, these increase in fentanyl effects wear off faster, leading to the more immediate return overdose deaths of cravings and discomfort. since 2016 (CDC) With a high profit margin, Fentanyl is often mixed into heroin or is made to mimic the In talking about Fentanyl, you may hear about appearance of other opioids.
    [Show full text]