bioRxiv preprint doi: https://doi.org/10.1101/2020.08.23.263558; this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Structural basis for the allosteric regulation of Human Topoisomerase 2α 2 Authors: Arnaud Vanden Broeck 1, 2, Christophe Lotz 1, 2, Robert Drillien 1, 2, Claire Bedez 1, 2 & 3 Valérie Lamour 1, 2, 3 * 4 1 Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire 5 (IGBMC), UMR 7104, U1258, IllkircH, France 6 2 Department of Integrated Structural Biology, IGBMC, 1 Rue Laurent Fries, 67404, IllkircH Cedex, France 7 3 Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67091, Strasbourg Cedex, France 8 * Correspondence to Valérie Lamour,
[email protected] 9 10 Abstract 11 The human type IIA topoisomerases (Top2) are essential enzymes that regulate DNA topology and 12 chromosome organization. The Top2a isoform is a prime target for antineoplastic compounds used in 13 cancer therapy that form ternary cleavage complexes with the DNA. Despite extensive studies, 14 structural information on this large dimeric assembly is limited to the catalytic domains, hindering the 15 exploration of allosteric mechanism governing the enzyme activities and the contribution of its non- 16 conserved C-terminal domain (CTD). Herein we present cryo-EM structures of the entire human 17 Top2α nucleoprotein complex in different conformations solved at subnanometer resolutions. Our data 18 unveils the molecular determinants that fine tune the allosteric connections between the ATPase 19 domain and the DNA binding/cleavage domain.