Information for Teachers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometry in Design Geometrical Construction in 3D Forms by Prof
D’source 1 Digital Learning Environment for Design - www.dsource.in Design Course Geometry in Design Geometrical Construction in 3D Forms by Prof. Ravi Mokashi Punekar and Prof. Avinash Shide DoD, IIT Guwahati Source: http://www.dsource.in/course/geometry-design 1. Introduction 2. Golden Ratio 3. Polygon - Classification - 2D 4. Concepts - 3 Dimensional 5. Family of 3 Dimensional 6. References 7. Contact Details D’source 2 Digital Learning Environment for Design - www.dsource.in Design Course Introduction Geometry in Design Geometrical Construction in 3D Forms Geometry is a science that deals with the study of inherent properties of form and space through examining and by understanding relationships of lines, surfaces and solids. These relationships are of several kinds and are seen in Prof. Ravi Mokashi Punekar and forms both natural and man-made. The relationships amongst pure geometric forms possess special properties Prof. Avinash Shide or a certain geometric order by virtue of the inherent configuration of elements that results in various forms DoD, IIT Guwahati of symmetry, proportional systems etc. These configurations have properties that hold irrespective of scale or medium used to express them and can also be arranged in a hierarchy from the totally regular to the amorphous where formal characteristics are lost. The objectives of this course are to study these inherent properties of form and space through understanding relationships of lines, surfaces and solids. This course will enable understanding basic geometric relationships, Source: both 2D and 3D, through a process of exploration and analysis. Concepts are supported with 3Dim visualization http://www.dsource.in/course/geometry-design/in- of models to understand the construction of the family of geometric forms and space interrelationships. -
CONVERGENCE of the RATIO of PERIMETER of a REGULAR POLYGON to the LENGTH of ITS LONGEST DIAGONAL AS the NUMBER of SIDES of POLYGON APPROACHES to ∞ Pawan Kumar B.K
CONVERGENCE OF THE RATIO OF PERIMETER OF A REGULAR POLYGON TO THE LENGTH OF ITS LONGEST DIAGONAL AS THE NUMBER OF SIDES OF POLYGON APPROACHES TO ∞ Pawan Kumar B.K. Kathmandu, Nepal Corresponding to: Pawan Kumar B.K., email: [email protected] ABSTRACT Regular polygons are planar geometric structures that are used to a great extent in mathematics, engineering and physics. For all size of a regular polygon, the ratio of perimeter to the longest diagonal length is always constant and converges to the value of 휋 as the number of sides of the polygon approaches to ∞. The purpose of this paper is to introduce Bishwakarma Ratio Formulas through mathematical explanations. The Bishwakarma Ratio Formulae calculate the ratio of perimeter of regular polygon to the longest diagonal length for all possible regular polygons. These ratios are called Bishwakarma Ratios- often denoted by short term BK ratios- as they have been obtained via Bishwakarma Ratio Formulae. The result has been shown to be valid by actually calculating the ratio for each polygon by using corresponding formula and geometrical reasoning. Computational calculations of the ratios have also been presented upto 30 and 50 significant figures to validate the convergence. Keywords: Regular Polygon, limit, 휋, convergence INTRODUCTION A regular polygon is a planar geometrical structure with equal sides and equal angles. For a 푛(푛−3) regular polygon of 푛 sides there are diagonals. Each angle of a regular polygon of n sides 2 푛−2 is given by ( ) 180° while the sum of interior angles is (푛 − 2)180°. The angle made at the 푛 center of any polygon by lines from any two consecutive vertices (center angle) of a polygon of 360° sides 푛 is given by . -
Mcgraw-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto
GEOMETRY DEMYSTIFIED STAN GIBILISCO McGRAW-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto [11:38 6/6/ 69 n:4069 GIBI- ebook_copyright 7.5x9.qxd 9/29/03 11:39 AM Page 1 Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as per- mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-143389-9 The material in this eBook also appears in the print version of this title: 0-07-141650-1. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate train- ing programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904- 4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. -
Summary of Introductory Geometry Terminology
MAT104: Fundamentals of Mathematics II Introductory Geometry Terminology Summary Section 11-1: Basic Notions Undefined Terms: Point; Line; Plane Collinear Points: points that lie on the same line Between[-ness]: exactly what the term implies with regard to points [Line] Segment: part of a line consisting of (and named by) two endpoints and all points between them Closed Segment: segment with two included endpoints Half-Open Segment: segment with one included endpoint (also called Half-Closed Segment) Open Segment: segment with no included endpoints Ray: part of a line consisting of one endpoint, a second unique point on the line, all points between them, and all points that have the aforementioned second point between them and the endpoint Half-Line: part of a line on one side of a point on the line (does not include the point) Coplanar: lying on the same plane (points, lines, or parts of lines) Noncoplanar: not coplanar Intersecting Lines: lines with exactly one point in common Skew Lines: lines that cannot be contained in a single plane Concurrent Lines: three or more lines that intersect in the same point Coinciding Lines: identical lines; lines intersecting at every point Parallel Lines: either: a) nonintersecting coplanar lines; or b) two lines that are actually the same line (any line is parallel to itself; coinciding lines as defined above); symbol is Intersecting Planes: planes with exactly one line in common Coinciding Planes: identical planes; planes intersecting at every line Parallel Planes: either: a) nonintersecting planes; or b) two planes that are actually the same plane (any plane is parallel to itself; coinciding planes as defined above) Parallel Line and Plane: a line and plane that either: a) do not intersect in any point; or b) intersect in every point on the line Half-Plane: part of a plane on one side of a line in the plane (does not include the line) Prof. -
Sample Look Book Pages
LEVEL ONE SAMPLE PAGES A Deep and Complex Look at Geometry: Polygons Details Rules Which details are more important than others, and how do you know they Describe a rule, law, or order related to this topic. are important? Polygon definition: many-sided closed figure made by Polygons are 2-dimensional, closed figures made from joining line segments, “regular” polygon has equal sides. line segments. Standards Parts, Facts, Features, Processes Laws What would happen if you didn’t follow this rule. Who are the important people, places, events? Methods chilliagon - 1,000 sides hexagon: honeycomb If the shape is open, it is not a polygon. megagon - 1,000,000 sides tangram: paper cut into If the sides are curved, it is not a polygon. List the important parts, polygons List facts and opinions facts, features, and processes about the topic. of your topic. triangle FACTS: It is easier to square Draw and label all important parts. draw a triangle than it Draw a picture that would show someone how to follow this rule. rectangle is to draw an octagon. pentagon hexagon octagon Large number of OPINIONS: sides: Hexagons are more 17-gon, 18-gon interesting than pentagons. Intentional Teaching Considerations: Details & Rules with Polygons Most elementary students might be able to draw and identify simple triangles and squares, but they often can’t explain why a polygon is different from other geometric shapes. By taking a deeper look at the Details and Rules that define polygons, students will be able to identify more complex forms of polygons in the world around them. -
Name: Date: WORKSHEET : Polygons a Polygon Is a Closed, Planar
Name: Date: WORKSHEET : Polygons A polygon is a closed, planar shape connected by straight lines. Polygons can be categorized as regular or irregular. Polygons can be categorized as convex or concave. Polygons can be categorized as simple or complex. WORKSHEET : Polygons Interior/Exterior Angles ANSWERS : Polygons Interior/Exterior Angles KEY CONCEPTS: Definition of polygons and interior/exterior angle measures. 1. A polygon is a closed, planar shape connected by straight lines. a. Not closed ≠ polygon b. Not all straight lines ≠ polygon c. Planar means it is 2 dimensional; on an x-y coordinate plane for example d. Definitions of terms i. Vertex = The point where two lines meet on the polygon ii. Interior Angle = The angle inside the polygon between adjacent sides iii. Exterior Angle = If a line is extended from one side of the polygon past the vertex then the exterior angle is the angle between that line and the next adjacent side. 2. Names of polygons depend on the number of sides or interior angles (the same value). The smallest number of sides for a two dimensional polygon is 3. As n approaches infinity the polygon approaches a circle, but a circle is not a polygon due to its curves. Number of Sides, (n) Polygon Name 3 Triangle 4 Quadrilateral 5 Pentagon 6 Hexagon 7 Septagon(or Heptagon) 8 Octagon 10 Decagon 12 Dodecagon 15 Pentadecagon 100 Hecatgon 1,000 Chiliagon 1,000,000 Megagon 10100 Googolgon 3. The sum of interior angles of any n-sided polygon is... Sum Interior Angles = 180(n - 2) expressed in degrees e.g. -
Polygon from Wikipedia, the Free Encyclopedia for Other Uses, See Polygon (Disambiguation)
Polygon From Wikipedia, the free encyclopedia For other uses, see Polygon (disambiguation). In elementary geometry, a polygon /ˈpɒlɪɡɒn/ is a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain or circuit. These segments are called its edges or sides, and the points where two edges meet are the polygon's vertices (singular: vertex) or corners. The interior of the polygon is sometimes called its body. An n-gon is a polygon with n sides. A polygon is a 2-dimensional example of the more general polytope in any number of dimensions. Some polygons of different kinds: open (excluding its The basic geometrical notion of a polygon has been adapted in various ways to suit particular purposes. boundary), bounding circuit only (ignoring its interior), Mathematicians are often concerned only with the bounding closed polygonal chain and with simple closed (both), and self-intersecting with varying polygons which do not self-intersect, and they often define a polygon accordingly. A polygonal boundary may densities of different regions. be allowed to intersect itself, creating star polygons. Geometrically two edges meeting at a corner are required to form an angle that is not straight (180°); otherwise, the line segments may be considered parts of a single edge; however mathematically, such corners may sometimes be allowed. These and other generalizations of polygons are described below. Contents 1 Etymology 2 Classification 2.1 Number of sides 2.2 Convexity and non-convexity 2.3 Equality -
Ged Level 1 Social Studies
The contents of this textbook may not be copied or printed in whole or in part, nor may any form of access be granted to any other person other than the registered student. Once you cease being a student or complete this course, this book will be disabled. Thank you Page 1 of 366 Table of Contents Page Lessons Topic Number 1 Introduction to Math’s 8-12 2 Introduction to Math’s - Roman Numerals 13-16 3 Number Systems 16-23 4 Number Systems 16-23 5 Factors and Multiples 23-26 6 Worksheet - Factors 26 7 Worksheet - Factors 26 8 Squares 26-31 9 Worksheet - Squares 31 10 Cubes 31-39 11 Cubes 31-39 12 Worksheet - Cubes 40 13 Number Patterns and Sequences 40-43 14 Worksheet - Number Patterns 43 15 Worksheet - Number Patterns 43 16 Rational and Irrational Numbers 43-57 17 Rational and Irrational Numbers 43-57 18 Worksheet - Classifying Numbers 57 19 Worksheet - Classifying Numbers 57 20 Negative Numbers 57-68 21 Negative Numbers 57-68 22 Two Dimensional Shapes and Measurement 68-69 23 Theorem of Pythagoras 70-76 24 Theorem of Pythagoras 70-76 Warning! This information is protected by copyright laws and may not be copied or reproduced. Report violations c/o www.cyberschoolgroup.com The contents of this textbook may not be copied or printed in whole or in part, nor may any form of access be granted to any other person other than the registered student. Once you cease being a student or complete this course, this book will be disabled. -
Geometry Demystified (Mcgraw-Hill, 2003)
DOI Page 7.38x9.25 9/23/02 11:02 AM Page 1 Want to learn more? , We hope you enjoy this McGraw-Hill eBook! If you d like more information about this book, its author, or related books and websites, please click here. GEOMETRY DEMYSTIFIED STAN GIBILISCO McGRAW-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto [11:38 6/6/ 69 n:4069 GIBI- ebook_copyright 7.5x9.qxd 9/29/03 11:39 AM Page 1 Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as per- mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-143389-9 The material in this eBook also appears in the print version of this title: 0-07-141650-1. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate train- ing programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904- 4069.