INDEX to VOLUME 40 at Google Indexer on June 15, 2021 Http

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Downloaded from http://pygs.lyellcollection.org/ by guest on September 29, 2021 PROCEEDINGS OF THE YORKSHIRE GEOLOGICAL SOCIETY VOL. 40, PART 4, NO. 40, PP. 653-661, 1ST MARCH, 1976 INDEX TO VOLUME 40 COMPILED BY P. F. RAWSON Abandoned river courses, Vale of Austwick field meeting, 199-201 York, 223-32 Austwick Formation, 201-2 Actinocamax plenus, 586 Austwick Inlier, 201 Adamellite (Threlkeld Microgran- Avon Gorge, 623 ite), 211-22 Aeolian deposition, of Devensian loess, 31 ff., Permian, 54, 55 Bajocian stage, 115-8, 419 ff. Africa, north, Devonian of, 277-8 Bampton Conglomerate, 212 ff. AITKENHEAD, N., leads field meeting BANKS, N. L., on the Haslingden to North Staffordshire-Derbyshire Flags of south-east Lancashire, Borders, 58-62 431-58, pis. 24-29 Albian stage, 21, 593 Bar-finger sands (Haslingden Flags), Alford borehole, 501 431-58, pis. 24-29 Algae, Carboniferous, 324-6, 331, Barrasford Limestone, 329 332, 616; Devonian, 471 Barremian stage, 1,2, 18; Barremian/ Algal lamination, Permian, 639 ff., Aptian boundary, 499-503 646 Basement beds (Visean), 192 Allenhead borehole, 616 Basement Till, 353 Alston Block, 191-4, 319-34, 613- Bath-House Wood Limestones, 329 30, pi. 51 Becken facies, 477 Ammonites, of Ampthill and Kim- Belah Dolomite, 53, 54 meridge Clays, 592-3; of Belgium, Devonian of, 245-8 Corallian, 207-10; of Lincoln• BENFIELD, A, C, discusses paper by shire Jurassic, 56-8; of Lincoln• Elliott, 535 shire Limestone, 115-8; of Oxford Benthos, Devonian, 477-8 Clay, 292; of Sandringham Sands, Berriasian stage, 2 1-22; of Skegness Clay, 499 ff. Berwick-upon-Tweed, field meeting, Amphipora, 473 593-600 Ampthill Clay, 592 Bewcastle, 130 ff, Analyses, of Quaternary sediments, Bewcastle Beds, 130 ff. Vale of York, 353-72; of Speeton Biofacies regimes, Devonian, 463- Clay, 181-90 85 (see also Radiometric dates) Birkdale Limestone, 616 ff., 626 Ancyropyge (A.) romingeri, 476 Birrenswark Lavas, 130 ff. Anglesey, 491 ff. Bis AT, W. S., obituary, 49-51 Annual Report, 1973, 119-28; 1974, Bivalves, Carboniferous, 139 ff., 567-77 433 ff.; Cretaceous, 586 ff.; Aptian stage, 21, 499-503 Devonian, 467-8, 481; Jurassic, ARCHER, R., on sedimentological 290 ff., 422 ff. consequences of a fall in the level Black Burn Formation, 134 of Haweswater, 547-62, pis. 47- Blackstone Edge Sandstones, 60 50 bodei Subzone, 499-503 Archerbeck borehole, 324 Boltby Moor, 289-95 Arcow Formation, 201 Bone, Pleistocene, dating of, 196-7 Arctic-alpine flora, Teesdale, 206 Boreal Realm, 22 Arnton Fell Formation, 134, 135 Boreholes: Alford, 501; Allenhead, ASHTON, M., on a new section in the 616; Archerbeck, 324; Ashton Lincolnshire Limestone of South Park, 496, 623; Danby, 304, pi. Humberside, 419-29 22; Derbyshire, Visean, 78 ff.; Ashton Park borehole, 496, 623 Elloughton by-pass, 196; Gayton, Askrigg Block, 191-4, 613-30, pi. 51 4 ff.; Harton, 324; Hunstanton, Atherfield Clay, 2 4 ff.; Le Quesnay, 245; Lievin, Australia, Devonian of, 275-7 245; Maltby, 501; Marham, 4 ff.; 653 Downloaded from http://pygs.lyellcollection.org/ by guest on September 29, 2021 654 INDEX TO VOLUME 40 Munsterland I, 249; Raydale, 191- Carneddon Group, 582 4, 620 ff.; Rookhope, 191, 319, Carrock Intrusion, 220, 222 616; Sever als House, 6, 10; Carstone, 1, 2, 10 ff., 499 ff., 592, Skegness, 6, 499-503; Vale of 593 York, Quaternary, 195, 356 ff. CASEY, R,, on the Sandringham Borrowby, coal at, 302-6 Sands of Norfolk, 1-22 Borrowdale Volcanic Group, 207, CATT, J. A., on the loess of eastern 211 ff., 414 ff., 549 fF. Yorkshire and Lincolnshire, 23-39 Boulder Clay, Vale of York, origin of, Cautley Mudstone, 200 371 Cave Oolite, 115, 117, 419 Brachiopods, Carboniferous, 492 ff.; Cenomanian/Turonian boundary, 615; Carstone, 593; Devonian, 586-7 468-9, 473 ff. Central Pennine Basin, 144 Bradwell Moor, 76 ff., pi. 11 Chalcedony in Derbyshire Visdan Bramcrag Quarry, 212-5 Limestones, 63 ff., pi. 7 Brantingham, 195 Chalk of South Humberside, field Brassington Formation, 62 meeting, 586-93 Brick-earths, 35, 37 Cheiloceras, pi. 30 BRIGGS, D. J., on small-scale folds in Chert in Derbyshire Visean Lime• the Permian of South Yorkshire, stones, 75-87, pis. 2, 3, 8 309-17 Cheviots, 168, 169 Brockram, 53-5 Clay mineralogy of Speeton Clay, Brown earth on Whin Sill, 107 181-90 Buchia, 18 CLEMMEY, H., discusses paper by Buchiola, 481 Donovan and Archer, 560 BURGESS, I. C, on a recorrelation of Close House-Lunedale fault line, 620 Yoredale Limestones of the Alston Coal Measures, 199, 202-6 Block with those of the Northum• COIXINSON, J. D., on the Haslingden berland Trough, 319-34, pi. 23; Flags of south-east Lancashire, on Lower Yoredale Limestones 431-58, pis. 24-9; discusses papers on the Alston and Askrigg Blocks, by Leeder, 178; Burgess and 613-30. pi. 51 Mitchell, 627 Buried Cliff, East Yorkshire, 24-6, 32 Colwell Limestone, 329 Burnmouth Bay, 594 ff. Comura helios, 476 Burton Bridge Sandstone, 199 Coniconchines, 479 Coniston Limestone Group, 217, 218 Conodonts, Devonian, 239 ff., 482-5 Continents, Devonian, 235, 281-3 Cakifolium, 324-6, 331, 332 Corallian stage, 207-10, 289, 292 Caldron Snout, 207 Corallian Oolite Formation, 208-10 catloviense Zone, 293 Corals, Carboniferous, 492 ff., 615; Cambeck Beds, 130 ff. Devonian, 471-2 Cambering, South Yorkshire, 312-3 Cornbrash, Upper, 290 ff. Capel Curig Volcanic Formation, Council, 1973, 120; 1974, 568 581 ff. COUSINS, J., discusses paper by Carboniferous, base of, 239; Cement- Burgess and Mitchell, 627-8 stone Group, 594 ff.; in Durham, Cow Green Reservoir, field meeting, 202-7; erratics, 356 ff., 631; 205-7 Great Scar Limestone, 41-7, Coxwold-Gilling trough, 298 563-5; Haslingden Flags, 431-58; Craven Faults, 41-7, 563-5 heavy minerals, 537-46; Ingleton Cretaceous, Chalk, South Humber• area, 199-200; Raydale borehole, side, 586-93; in Norfolk, 1-22; 192; sedimentary cycles, 43 ff., Speeton Clay, 181-90 491-7, 613 ff.; silica in, 63-104; Crinoids, Devonian, 472-3 Yoredale delta lobe, 503-36; Cronkley Fell, 109 Yoredale Limestones, 319-34, pi. Crummackdale, 202 23; 361-30, pi. 51 Cumbria, fall in level of Haweswater, Carboniferous Limestone, water 547-62; Seathwaitegraphite. 413- temperatures in, 601-12 8 Downloaded from http://pygs.lyellcollection.org/ by guest on September 29, 2021 INDEX TO VOLUME 40 655 Curig Hill Vent, 582 Drainage pattern, Vale of York, Cycles (cyclothems), sedimentary, 223-32 43 ff., 491-7, 613 ff. Dry Valley Deposits, 590 DUNHAM, SIR KINGSLEY, on granite beneath the Pennines in north Yorkshire, 191-4 Dalla Bank Limestone, 329 Durham Coalfield, field meeting, Dalton Formation, 200 202-7 Danby Coal Pits, 302 ff., pi. 22 Durham Colliery, 202-3 DARBYSHIRE, D. P. F., on the rubidium-strontium age and field relations of the Threlkeld Micro- granite, 211-22 Davidsonina (Cyrtina) septosa Band, 41-7, 563, 564 EARLAND-BENNETT, P. M., on the Deltaic sedimentation, in Northum• Bajocian stratigraphy of eastern berland Basin, 129-80; in Hasling• England, 117-8 den Flags, 448-51; in Yoredales, Eden Shales, 53-5 505-36 EDMONDS, J. M., on geological Deltaic Series, 289, 290 lecture courses by William Smith Dent Fault (Line) 199, 615 ff. and John Phillips, 373-412 Derbyshire, field meeting, 58-62; Eifelian Stage, 239 ff., 460 ff. silica in Visean Limestones, 63- ELLIOTT, T., on the sedimentary 104; water temperatures in Lime• history of a delta lobe, 505-36; stones, 601-12 discusses papers by Collinson and Dersingham Beds Formation, 1, Banks, 455-6; Burgess and Mitch• 16-8 ell, 627 Desiccation cracks, Haweswater, Elloughton by-pass boreholes, 196 556-9, pis. 49, 50 Emergence surfaces in Yoredales, Devensian stage, 23 ff., 195-7, 588, 619 ff., 627 590; ice limit in Vale of York, EMERY, L. H., discusses paper by 631-7 Casey and Gallois, 21 Devonian, base of, 239; facies and Emsian stage, 239 ff., 460 ff. time in tropical areas, 233-88; England, southern, Devonian of, faunas and time, 459-90, pis. 243-5 30, 31; stages, 239-41 ff.; zones, Ennerdale intrusion, 220, 222 240 ff. Entomozoeidae, 479-81 Diagenesis, effects on heavy minerals, Epifauna, Devonian, 468 537-46, pis. 39-46 Epiplankton, Devonian, 481-2 Dibunophyllum X(D) Zone, 491-7, 614 Erratics, Vale of York, 356, 631 ff. Eskdale Granite, 220, 222 Dibunophyllum (D2) Zone, base of, Estuarine Beds, 56, 57 614 ff., 620-3 Europe, Devonian of, 241-60, 465 ff. Dinantian stage, 623 Evaporites, Permian, 55, 639 ff. Diversity of Devonian faunas, 459- EYLES, J. M., discusses paper by 63 Edmonds, 410-11 Dogger Formation, 297 ff. Dolomite, Tournasian, 147 DONOVAN, R. N., on sedimentologi- cal consequences of a fall in the level of Haweswater, 547-62, pis. 47-50 Facies, Devonian, 233-88, 463 ff.; DOUGHTY, P. S., on Davidsonina of Lower Border Group, 135-49 septosa and the structure of the Famennian stage, 239 ff.; 460 ff. Great Scar Limestone, 41-7; on Faunas and time in the marine the structure of the Vis6an Devonian, 459-90, pis. 30-31 limestones between the Craven Fearnsides Prize, 124—5 Faults, 564-5 Fell Sandstone Formation, 134, Drab Till, 38, 353 544-5, 594 ff. Downloaded from http://pygs.lyellcollection.org/ by guest on September 29, 2021 656 INDEX TO VOLUME 40 Field meetings; Berwick-upon- Goniatites, Carboniferous, 58-62; Tweed, 593-600; Central and Devonian, 239 ff., 482-3, pi. 31 north Lincolnshire, 56-8; Coral• Graine Beck Limestone, 616 ff., 626 lian of the Vale of Pickering, Granite beneath Pennines, 191—4 207-10; Durham Coalfield and Graphite, Seathwaite, age dates, Cow Green Reservoir, 202-7; 413-8 Ingleton and Austwick, 199-202; Graptolites, Devonian, 239 ff.
Recommended publications
  • Applications of Palaeontology: Techniques and Case Studies Robert Wynn Jones Index More Information

    Applications of Palaeontology: Techniques and Case Studies Robert Wynn Jones Index More Information

    Cambridge University Press 978-1-107-00523-5 - Applications of Palaeontology: Techniques and Case Studies Robert Wynn Jones Index More information Index Bold type indicates figures. Abathomphalus 2.6 Alveolophragmium (Reticulophragmium) anoxia, anoxic environments, events 125, Abdur Reef Limestone 334 4.6 126, 160, 215, 223–4, 278 Abies 192 Alveovalvulina 129, 286, 5.37 Antarctica 100, 267, 306 Abundance 153, 154 Amacuro member 5.47 Antarcticycas 100 Acadoparadoxides 39 Amaltheus 2.14 Antedon 115 Acanthinula 107, 333 Amaurolithus 2.4 Anthocyrtidium 2.7 Acanthocircus 99 Amazon fan 138, 208, 211 Anthracoceras 109, 305 Acarinina 2.6 AZTI Marine Biotic Index (AMBI) 313 Anthraconauta 305, 7.2 Acaste 112 Ammoastuta 126 Anthraconia 305, 7.2 accelerator mass spectrometry (AMS) Ammobaculites 126, 2.33, 3.3, 5.21 Anthracosia 7.2 68, 309 Ammodiscus 129, 2.33, 3.3, 5.23 Anthracomya 305 Acheulian, culture 198, 333, 334, 337 Ammolagena 5.23 Anthracosphaerium 7.2 acritarchs 15–16, 18–9, 95–6, 2.1, 3.1–3.2 Ammomarginulina 126, 5.23 Antler basin 105 Acropora 134, 135, 314 Ammonia 126, 129, 326, 5.37 Apectodinium 180, 5.22 Acrosphaera 99 ammonites 2.14–2.17, 2.30, 5.9 Apodemus 188, 10.2 Acroteuthis 152 ammonoids 34, 108–10, 2.1, 2.12, 3.1 Appalachian basin 302 Actinocamax 111, 2.18 Ammotium 126 Apringia 105 Actinocyclus 2.3 amphibians 53–5, 118, 2.1, 3.1 Aquilapollenites 100, 149 Adentognathus 105 Amphirhopalon 2.7 Aquitaine basin 182 Adercotryma 2.33, 5.23 Amphisorus 126, 3.10 Aqra Limestone formation 220 Adipicola 141 Amphistegina 127, 3.10 Arab formation
  • Jurassic (170 - 199 Ma Time-Slice) Time

    Jurassic (170 - 199 Ma Time-Slice) Time

    Early Jurassic (170 - 199 Ma time-slice) Time ScaLe R Creator CHRONOS Cen Mesozoic Updated by James G. Ogg (Purdue University) and Gabi Ogg to: GEOLOGIC TIME SCALE 2004 (Gradstein, F.M., Ogg, J.G., Smith, A.G., et al., 2004) and The CONCISE GEOLOGIC TIME SCALE (Ogg, J.G., Ogg, G., and Gradstein, F.M., 2008) Paleozoic Sponsored, in part, by: Precambrian ICS Based, in part, on: CENOZOIC-MESOZOIC BIOCHRONOSTRATIGRAPHY: JAN HARDENBOL, JACQUES THIERRY, MARTIN B. FARLEY, THIERRY JACQUIN, PIERRE-CHARLES DE GRACIANSKY, AND PETER R. VAIL,1998. Mesozoic and Cenozoic Sequence Chronostratigraphic Framework of European Basins in: De Graciansky, P.- C., Hardenbol, J., Jacquin, Th., Vail, P. R., and Farley, M. B., eds.; Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM Special Publication 60. Standard Geo- Ammonites Sequences Ammonites Sequences Smaller Benthic Foraminifers Larger Benthic Foraminifers Calcareous Nannofossils Dinoflagellate Cysts Radiolarians Belemnites Brachiopods Ostracodes Charophytes Stage Age Chronostratigraphy magnetic North Atlantic Tethys Age Polarity Sequences Boreal Sequences T-R Major T-R Period Epoch Stage Substage Boreal Boreal T-R Cycles Tethyan Global, Tethyan Cycles Cycles Zones Tethyan markers Zones Zonal Markers Zonal Markers Zones Boreal Zonal Markers Other Boreal Nannofossils Zones Zonal Markers Other Dinocysts Tethyan Dinocysts Zones Zonal Markers NW Europe Boreal Tethyan Boreal Ostracodes Tethyan Ostracodes Markers Lt. Bajoc. Strenoceras niortense Teloceras banksi Strenoceras niortense Teloceras banksi DSJ14 Lithodinia valensii Belemnopsis Lissajouthyris Lissajouthyris [un-named] 169.8 Stephanolithion speciosum Mancodinium semitabulatum, 169.8 L. galeata mg P., speciosum Durotrigia daveyi, Phallocysta apiciconus matisconensis matisconensis Glyptocythere scitula Teloc. blagdeni Bj3 Telo. blagdeni Bj3 NJ10 Andromeda depressa, G.
  • September 16, 2011: Oh My (Brittle) Stars! Again Ms. Brett and I Drove

    September 16, 2011: Oh My (Brittle) Stars! Again Ms. Brett and I Drove

    September 16, 2011: Oh My (Brittle) Stars! Again Ms. Brett and I drove by many Hochsitz lining area corn fields and showed up right on time at 9 a.m. to meet with our fossil guide, Wolfgang Mages, once again in the Plattenkalk limestone, but this time slightly higher in section, still Tithonian, 146 MYA. Our quarry this time: Sinosura kelheimense and Ophioptera lithographica brittlestars. And once again characteristic of the Solnhofen area, hard digging was required to lay hands on prized fossils. The site had been worked hard by others for quite some time, so Wolfgang found the need to hunt around a bit to locate an accessible portion of the very specific brittlestar bearing layers which were 1.5 cm apart. In the meantime Brett and I messed around splitting slabs on the spoil piles, and in the process I located first the front half of a small fish, then a slab of several brittlestars…nice find, but coming from a spoil pile, it left me no direction in making more similar finds as all the limestone looked the same. FIGS 471-472: Wolfgang Mages and the author this and next page (Site 567) FIG 473: Wolfgang Mages and Ms. Brett (Site 567) FIGS 474-476: The author and Klaus working the pit, this and next 2 pages (Site 567) FIG 477: Partial fish Tharsis dubius (Site 567) This was becoming hard work, and Brett was still sick, so she elected to retire to the Mietwagen. Wolfgang was a hard digger and his example motivated me to do the same, and at about that time another local collector named Klaus showed up with his dog and we all (well maybe not the dog) jumped into a hole in the ground and proceeded to removed cubic meters of overburden to access the brittlestar layers.
  • Toarcian Ammonite Lytoceras Sp. This and Next Page (Site 561)

    Toarcian Ammonite Lytoceras Sp. This and Next Page (Site 561)

    FIGS 197-198: Toarcian ammonite Lytoceras sp. this and next page (Site 561) FIG 199: Toarcian ammonite Mucrodactylites sp. top and bottom left, Catacoeloceras sp. right (Site 561) FIG 200: Toarcian ammonite Mucrodactylites sp. (Site 561) FIG 201: Toarcian ammonite Phymatoceras sp. (Site 561) FIGS 202-210: Toarcian ammonites Pleydellia sp. this and next 8 pages (Site 561) FIGS 211-214: Unidentified Toarcian ammonites this and next 3 pages (Site 561) FIG 215: Toarcian belemnite Dactyloteuthis (Site 561) FIG 216: Toarcian belemnites Dactyloteuthis (blunt), Megateuthis or Mesoteuthis (large) and Acrocoelites (medium) from Site 561 FIG 217: Toarcian belemnites Megateuthis or Mesoteuthis (large) and Acrocoelites (medium) from Site 561 FIG 218: Toarcian gastropod Gasteropode (Site 561) FIGS 219-220: Aalenian belemnites Acrocoelites this and next page (Site 561) FIGS 221-222: Aalenian block containing Leioceras sp. ammonite and Acrocoelites sp. belemnite this page, unidentified horn coral on top of same block, next page (Site 561) FIGS 223-225: Another Aalenian Leioceras sp. ammonite / Acrocoelites sp. belemnite block this and next 2 pages (Site 561) FIGS 226-227: Aalenian Leioceras sp. ammonite found by Ms. Brett, this page, with unidentified bivalve stuck to back, next page (Site 561) FIGS 228-238: Aalenian Leioceras sp. ammonites this and next 10 pages (Site 561) FIGS 239-243: Aalenian Leioceras sp. ammonites this and next 4 pages (Site 561) FIG 244: Aalenian Pleydellia sp. ammonite (Site 561) FIG 245: Aalenian Tmetoceras sp. ammonite (Site 561) FIG 246: Aalenian Phylloceras sp. ammonite (Site 561) FIG 247: Unidentified Aalenian ammonite (Site 561) FIG 248: Aalenian Entolium sp.
  • Geologie Und Paläontologie in Westfalen

    Geologie Und Paläontologie in Westfalen

    Geol. Paläont. 3Abb. Münster 60 5 - 11 Westf. 2 Tab. März 2003 Lioceratoides sp. indet., ein mediterranes Faunenelement aus der Pleuroceras apyrenum-Subzone (Ober-Pliensbachium) von Ennigloh bei Bünde Siegfried Schubert1 und Rudolf Fischer2 Kurzfassung Vor einigen Jahren wurde im Raum Bünde eine neue Tongrube in Betrieb genommen. Sie erschloss Ton­ steine mit Ammoniten aus der Familie der Amaltheidae, wie sie aus der margaritatus - und der spinatum­ Zone des Ober - Pliensbachiums (Domerium) des epikontinentalen Lias - Meeres in NW - Europa allgemein bekannt sind. Ihnen beigesellt ist ein Einzelfund von Lioceratoides sp. indet. (Farn. Hildoceratidae). Die Gattung ist im mediterranen Domerium artenreich vertreten; für den nw - europäischen Raum bedeutet der Fund von Lioceratoides sp. indet. den Erstnachweis. Abstract A section through claystone with intercalated layers of clay ironstone concretions was exposed within a clay pit in the nearer surroundings of Bünde (Westfalia, NW-Germany). Ammonites of the family Amal­ theidae are frequent and indicate the Domerian age (margaritatus- to spinatum-zones) of the series. Among the ammonites, the find of a single specimen of Lioceratoides sp. indet. is of special interest, for being the first find of that mediterranean taxon within the epicontinental environment of the Northwest - European faunal province. Resume II y a quelques annees une glaisiere situee pres de la cite de Bünde, presentait une coupe de roclles argilleuses, contenant ammonites de la famille domerienne des Amaltheidae, generalement connues dans couches de l'ocean epicontinental du Nord-Quest Europe. Une exemplaire singulier de Lioceratoi­ des sp. indet. etait associe au groupe des Amaltheidae. Sa decouverte signifie la preuve initiale du genre, generalement restringue a l'ocean mediterrane, en dehors de cette region.
  • Form and Formation of Flares and Parabolae Based on New Observations of the Internal Shell Structure in Lytoceratid and Perisphinctid Ammonoids

    Form and Formation of Flares and Parabolae Based on New Observations of the Internal Shell Structure in Lytoceratid and Perisphinctid Ammonoids

    Editors' choice Form and formation of flares and parabolae based on new observations of the internal shell structure in lytoceratid and perisphinctid ammonoids GREGOR RADTKE, RENÉ HOFFMANN, and HELMUT KEUPP Radtke, G., Hoffmann, R., and Keupp, H. 2016. Form and formation of flares and parabolae based on new observations of the internal shell structure in lytoceratid and perisphinctid ammonoids. Acta Palaentologica Polonica 61 (3): 503–517. The ultrastructure of pristine shells of Jurassic and Cretaceous lytoceratid and perisphinctid ammonoids indicates that flares and parabolae represent homologous structures. Both mark an interruption of shell growth. We dismiss earlier interpretations of parabolae as actual aperture, relics of resorbed apophyses or superstructure of the musculature associ- ated to a semi-internal shell. Instead we propose an episodic growth model including several growth stops at the aperture during the formation of a frill-like aperture for parabolae and flares. Such an aperture is composed of the outer prismatic layer, the nacreous layer and an apertural prismatic coating. Here, we observed the apertural prismatic coating for the first time as an integral part of flares and parabolae. The apertural prismatic coating covers only the inner surface of the frill and was secreted by a permanent mantle cover indicating a prolonged period without the production of new shell material. Parabolae differ from flares by their general shape and the presence of ventro-lateral parabolic notches and nodes. The notches were formed by folding of the frill and had the potential to form semi-open spines. The corresponding parabolic nodes are caused by an outward swelling of the shell-secreting mantle tissue producing new shell material at the position of the folding.
  • Earliest Jurassic Patellogastropod, Vetigastropod, and Neritimorph Gastropods from Luxembourg with Considerations on the Triassic–Jurassic Faunal Turnover

    Earliest Jurassic Patellogastropod, Vetigastropod, and Neritimorph Gastropods from Luxembourg with Considerations on the Triassic–Jurassic Faunal Turnover

    Earliest Jurassic patellogastropod, vetigastropod, and neritimorph gastropods from Luxembourg with considerations on the Triassic–Jurassic faunal turnover STEFANO MONARI, MARA VALENTINI, and MARIA ALESSANDRA CONTI Monari, S., Valentini, M., and Conti, M.A. 2011. Earliest Jurassic patellogastropod, vetigastropod, and neritimorph gas− tropods from Luxembourg with considerations on the Triassic–Jurassic faunal turnover. Acta Palaeontologica Polonica 56 (2): 349–384. The Hettangian to earliest Sinemurian Vetigastropoda, Patellogastropoda, and Neritimorpha housed in the National Mu− seum of Natural History of Luxembourg are studied. Most of the species comes from the Luxembourg Sandstone Forma− tion. This deposit formed along the southern margin of the London−Brabant−Ardennes Landmass, in a region that during the earliest Jurassic constituted a seaway connecting the Paris Basin with the epicontinental seas of the Netherlands and northern Germany. The systematic analysis revealed high diversity of the studied fauna; we identified twenty−two species, eleven genera, nine families, and six superfamilies. A new genus, Meiersia gen. nov., and three new species, Anodomaria schroederi sp. nov., Meiersia disarmata sp. nov., and Spirocirrus weisi sp. nov. are described. The fauna is dominated by pleurotomarioideans representing the genera Ptychomphalus, Pleurotomaria,andTrochotoma, and by the patellogastropod genus Scurriopsis both in number of species and specimens. The neritimorph genus Neridomus is also well represented. Among the accessory taxa, Anodomaria and Spirocirrus first appeared in the Late Hettangian of the Luxembourg area. Most of these genera show a species radiation in the Early Jurassic and are distributed over the western European epicontinental shelf, probably favoured by an east to west marine transgression which influenced wide areas from the basins of the northern Germany to the Paris Basin through the Luxembourg seaway.
  • Families of the Palaeozoic Caenogastropoda (Mollusca, Gastropoda)

    Families of the Palaeozoic Caenogastropoda (Mollusca, Gastropoda)

    N. Jb. Geol. Paláont. Mh. 2üD (9) 557-569 Stuttgart' September 2000 Goniasmidae and Orthonemidae: two new families of the Palaeozoic Caenogastropoda (Mollusca, Gastropoda) Alexander Nütze!, Washington and KIaus BandeI, Hamburg With 3 figures NÜrzEl, A. & BaNopI', K. (2000): Goniasmidae and orthonemidae: two new fami- lies of the Palaeozoic Caenogastropoda (Mollusca, Gastropoda). - N. Jb. Geol. Paláont. Mh., 2000: 557 -569, Stuttgart. Abstract: Two families of late Palaeozoic caenogastropods (Cerithimorpha) are newly introduced: Goniasmidae and Orthonemidae. They comprise high-spired gastropods with a protoconch morphology distinctly different from that of other Palaeozoic gastropods and similar to that of some modern Cerithioidea. The genera of the Palaeozoic Cerithimorpha were formerly included in the families Murchi- oniidae, Acanthonematidae, and Turritellidae. However, Murchisonia is not a caeno- gastropod but an archaeogastropod as is indicated by its protoconch morphology. The family Acanthonematidae is based on the unsufficiently known, problematic Devonian genus Acanthonema. The Turritellidae represent a modern group which originates in the late Mesozoic. Zusammenfassung: Die zwei neuen spátpa|áozoischen Familien Goniasmidae und Orthonemidae werden benannt. Sie umfassen hochturmlormige Caenogastropoden, deren Protoconch sich von den Protoconchen anderer paláozoischer Caenogastro- poden deutlich unterscheidet. Der Protoconch der Goniasmidae und Orthonemidae ist weitgehend glatt, umfasst bis zu drei gerundete Windungen und ist von helici- former Gestalt. Dieser Protoconchtyp áhnelt dem mancher moderner Cerithioidea; daher werden die beiden neuen Familien in die Ordnung Cerithimorpha gestellt. Die Goniasmidae besitzen einen Sinus oder Schlitz in der AuBenlippe des Teleoconchs, wáhrend die AuBenlippe der orthonemidae mehr oder weniger gerade verláuft. Die Gattungen der Goniasmidae, Goniasma, Stegocoelia wd Cerithioides, wurden bisher den Murchisoniidae zugeordnet.
  • STUTTGARTER BEITRÄGE ZUR NATURKUNDE Ser

    STUTTGARTER BEITRÄGE ZUR NATURKUNDE Ser

    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie B [Paläontologie] Jahr/Year: 1977 Band/Volume: 28_B Autor(en)/Author(s): Urlichs Max Artikel/Article: Stratigraphy, Ammonite Fauna and some Ostracods of the Upper Pliensbachian at the Type Locality (Lias, SW-Germany) 1- 13 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Herausgegeben vom yi/^^ 2 6 1978 Staatlichen Museum für Naturkunde in Stuttgart ^''"'~— Serie B (Geologie und Paläontologie), Nr. 28 ^ -^^tattgart 1977 Stratigraphy, Ammonite Fauna and some Ostracods o£ the Upper Pliensbachian at the Type Locality (Lias, SW-Germany) by Max Urlichs, Ludwigsburg With 2 plates and 2 figures Summary The Upper Pliensbadiian at its type locality is figured in a combined section which shows the greatest thickness (27 m) recorded in SW-Germany. The ammonite fauna and some stratigraphically important ostracods found therein are listed. All 5 subzones of the Upper Pliensbachian are identi- fied, base and top are well defined. Therefore the type locality chosen by Oppel (1856—1858) meets the requirements of the stratigraphic code of today. 1. Introduction Oppel (1856, p. 815) renamed d'Orbigny's „etage liasien" Pliensbachian after the little village Pliensbach (district Göppingen, Baden-Württemberg) and a little brook bearing the same name. Oppel divides this stage into 6 zones and particu- larly emphasizes the first appearance of Amaltkeus margaritatus. Therefore the natural division into two parts has already been recorded by Oppel. Moreover, he noted that in most areas this stage has been divided lithologically into two forma- tions, in SW-Germany into „Numismalismergel" („Schwarzer Jura y") and „Amal- theenton" („Schwarzer Jura d").
  • Midde Trias Sic Molluscan Fossils from the Humboldt Range

    Midde Trias Sic Molluscan Fossils from the Humboldt Range

    Midde Trias sic Molluscan Fossils of iostratigraphic Significance from the Humboldt Range, Northwestern Nevada Middle Triassic Molluscan Fossils of Biostratigraphic Significance from the Humboldt Range, Northwestern Nevada By N. J. SILBERLING and K. M. NICHOLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 1207 Taxonomic and superpositional documentation of an unusually complete faunal succession UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1982 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Silberling, Norman John, 1928- Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada. (Geological Survey Professional Paper 1207) Bibliography: p. 71 Supt. of Docs. No.: I 19.16: 1207 1. Mollusks, Fossil. 2. Paleontology Triassic 3. Geology, Stratigraphic Triassic. 4. Geology Nevada Humboldt Range. I. Nichols, Kathryn Marion, 1946- joint author. II. Title. III. Series: United States. Geological Survey. Professional Paper 1207. QE801.S64 564 80-607925 For sale by the Distribution Branch, U.S. Geological Survey 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ---------------------------------------- 1 Paleontology Continued Introduction ------------------------------------ 1 Systematic descriptions Continued History ------------------------------------- 1 Class Cephalapoda Continued Description of study and acknowledgments 3 Subclass Ammonoidea Continued Stratigraphic
  • Foundations Worksheet Answer

    Foundations Worksheet Answer

    WORKSHEET ANSWER KEY for grades 4 to 7 FOUNDATIONS 1. Fossilization occurs when a dead organism (plant or animal) is buried by sediment. This usually happens very soon after death as scavengers, bacteria, and other decomposers will break down the organism, preventing it from fossilizing. There are many different types of fossils; each one is dependent on the conditions in which the organism is buried, and what conditions it experiences over time. KINDS OF FOSSILS Colour patterns: Some fossils can still have pigment showing patterns present on the organism during life (i.e., fossil seashells, insects, feathers, skin). Skin impressions: Pattern left behind in the rock from the skin of an animal. They show the texture of the skin and arrangement of scales (i.e., dinosaur skin impressions). Mold: a void left in the rock after the organism has dissolved/decayed. Cast: a copy of the interior of an organism cause by sediment infilling (i.e., Pleuroceras spinatum shell). Unaltered organic material: This type can be seen in areas were permafrost is common or where conditions are very dry. The organism is preserved by desiccation (the process of extreme drying) or freezing; exposure to atmospheric conditions can cause them to decay (i.e., plant shells, Siberian mammals). Permineralization: The replacement of organic material by minerals. The minerals slowly fill the pores within the object being fossilized and the original organic material disappears leaving a three-dimensional copy. Unlike a cast fossil, detailed internal structures will remain (i.e., petrified wood, dinosaur bones, Centrosaurus apertus tibia). Carbonization: When organic material is compressed, it can leave a film of carbon behind.
  • Cephalopod Tissue Regeneration: Consolidating Over a Century of Knowledge

    Cephalopod Tissue Regeneration: Consolidating Over a Century of Knowledge

    REVIEW published: 23 May 2018 doi: 10.3389/fphys.2018.00593 Cephalopod Tissue Regeneration: Consolidating Over a Century of Knowledge Pamela Imperadore 1,2* and Graziano Fiorito 2 1 Association for Cephalopod Research - CephRes, Napoli, Italy, 2 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy Regeneration, a process consisting in regrowth of damaged structures and their functional recovery, is widespread in several phyla of the animal kingdom from lower invertebrates to mammals. Among the regeneration-competent species, the actual ability to restore the full form and function of the injured tissue varies greatly, from species being able to undergo whole-body and internal organ regeneration, to instances in which this ability is limited to a few tissues. Among invertebrates, cephalopod mollusks retain the ability to regenerate several structures (i.e., muscles, nerves, or entire appendages). Here we provide an overview of more than one-hundred studies carried out over the last 160 years of research. Despite the great effort, many aspects of tissue regeneration in Edited by: cephalopods, including the associated molecular and cellular machinery, remain largely Fernando Ariel Genta, unexplored. Our approach is largely descriptive and aims to provide a reference to prior Fundação Oswaldo Cruz (Fiocruz), Brazil work thus to facilitate future research efforts. We believe such research may lead to Reviewed by: important discoveries and approaches that can be applied to other animal taxa