<<

Teulings, H.L. (1996). movement control. In S.W. Keele and H. Heuer (Eds.), Handbook of and action. Vol.2: Motor Skills (pp. 561-613). London: Academic Press. ISBN 0-12-516162-X (reformatted).

Chapter 10

Handwriting Movement Control HansLeoTeulings Laboratory, Arizona State University, USA

1 INTRODUCTION

Amongthemanymotoractivitiesdisplacementofthebody,maintainingposture,graspingand manipulating objects – handwriting distinguishes itself in that it is a learned and generally practiced human skill. For that reason, the motor control aspects of handwriting are both interestingandimportant.Beingalearnedskill,handwritingisrelatedtotypewriting,speech, sign language, and Morse coding. This chapter focuses on psychological, neurological, biomechanical, and computational theories of handwriting production and intends to draw parallelswiththeserelatedskills,andespeciallywithtypewriting.Handwritingmayhavemany featuresincommonwiththeserelatedmotorskillssothataunifiedtheoryoftheseskillsseems feasible.However,aunifiedcognitivetheoryof allmotorskills,includinggrasping,posture, gait, jumping, or navigation is still lacking. This chapter intends to present the skill of handwriting, in the context of other motor skills and general motor concepts. However, handwriting skill includes only a limited domain of the basic motor skills. This may limit generalizationoftheknowledgeofthehandwritingmotorsystemtoothermotorskills,butat thesametimethislimiteddomainallowssimplertheories.Thedomainofhandwritingskillis limitedbythefollowingbasicfeatures: (1) The aim is to translate a twodimensional graphical structure into a fixed sequence of movements.Performanceisconcernedmainlywiththespatialstructureratherthanwiththe temporalstructure. (2) Although seemingly continuous, the handwriting movement can be considered as a sequenceofdiscreteactions,similartothetypewritingstrokes.Namely,thehandwriting movement forms a discrete sequence of ballistic movement segments, or handwriting strokes,whichareexecutedatanearmaximumrateofabout10strokespersecond,just liketypewritingstrokes. (3)Handwritingrequiresonlysmallmovementamplitudes(e.g.,0.5cm),smallflexionsand extension,andsmallforcelevelssothatbiomechanicalconstraintsareminimal.

Handbook of Perception and Action, Volume 2 561 Copyright (c) 1996 Academic Press Ltd ISBN 0-12-516162-X All rights of reproduction in any form reserved

562 H.-L. Teulings

(4)Themovementpatternsaretheresultofanabstractmotorprogram,whichcanbeexecuted largelyindependentofvisualfeedback,proprioceptivefeedback,friction,gravity,inertia, instructedspeed,writingsize,andmusclesandlimbsinvolved. Cursivescriptcanberecordedusingacommercialdigitizingtabletconnectedtoacomputer.As thepositionofthepentiponthetabletisdigitizedatafixed,highfrequency,allkindsoftime functionssuchaspositions,velocities,accelerationsinhorizontalandverticaldirectionscanbe estimated (Teulings & Thomassen, 1979; Teulings & Maarse, 1984) (See Figure 1). When recordingthemovementofthepentipduringfluentwritingthetangential(orabsolute)velocity timefunctionwillshowasequenceofunimodalpeaks:theballistic"strokes".Acloserlook revealsthatthetimemomentsofthevalleysbetweenthevelocitypeaksmostlycorrespondwith timemomentsofhighcurvature(i.e.,thereverseofthecurveradius,ortheradiusofthehitting circle).Itappearsthataftereachballisticstrokethemovementdirectionischangingsharplyto anothertargetinthewritingplane. 1.1 Recent overviews The motor aspects of handwriting have gained attention in an international and multidisciplinarycontextresultinginvariouseditedvolumes(e.g.,Wing,1979;Barbe,Lucas, &Wasylyk,1984;Thomassen,VanGalen,&DeKlerk,1985inDutchandgearedtowards educationalists; Kao, Van Galen, & Hoosain, 1986; Plamondon, Suen, & Simner, 1989; Plamondon&Leedham,1990;VanGalen,Thomassen,&Wing,1991;Wann,Wing,&Søvik, 1991).Alsoseveralmonographshavebeendevotedto specific areas of handwriting such as biomechanicalandcomputationalmodelingoftrajectoryformation(Maarse,1987;Schomaker, 1991; Dooijes, 1984; Raibert, 1977; Kadirkamanathan, 1989; MacDonald, 1966), topdown handwriting movement control model (Teulings, 1988), and educational and developmental aspects (Meulenbroek, 1989; Søvik, 1975; Wann, 1988; Mojet, 1989; Blöte, 1988; Sassoon, 1988).Recently,severaloverviewshaveappearedondrawingandhandwriting:Anintegrated handwritingmodelofmainlythehigherlevelsofcontrol(VanGalen,1991),severalintriguing topics of handwriting motor control (Rosenbaum, 1991), neurophysiological aspects for the purpose of forensic expertise (Baier & BullingerBaier, 1989), and signature verification (Lorette&Plamondon,1990).Theoverviews,whichareoverlappingperhapsthemostwiththe presentoneareThomassenandVanGalen(1991),whoincludedabriefhistoryoftheartof writing,andThomassen&Teulings(1993),whodescribedthehandwritingmovementinless technicalterms.Finally,Wing(1978)deservesattentionbecauseoftheoverviewoflessknown, earlyworkonprogrammingandbiomechanicalaspectsofhandwriting. Experimentalhandwriting research asamultidisciplinary approach towards understanding of human motor control, also known as "graphonomics", is concerned with the dynamical measurement of handwriting. Handwriting research is often brought into connection with ,whichattemptstostudyhowtodrawconclusionsaboutfrompagesof (static)handwritingtrajectories.However,thecomplexdisciplineofgraphologyisstillremote fromitsempiricalfoundation(e.g.,Wing&Watts,1989;Tripp,Fluckiger,&Weinberg,1957).

563 Handwriting Movement Control

Figure 10.1: A recorded handwriting pattern with the time functions: x, horizontal coordinate; y, vertical coordinate; z, axial pen pressure; vx, horizontal velocity; vy, vertical velocity; v, absolute velocity; ax horizontal acceleration; ay, vertical acceleration; C, Curvature, i.e. the inverse of curve radius, in calibrated scales. Circles indicate the segmentation points between ballistic strokes on the basis of relative minima of v. Dotted traces refer to movements above the paper.

564 H.-L. Teulings

1.2 Models of Handwriting Movement Control The present chapter attempts to organize for the first time the knowledge of the handwriting motorsystemfromglobaltodetailedmodelsinthreesections:macroscopic,microscopic,and computationalmodels.Withineachofthesesectionsthemodelsarearrangedfromhighlevelto lowlevel.Themacroscopicmodelshaveseveralserialandparallelworkingmodules.Anew aspect is that entirely different paradigms, such as slips of the pen, effects of neurologic disturbances,andmovementlatenciesanddurations,provideaconsistentpictureofthenature of these discrete modules. The microscopic models focus on specific modules of the handwritingmotorsystem.Herealllimitedscope,qualitativeandquantitativemodelscanbe found.Finally,thecomputationalmodelsfocusonthegenerationandsimulationofhandwriting movements (i.e., dynamic pen movements). Due to the limited frequency bandwidth of the handwriting apparatus, theoretically four parameters per stroke are required to describe handwritingpatternssufficientlyaccurate.Inthischapterafirstattemptismadetocomparethe parsimony of computational models. Most models use four parameters per stroke. If more parameters are employed the model is performing rather a curve fit. If less parameters are employedthemodelmaybeintelligent.Thisisinterestingifacomputationalmodelintendsto mimic certain aspects of the biomechanical structure of the handwriting apparatus or of the architectureofthenervoussystem.

2 MACROSCOPIC MODELS Themotorprocessofhandwritingproductioncanbedividedintoanumberofsubprocesses, whicharesupposedtotakeplaceinseparatemodules.Themacroscopicmodelsaremodular models,anddescribealargeportionofthehandwritingmotorsystem.Firstthecasewillbe consideredthatthesubprocessesoperatestrictlysequentially,andsubsequentlythestrategythat subprocesses operate in a timesharing or a (partially) parallel fashion. The modular models subsume part of the typewriting motor system, which shares some of the modules of the handwritingmotorsystemwhilesomeothermodulesareanalogous.Undertheassumptionthat modules possess general principles of the motor system, research based on key pressing, tapping, and typewriting is sometimes used to support models of handwriting. The modules discerned are central modules. More peripheral effects due to nerve transmission, peripheral feedback,andmuscleforcegenerationwillnotbediscussedextensively.Interesting,butalso notdiscussedaremacroscopiceffectsofreduction of physiological stress during calligraphy andhandwriting(e.g.,Kao&Robinson,1987). Segmentingbehaviorintoserialmoduleshasbeenoneofthemainaimsofthetraditionalmotor research(e.g.,Sanders,1980).Alsoinhandwritingproduction,evidenceforseparatemodules hasbeenfound.Higherlevelmoduleshavebeenhypothesizedonthebasisofslipsofthepen (Van Nes, 1971; 1985; Ellis, 1982), neurologic disturbances (Margolin, 1984; Caramazza, Miceli,&Villa,1986),whilelowerlevelmoduleshavebeenhypothesizedonthebasisofdata onmovementdynamicssuchasdelaysinmovementinitiationormovementexecution(Van Galen&Teulings,1983;VanGalen,1991).

565 Handwriting Movement Control

2.1 Neurologic Evidence for Functional Modules Modularityisnotjustawaytocaptureacomplexsystembutisalsobaseduponneurological data. Modularity may explain the great flexibility of human behavior. For example, the sequenceofmotorcommandscanbefedtoanysetofmusclessuchthatwritingatdifferent sizes or with different limbs still produces similar writing patterns (Bernstein, 1947). Correlations of psychomotor features across subjects suggest single modules responsible for certain features. For example, timing speed (Keele & Hawkins, 1982), timing accuracy, and forceamplitudeaccuracy(Keele,Ivry,&Pokorny,1987)seemtocorrelatebetweenfingerand arm. On the other hand, timing accuracy and forceamplitude accuracy do not seem to be correlated.Thissuggeststhatdifferentmodulesareresponsiblefortimingandforforcecontrol (Keeleetal.,1987).Moreover,neurologicalevidencesuggeststhattimingcomputationsdepend onthecerebellumwhileforceregulationdependsonthebasalganglia(Keele&Ivry,1991). Themoreorlessspecificdisturbancescausedbyanatomicallylocalizedlesionsinneurologic patients are also in favor of functional modules. For example, both oral and handwriting spelling showed similar frequencies of disruptions, suggesting that a hypothetical common modulesuchasagraphemicbufferisimpaired(Caramazzaetal.,1986).Analogously,Boyle and Canter (1987) observed in a patient with a lefthemispheric infarct that lettersequence errorsweresimilarinthepatient'shandwriting,typewritingandspeech.Thisconfirmsthata single,common,highlevelmoduleexistswhichunderliestheerrors.Furthermore,neocortical lesionsmayleadtomorespecificletterformationerrorswhereasbasalgangliadisruptions(e.g., Parkinson'sdisease)ratherleadtoimproperneuromuscularactivitytoexecuteadequateletter sizes(Margolin&Wing,1983).Inagreementwiththis,TeulingsandStelmach(1991,1992) found evidence that Parkinsonian handwriting shows more impairment in terms of force amplitudesthandurations.DalBianco(1944)(quotedbyDeniervanderGon&Thuring,1965), states that particular cerebellar injuries may cause movement disturbances which are more related to the horizontal, leftright movement than to the vertical, topbottom movement. In summary,thesesuggestthatspecificcomponent skills are disrupted in patients withanatomicallylocalizedimpairments. InterestingobservationsweremadebyPattersonandWing(1989),suggestingthatevenstorage ofhandwritingpatternsmaybemodular.Thisconclusionwasbaseduponapatientsuffering fromaleftparietalstrokewhoshoweddisruptionofthelowercasecursivescriptallographsbut relativelylittledisruptionoftheuppercasehandprintallographs.Thecursivescriptallographs tookalsomuchmoretimetopreparethantoexecute,whichindicatesthatitmaybearetrieval problem.Furthermore,sometimesasimilarcursivescriptallographwasproducedinsteadofthe correct one (e.g., "a" instead of "g"). Remarkably, there were no problems in the patient's signature.Therewasalsonoprobleminspelling.Thissuggeststhatwelldefinedpartsofthe motorpatternstoreorofthemotorpatternretrievalweredisrupted. 2.2 Overview of Handwriting and Typewriting Modules Figure 2 provides an overview of the modules discerned in the handwriting or typewriting motorsystemandprobablyalsointhemotorsystemsdescribingrelatedskills.Themodulesare

566 H.-L. Teulings

The letters to be written are in the Graphemic Buffer (containing the graphemic code, i.e. the orthographic information of a word) The buffer’s contents are sent to the Allographic Store (containing the allographic code, i.e. the letter shapes in the context of a syllable) The retrieved code is stored into the Allographic Buffer And sent to the Graphic Motor-Pattern Store (containing the graphic motor-pattern code, i.e. the stroke sequence of an allograph) the retrieved code is stored into the Graphic Motor-Pattern Buffer at movement initiation the buffer’s code is updated by the Parameter Setting Process (set nonmuscle specific parameters, e.g. stroke size) and the Motor Initiation Process (set muscle specific parameters, e.g. stroke orientation, force) Nerve transmission, activation of synapses and internal feedback yield Muscle Contractions so that the pen tip moves, which can be analyzed after Recording and Processing Figure10.2:Anoverviewofthehandwritingmodules,theircontentsandtheoperationtaking place between and inside them. The graphemic buffer is common for handwriting and typewriting.Thelowerlevelmodulesmaybeanalogousfortypewriting. primarilybaseduponEllis(1982).Hismodelcomprisestwoparallelinputpathstoacentral, cognitivesystem,toperceivespokenandwritteninformationandtwoparalleloutputpaths,to producespeechandhandwriting.Certainmodulesconcernretrievalfromalongtermmemory, thestorageintoashorttermbuffer,theorderedretrievalfromashorttermbuffer,ormerely updatingthecontentsofabufferbythesubstitutionofspecificparameters.

567 Handwriting Movement Control

Margolin(1984)introduced atypingbranch analogoustotheabovehandwritingbranch.He suggestedthatthegraphemiccodeistransformedintotheallographiccode,bothintypingand inwriting.Then,analogoustothegraphicmotorpatterncode,a"typingmotorpatterncode"is generated, specifying the sequence of key strokes. To complete the analogy with the handwriting motor system, first the nonmuscle specific, and then the musclespecific parametersaresubstituted.Inthissection,findingsonhandwritingandtypewritingarefitted intoasingleframework. 2.3 Higher-Level Modules Reflected by Slips of the Pen

Errorsinspeech,typewriting,andhandwriting(Ellis,1982),or,"slipsofthetongue","slipsof thefinger",or"slipsofthepen",respectively,provideinterestingpossibilitiestohypothesize theexistenceofaspecificsequenceofmodules.Thehighestlevelmodulewewishtoconsider hereisthe"graphemicbuffer"(SeeFigure3).Thisbuffercontainsthegraphemiccodeneeded tocorrectlyspellthetobeproducedword.Agraphemeisaletterwithoutdetailsastowhether itisacapitalorlowercase,handprintoranyspecificshapeofcursivescriptletter(SeeFigure 4). Therefore, the graphemic code does not yet specify the shape. In the graphemic buffer confusionsbetweenidenticalgraphemes,butdifferentallographs,occur(e.g.,"toEnglish"=> "toeng...").Furthermore,anticipationsandperseverations (e.g., "Cognitive" => "Go...") may occuratthisgraphemiclevelwhereidenticalgraphemes,e.g.,"g"and"G",interact.Itmaybe notedthatthewriterdiscoverstheslipofthepensoonafteritwasmadeandstopswritingso that it is unknown how the writing pattern would have been completed. Similarly, in typewriting, the interkey period immediately after an erroneous key press is prolonged, althoughthetypingsequenceismostlynotinterrupted(Salthouse,1984). Thecontentsofthegraphemicbufferaresenttoanallographicstoreinordertoretrievethe "allographic code" specifying the shape of each grapheme (but not the strokes' sequence). Different shapes of a grapheme are called "allographs". At this level, confusions between identical allographs may occur. The mutually affecting allographs may be separated several letter positions in a word. For example, omissions of one of the two identical allographs occurring in a word (i.e., letter masking) (e.g., "satisfactory" => "satifa..."; "listening" => "listeing") and haplographies (e.g., "dependence" => "depence"). These errors rarely occur between different allographs of the same grapheme (e.g., "Multimeter" => "Multie...") (Van Nes, 1985; Ellis, 1982), which confirms the assumption that letter masking occurs at the allographiclevelratherthanatthegraphemiclevel. Theretrievedallographiccodeistemporarilystoredinthe"allographicbuffer".Ellisconcluded that the allographic code describes the strokes of a grapheme but not their sequence or execution directions so that reversals (e.g., "p" versus "g" in "pagoda" => "padoga") and substitutions(e.g.,"b"versus"p"in"Ambiguous" =>"Amp...")involvingsimilarallographs mayoccur.Similarallographshavesimilarshapesbutthestrokesmaybeperformedindifferent orders.Thattheseerrorsoccuratalowerlevelthanthepreviouserrorsmaybederivedfromthe observations that there is no context allograph facilitating letter substitution, and that the affectedallographsareonlyfewletterpositionsapart.

568 H.-L. Teulings

Graphemic Buffer gr anticipations Allographic perseverations Long-term lettermasking Store all haplographies Allographic Buffer reversals all substitutions Graphic Motor-Pattern Store gmp Graphic Motor-Pattern Buffer

scale errors Neuromuscular NeuromuscularExecution Execution

WRITING

WRITING

Figure 10.3: The various slips of the pen occurring at or between different modules. The neuromuscular execution still consists of two modules: the muscle-independent parameter setting and the muscle-dependent motor initiation, gr, Graphemic code; all, allographic code; gmp, graphic motor-pattern code. [From Ellis, 1982.] Theproperstrokesequenceisretrievedbysendingtheallographiccodetothe"graphicmotor patternstore",yieldingthegraphicmotorpatterncode.ExtendingideasofVanGalen(1980), Ellisassumesthatthegraphicmotorpatterncodeprescribesthesequenceofstrokesandalso therelativesizesrequiredtoperformtheallographbutnottheabsolutesize.Subsequently,the graphic motorpattern code is stored in a graphic motorpattern buffer, awaiting movement initiation.However,thebufferedmovementcodestillhastobecompletedwiththecurrent

569 Handwriting Movement Control

Figure 10.4: The abstract grapheme ‘f’ may be represented according to various allographs, Each realization of an allograph is called a graph and shows only variations due to motor noise. [From Ellis, 1982.] scalefactorslikeabsolutesizesandstartingpositions.Thus,patternerrorscannotoccuratthis levelanymore,butonlyscaleerrors.E.g.,thesizereductionneededtosuperscriptacharacter may be omitted, but rarely the wrong character is superscripted. Finally, musclespecific parametershavetobespecified,aswillbeexplainednext.

2.4 Lower-Level Modules Reflected by Handwriting Movement Dynamics Adifferenttypeofparadigmisrequiredtofindevidencefordistinctmodulesinthelowerlevel ofthemotorsystem.TheclassicalwayofdistinguishingmodulesisbasedonSternberg's(1969) additivefactormethod(e.g.,Sanders,1980).Thismethodhasbeensuccessfulinthe80sfor discoveringserialmodulesinreactiontimeparadigms.Themethodassumesthateachmodule requiressomehypotheticalprocessingtime,andthatthereactiontimeperiodisexactlythesum ofallmodules'processingtimes.Then,themeanreactiontime equalsthesumofthemean processing times. Therefore, if two experimental variables significantly affect the component timesofdifferent(setsof)modules,thenthereactiontimedatashouldbeadditiveandnotshow anyinteractionbetweenthesevariables.Evenstrongerpredictionsarepossibleifthecomponent timesarestatisticallyindependent.Then,notonlyarethemeansadditive,butalsothevariances. Reversingthislogicalconclusionyieldsthespeculationthatiftwoexperimentalvariablesshow significantmaineffectsandanonsignificantinteraction,theymightaffectdifferentmodules. Commonsenseandexperienceoftheresearcherisusedtochoosethesequenceofthemodule thataresupposedtobeaffected.Usingtheadditivefactor method, Van Galen and Teulings (1983)foundindicationsforthe existenceoftwolowerlevel modules below the previously

570 H.-L. Teulings mentioned graphic motorpattern store where the sequence of strokes is represented as an abstractmovementcode. The first lowerlevel module concerns "parameter setting": global, muscleindependent parameterssuchasposition,size,speed,andforcearesubstitutedintheabstractgraphicmotor patterncode.VanGalenandTeulings(1983)arguedthatthesizeofwritingisnotnecessarilya musclespecificparameterbecausewritingsizecanbeadjusted,withincertainlimits,without changingtherolesofthemusclesinvolved.Therefore,writingsizeisanexperimentalvariable affectingtheparametersettingmodule. Thesecondlowerlevelmoduleconcerns"motorinitiation":theactualmusclesandmotorunits arerecruited.Orientationofthebaselineandslantaretypicallymusclespecificparameters.To argue this, the authors hypothesized that writing movements are organized in terms of two muscle systems, one corresponding to fingerjoint movements and one to wristjoint movements. Each muscle system is responsible for movements in different orientations. Therefore,changingtheorientationofthebaselineortheslant(i.e.,slopeofthedownstrokes relativetothebaseline,Maarse&Thomassen,1983)wouldimplythattherolesofthesemuscle systemschange.Soorientationofthewritingpatternisanexperimentalvariableaffectingthe lattermodule. ThedatainVanGalenandTeulings(1983,Fig.3)showsignificantmaineffectsofreaction timeasafunctionofsizeandorientationbutanonsignificantinteraction.Forexample,reaction time, defined as the latency between imperative stimulus and writing initiation, was for the normal orientation and the small letter width (i.e.,0.33cm)651msandforthelargeletter width (i.e., 1 cm) 667 ms (yielding a difference of 16 ms), and in the verticaldownward orientationcondition710and728ms,respectively(yieldingasimilardifferenceof14ms,thus rejectinganyinteraction).Thesedatasupportaconclusionthattwoexperimentalvariablesexist which may affect different lowerlevel modules: size, probably affects the parametersetting module,andorientationprobablyaffectsthemotorinitiationmodule. Whatcouldbethesenseofsomanymodulesaftergeneratingthegraphicmotorpatternbuffer? Van Galen (1980) suggested that the lastminute substitution of global and musclespecific parameters is more efficient than storing and retrieving them, as many of the lowerlevel parametersarefrequentlychangingbetweeninstancesofhandwritingproduction.Forexample, whilewritingalineonapagefromlefttoright,theorientationofthehandchangesgradually. However,theeffectorsinvolved,seemtocompensateforthevaryingarmorientations,sothat theorientationandslantofthewritingpatternvaryremarkablylittleacrosstheline(Maarse, Schomaker&Thomassen,1986).Therefore,itwouldnot be efficient to store orientation or slantparametersinthegraphicmotorpattern.Indeed,subjectscaneasilychangetheorientation andslantoftheirwriting,eithervoluntarilyorinducedbydistortedfeedback(Pick&Teulings, 1983). Furthermore, this principle of substitution of musclespecific parameters provides an explanationofthe"motorequivalence"phenomenon:theshapeofamovementpatternisonly marginally dependent upon the muscles that execute the final movement (Bernstein, 1967). There is a tradeoff between completely stored movements, allowing quick movement preparation,andabstractmovementpatternswithseveral processing modules, allowing great flexibility.

571 Handwriting Movement Control

2.5 Higher-Level Modules Reflected by Typewriting Errors

Also in typewriting, higherlevel and lowerlevel modules can be discerned on the basis of typingerrors.RumelhartandNorman(1982)listcategoriesoftypewritingerrors.Perhapsthe highestlevelerroristhecaptureerror,i.e.,thepatterngetscapturedbyanotherbutsimilarword ("efficiency"=>"efficient"),whichtypicallyoccursattheabstractrepresentationofthetyping patterns in the graphemic buffer. As the graphemic buffer is providing output to both the typewritingandthehandwritingmotorsystem,onemayexpecttheseerrorsalsoinhandwriting (Margolin, 1984). Another highlevel error is the alternation reversal ("these" => "thses"), wherethe wrong,butmayberelatedmovementisselected.Onecouldhypothesizethatthese errorsoccurinthetypewritinganalogyoftheallographicbuffer. The next lowerlevel typing errors concern the proper sequence of the keys. One could hypothesize that these errors occur in the typewriting analogy of the graphic motorpattern buffer, i.e., the "typing motorpattern buffer": transposition ("because" => "becuase"), and doubling ("Screen" => "Scrren"). Shaffer (1976) reportsthattranspositionerrorsoftenoccur whenbothhandsalternatekeysinanoutofphasemanner(e.g.,"wentdown"=>"wnetodnw"), sothattranspositionerrorsareprobablyrarelyfoundinhandwriting.RumelhartandNorman's (1982) model of the timing and sequencing of key strokes simulates exactly these types of errors.Theirtypingmodelwillbeexplainedattheendofthissection. 2.6 Lower-Level Modules Reflected by Typewriting Movement Dynamics After generating the typing motorpattern code still various categories of "misstrokes" or "substitutions"mayoccur.Thenatureoftheseerrorssuggeststhattheycouldbeproducedin the module analogous to the parametersetting module in handwriting. Grudin (1983) investigatedvideorecordingsofinstancesofthesemisstrokesandsuggeststhattheyarenotjust aimingerrorsbutactuallyhavebeenplannedasaclearmovementtothewrongkey.Thetyping errorsinexpertsandnovicesconsistmostlyof"horizontalmisstrokes",i.e.,hittingthewrong keyinthesamerowasthecorrectone.Oftenthewrongfingerwasselectedhittingitsusualkey. Lessfrequentlyoccurringare"verticalmisstrokes",wheretheappropriatefingermovesinthe wrongdirectiontothehigherorthelowerrowofkeys.Evenlessfrequent,butstillinteresting are "homologous errors", where the corresponding finger of the opposite hand is activated. Theseerrorsindicatethatwrist,hand,finger,andtheirmovementdirectionsdonotneedtobe specifiedinafixedsequence,butareindependentlysubstitutedintoa"matrix".Interestingis thatthekeystrokeafteramisstrokeisdelayed(Salthouse,1984),whichsuggeststhatindividual keystrokesaremonitoredinsteadofproducingwholegroupsofkeystrokesas"ballistictyping chunks". The lowestlevel typing error may be the intrusion or insertion error, resulting from a movementaiming error, such that the finger lands at a position between two keys. Here, movementamplitudesinhorizontalorverticaldirectionswerenotproperlyselected.Thisseems a typical error occurring in a module analogous to the parametersetting module in the

572 H.-L. Teulings handwritingmodel.Ofcourse,therearestillmanyunclassified"misstrokes"andomissionsin typewriting.However,theonesmentionedhereseemtosuggestatleastcloseparallelsbetween multimodulemodelsoftypewritingandhandwriting. 2.7 Feedback in Handwriting Aserialmodulemodelisappropriatetotheextentthatfeedbackloopsbetweenmodulesarenot essential.Thismayindeedbethecaseinfast,singlephasicreachingmovements.However,in continuous handwriting, not all parts of the writing pattern need to be prepared before movement can start, but rather subsequent parts of the movement may be prepared during producingthefirstpart,whilegraduallycorrectingonthebasisofearlierfeedback.Inhismulti modulemodel,Ellis(1982)includedfeedbackloopsbuthestatedthattheyplayamarginalrole infast,overlearnedhandwritingmovementsunderstableexecutionconditions.Themainreason isthathandwritingisperformedasfastas100msperstroke,sothatanycentralprocessingwill betooslowtomonitorstrokeformation.Forexample,asuddenincreaseordecreaseofpento paperfrictionresultsinanimmediateeffectuponstrokesize.Ittakesseveralstrokestorestore strokesize(DeniervanderGonandThuring,1965;SeeFigure5.Eventheelectromyogram (EMG)infastmovementsseemsatleastduringthefirst100msindependentofproprioceptive feedback as shown in conditions where the movement was blocked unexpectedly (e.g., Wadman,DeniervanderGon,Geuze,&Mol,1979).

Figure 10.5: The influence of a sudden increase of the pen-to-paper friction (left arrows) and the restoration of the original pen-to-paper friction (right arrows). Several strokes of a t least 100 ms are required to recover from the distortion, which was not internally anticipated, [From Denier van der Gon and Thuring, 1965.] Furthermore, the speed of writing seems little affected by the absence of visual feedback (Smyth & Silvers, 1987). Global parameters, such as instructed size changes are performed moreaccuratelywiththanwithoutvision,though(Burton,Pick,Holmes,&Teulings,1990). Alsodistortionofvisualfeedbackusingrotationandsheartransformationsshowssomeglobal effects,althoughthesubjectsdidnotrealizethe typeofdistortion.Distortedorientationand

573 Handwriting Movement Control slantshowagradualandpartialcorrectiontowardsthewriter'susualorientationandslant(Pick andTeulings,1983). Althoughvisualfeedbackisnotusedformonitoringthe currentstrokes,itstillappearsthat specific slips of the pen occur in the absence of visual feedback. When suppressing visual feedback,subjectsappeartohaveapoorcontrolofthenumberofstrokerepetitionsorletter repetitions(Lebrun&Rubio,1972).Interestingly,patientswithlesionsintherighthemisphere seem to show similar disruptions, e.g., "comptable" => "comnptabble," suggesting that the visualrepresentationisusedtomonitorthewritingprocess.

2.8 Serial-and-Parallel Model of Handwriting Previously, the motor system was considered as a sequence of serial modules, where each module represents a specific process. In strictly serialmodulesamoduleneedstodeliverits results, before the subsequent module can start processing. However, this seems unlikely in continuousmotortaskssuchascursivescript.Namely,duringwritingasentence,thelaterparts ofthesentencestillmayneedtobeprepared.Therefore,allmodulesareactivesimultaneously, i.e.,inparallel. PerhapstheearliestevidenceforonlineprogrammingwasreportedbyKlappandWyatt(1976). They investigated a Morse task consisting of sequences of two key presses, in a "choice reaction time" paradigm. It appeared that reactiontimewaslengthenedinthemorecomplex Morsepatterns(i.e.,shortlong,orlongshort)ascomparedtosimplerpatterns(i.e.,shortshort, orlonglong).However,withpracticethereactiontimewaslessandlessaffectedbythesecond keypress.Thisindicatesthatmuchoftheprogrammingofthesecondkeypressisdoneduring thefirstkeypress.Accordingly,bothdurationofthefirstkeypressandtheintervalbetween firstandsecondkeypresswerelongerwhenthesecondkeypressisthemorecomplexlongone, ascomparedtothemoresimpleshorterkeypress. Thephenomenonofslowedmovementexecutionduringloadsduetopreparationoflaterparts ofthemovementisalsoobservedin"simplereactiontime"conditions,wherethemovement patternhasalreadybeenpreparedtosomeextentandthesubjectismerelywaitingforthe"go signal"tostarttheexecution.Sternberg,Monsell,Knoll,andWright(1978)investigatedspeech andtypewritingsequencesinsimplereactiontimeconditions.Bypostulatingaspeechunitasa singlestressgroupandatypewritingunitasasinglekeystroke,itappearedthatbothmovement latencyofthefirstunitandtheexecutiontimeperunitincreasedaboutequallyforeachunitin thetotalsequence.Theincreasewasabout10msperunit, althoughtheeffectreduceswith exercise.Apparentlythetotalnumberofunitsbutnotthecomplexityperunitisrelevantforthe movement latency. For example, the 10 ms increase in reaction time is independent of the numberofsyllablesorconnectingwordsperstressgroup(i.e.,wordcomplexity).Sternberget al. suggested an exhaustive unitretrieval process from an unsorted, nonreducing buffer followedbyaseparateunitunpackingmodule.Thebuffercouldbetheanalogyofthemidlevel graphicmotorpatternretrievalinhandwriting.Theretrievaleffectsdependuponthenumberof majormovementunitsandbecomemanifestasdelaysbeforeandduringmovementexecution. The unitunpacking module could be the analogy of the lowerlevel modules of parameter

574 H.-L. Teulings settingandmotorinitiationinhandwriting.Theunpackingeffectsdependuponthecomplexity ofeachunitseparatelysothatmovementlatencyisaffectedbytheunpackingofthefirstunit only. Interestingly,theincreasesofreactiontimeandmovementtimewiththenumberofunitsare alsoobservedifall(speech)unitsareidentical: They seem even retrieved and executed at a significantlylowerratethaniftheyweredifferentunits(Sternbergetal.,1978).Thesamewas observedinhandwritingforsequencesofidentical allographs (Teulings, Thomassen, & Van Galen1983),andsurprisinglyalsoforsequencesofidenticalsyllables(VanGalen,1990).Of course, in choicereaction conditions, sequences of identical units are still initiated faster, probablybecauseonlyoneunitneedstoberetrievedfromthehigherlevelgraphemicbuffer (Teulingsetal.,1983). Initially the Sternbergian increase of both movement latency and movement duration as a functionofthenumberofunitsinthestringcould not be replicated in handwriting, though (Hulstijn&VanGalen,1983;Teulings,Mullins&Stelmach,1986).Ithasbeenhypothesized thatundertimepressure,whichisthecaseinthesesimplereactiontimeexperiments,subjects tend to preprogram largely the whole sequence rather than only the beginning. Van Galen, MeulenbroekandHylkema(1986)eliminatedtimepressurebylettingthesubjectsinitiateand perform the writing pattern at their own pace after a go signal. Under these conditions, the Sternbergian movementlatency and duration effects as a function of sequence length in handwriting became manifest. A speculation why especially identical units cause an extra slowingdownofmovementexecutionisthatthesesequencesgiverisetospecificerrors.E.g., LebrunandRubio(1972)reportedcountingerrors(underreducedvisualfeedback)inpatterns containing repetitions. Furthermore, Rumelhart and Norman's (1982) typewriting model providesspecialprovisionsforadjacentandfornonadjacentoccurrencesofidenticalkeystrokes (Seeendofthissection). AserialandparallelmodelhasbeenproposedbyVanGalen(1986,1991)inordertoexplain the specific effects of parallel multimodule processing in handwriting. Serial stands for the notionthatseveralsequentialmodulesarediscerned,rangingfromthehighlyabstractintention offormulatingamessagetoperformingtheappropriatemusclecontractions.Parallelstandsfor thenotionthatallmodulesareactiveduringmovementproduction.Inthemultimodulemodel theoutputofthehigherlevelmoduleistransmittedtothenextlowerlevelmodule,sothatthe higherlevelmoduleisavailabletoprocesssubsequentpartsofthewritingmovement.Atthe same time, the unit of programming at the highlevel module may be large, whereas it is hierarchicallydividedintosmallerlowlevelunits(e.g.,Povel&Collard,1982;Rosenbaum, Kenny,&Derr,1983;Sternberg,Knoll,&Turock,1990).Thissuggeststhatinthehigherlevel module, more widerange errors may occur than in the lowerlevel modules, and that it is reasonable to suppose that the reverse holds. Furthermore, the more abstract movement informationisprocessedatthehigherlevelmodule,whichneedstobedonemoreanticipated withrespecttoitsexecution.Intheoppositecase,themoreconcretemovementinformation may be processed at the lowest level of the motor system, which can probably be done immediatelypriortoexecutingthecorrespondingmovement.

575 Handwriting Movement Control

Themodeltoexplainthedifferentialeffectsduetotheprocessingdemandsathigherandlower levelsmaybecompletedintwoways:Accordingtoonemodel,ahigherlevelmodulemaytake moreprocessingtimeforaparticularcomplicationandconsequentlydeliversresultstothenext lower module slightly later. This would imply that the corresponding part of the writing movementarrivesatthelowestlevelwithsomedelay.Thus,theexecutionofacomplicating partofthewritingpatternisdelayed.Althoughreasonable,thisisnotwhatisobserved.The observationsrathersupportasecondmodel,whichsaysthattheprocessingtakingplaceina module consumes central processing resources. This implies that execution of the current movementissloweddownattheverymomentthathigherlevelprocessingisdone,analogously toatimesharingcomputersystem.Theuniqueconsequenceofthelattermodelisthatthehigher the level of the module that produces processing load the more prior to outputting the corresponding part of the writing pattern. This becomes manifest as movement delays at a specifictimepriortoproducingthecomplexpart.Therefore,theoppositeoftherationaleseems reasonable:Themorepriortotheoutputtingofacomplexpartthedelayisobserved,thehigher theleveloftheprocessingmoduleinvolved. VanGalenetal.(1986)testedtheconsistencyofthishypothesisbyproposingthreecomplexity levels,i.e.,thesyllable,theallographandthestroke structure, which are supposed to cause programming complexities at the levels of the graphemic, allographic and graphic motor pattern buffers, respectively. Their subjects wrote pseudowords at their own pace after a go signal.Complexityatthesyllablelevelwasvariedbyaddinglettersafterthethird(target)letter (e.g.,"feb"versus"febel").Thiscausedmainlyalongermovementlatency(286versus298ms). Thecomplexityatletterlevelwasmanipulatedbyincreasingthecomplexityofthethirdletter itself("l"versus"b",e.g.,"fel","felel",and"feleb",versus"feb","febeb",and"febel").This causedalongerdurationoftheletterimmediatelypriortothemanipulatedletter(270versus 273ms,whichwouldbeasmalldifferenceforreactiontimes,butissignificantformovement times).Themovementlatencyandthedurationsoftheotherletterswerehardlyaffected.The complexityatthestrokelevelwasmanipulatedbyvaryingtheconnectingstrokebetweenthe secondandthethirdallograph.Itscomplexitydependsuponwhethertheconnectingstrokehas a constant sense of rotation (e.g., "ega") or a changeofsenseof rotation(e.g.,"egu").This causedalongerdurationofthestrokesofthe allograph prior to the connecting stroke (397 versus 405 ms). In summary, these data support the notion that the higherlevel modules consumeprocessingdemandsinparalleltothelowerlevelmodules,whilethelowerthelevel, the narrowerscale the influence and the smaller the unit of programming (See Table 1). Furthermore,repetitionofaunitofprogrammingcausesslowingdownoftheexecution. Table 10.1: Programming unit, variable affecting complexity and the scope of the resulting delays, in various modules or buffers. Module/buffer Programming unit Complexity variable Delays Graphemic Wordorstressgroup Syllablestructure Wordlatency Allographic Syllable Allographstructure Previousallograph Graphicmotorpattern Allograph Strokecomplexity Previousstrokes

576 H.-L. Teulings

2.9 Serial-and-Parallel Model of Typewriting Theparallelpreparationofsuccessivekeypressesintypewritinghasbeensuggestedbymany researchersasanexplanationoftheobservedhightypingratesofabout10persecond.Thereis ampleevidencethatthishighspeedoftypewriting isonlypossibleifseveralkeystrokesare prepared in parallel. If only a preview of a single letter is given, typewriting slows down dramatically (Salthouse, 1984). Gentner, Grudin, and Conway (1980) and Larochelle (1982) showedthatfingermovementsarenotinitiatedaccordingtothesequenceinwhichtheyare goingtopressthekeys,butstartmovingavariabletimeahead,sothateachfingerarrivesjust intimeattherightkey.Indeed,Gentner(1983)statesthat,withpractice,thesequentialstrategy of typewriting, is converted into a more and more parallel strategy, while the cognitive constraintsaresolvedandmorehardmotorconstraintsremain.Withpractice,severalfingers areobservedtobemovingsimultaneously,eachtowardsitsrespectivetargetkeys. TheparallelpreparationofkeypresseshasbeencapturedinamodelsuggestedbyRumelhart andNorman(1982).Althoughitisbothamicroscopicmodelandacomputationalmodelitis includedinthissectionbecauseitcoversseveralofthemodulesdiscussedbefore,andbecause itillustratestheparallelprocessingintroducedpreviously.Themodelgeneratesinterkeystroke duration patterns which are so natural that they cannot be discriminated from the timing patterns generated by human typists. This is remarkable as the simulation was based on an isochronoustimerwithdelaysbasedtherequiredonhandandfingermovements.Furthermore, several types of human typewriting errors could be simulated. In this "Activation Triggered Schema"(ATS)modelaschemaisunderstoodasamotor program, which in turn, may call subschemata, or child schemata, or subprograms, thereby passing specific parameters analogouslytoacomputersubroutine.Thesesubschematamayalsoemploylocalprocessingof feedbackfrom"extensiondetectors"ofthefingerrelativetothetargetkey.Themasterschema containstheletterstotypeawordandisanalogoustothegraphemicbufferinhandwriting.This schema calls the subschemata to type the individual letters, which are analogous to the allographic buffer in handwriting. These subschemata, in turn, call lowerlevel subschemata controllingthefinger,hand,andarmmusclesuntilinternalpositionfeedbackindicatesthatthe appropriate finger has reached the planned key. The latter subschemata are analogous to the graphicmotorpatternbuffer,parametersetting,andmovementinitiationinhandwriting. Whenstartingtotypeaword,thesubschemataoftheconstituentlettersareactivatedaccording totheirorderinthe wordstofollow.Themodeldoes not allow two identical letters to be activatedsimultaneously.Iftwoidenticallettersare adjacenta "doubleschema"is generated withanactivationjustabovetheactivationofthelettertobedoubled.Ontheotherhand,iftwo identicallettersoccurnonadjacentlyinthewordstobetyped,thenthesecondoccurrenceand all following letters will be blocked until the first occurrence of the very letter has been executed and deactivated. Furthermore, in order to simulate motor noise some random variationsaresuperimposedupontheactivationlevels(SeeFigure10.6).

577 Handwriting Movement Control

Figure 10.6: Patterns of activation of the key press schemata, required to set up the string ‘very w…’. As soon as the finger reaches the target key, the key press command is launched, After pressing the first ‘e’, the schema for the second key press of letter ‘e’, the double schema D, and the schema for the key press of letter ‘l’ are set up in order to complete the second word ‘well’. [Adapted from Rumelhart and Norman, 1982.] Howdothefingersmovetowardstheappropriatekeys?Eachletterschemaobtainsparameters describingthehandandfingerthathastopressthekey.Furthermore,eachfingerhasitsown, specifiedmovementlimitstowardsupperandlowerrowsandinnerandoutercolumnsofkeys. Therefore,alsohandandarmmovementsneedtobeinvolvedtoreachsomekeys.Themodel hypothesizesthatthehandispushedandpulledtowardsthetargetpositionsofalltheactivated letterschematainproportiontotheiractivation.Sothefingersandthehandarepulledtowards themostactivatedschema,whichrepresentsthefirstkeytobepressed.However,theother activatedschematapullthefingersandtheirhandtosomeextentalsotowardsthesubsequent letters,thusgeneratingasmoothandanticipatingmovementofthehandsandthefingersduring typewriting. The model suggests that some internal position feedback indicates that the finger, moving accordingtotheactivatedschemata,hasreachedthekey.Aballistickeypressislaunched,and aftersometime,akey,whichishopefullythecorrectone,ishit.Theletterschemaisthen deactivated. If the letter schema with the highest activation has a double schema with still higheractivation,thentheletterislaunchedbutitisthedoubleschemawhichisdeactivatedso

578 H.-L. Teulings thattheveryletterisstillactivatedandcanbe launched for the second time in succession. Deactivation is done till the activation level where the letter obtains its appropriate serial position,i.e.,justbelowtheactivationlevelof itspredecessor,orzeroiftheletterdoesnot occurwithinthepreparationwindow. Duetothenoisewhichisartificiallysuperimposedupontheactivationlevels,severalerrors couldbesimulated.Theactivationofthedoubleschemamayincreasebeyondthenexthighest activatedschemaordecreasedbelowtheactivationoftheschemaithastooperateuponsothat the double operation may work upon the letter before or after the intended double letter, respectively,resultingintheusualdoubleerrors(e.g.,"sheer"=>"sherr").Alsotransposition errors,evenmultipleonesbetweenhands,couldbesimulated(e.g.,"vitamins"=>"ivtmaisn"). Furthermore,misstrokescouldbesimulated,occurringwhenduringlaunchingakey,handsand fingersmoveundertheinfluenceoftheother,activatedschemata.Asaresult,akeyneartothe intended one was hit (e.g., "awareness" => "awareneww"). The simulations produced no higherleveltypingerrorssuchascapturesandalternationreversalsorlowerlevelerrorssuch ashomologiesbecausethesewouldrequireadditionalprovisions. 2.10 Empirical Evidence of Movement Units in Handwriting Theprevioussectionsintendedtoestablishseveralabstractprocessingmodules.Eachofthese modulesoperateswithlargerorsmallerunitsofprogrammingofhandwriting,typewriting,or speech. The elementary, mechanically based handwritingmovement unit, may still be the ballisticstroke,i.e.,thetrajectorybetweensuccessiveminimaoftheabsolutevelocity.However, there is little evidence that strokes form a higherlevel organizational unit (Wing, 1978; Teulingsetal.,1986;Hulstijn&VanGalen,1988).Thelatterauthorsfoundthattheunitof programming depends on the amount of practice. Unfamiliar and unpracticed patterns are consideredasasequenceofstrokeunits,whereashighlypracticedstrokesequencesmayforma singleunitatthehigherlevel.VanGalen(1991)suggestsagradualreductionoftheunitsof programming when going from the higherlevel modules to the lowerlevel modules: word, syllable,allograph,andstroke,respectively. Teulings et al. (1983) compared whether a complete allograph or a single stroke forms a movementunit.Theirsubjectsperformedallpairsoftheallographs"e","u","n",and"j"ina reactiontimeparadigmwithvariouskindsofadvanceinformation:bothallographs,onlythe firstallograph,onlythesecondallograph,ornoallograph.Usually,theallographs"e"and"u" are produced by counterclockwise strokes and "n" and "j" by clockwise strokes. It was hypothesizedthat,ifstrokesformmovementunits,thenpairslike"eu"(calledsimilarpairs) consistofasequenceofsimilarstrokesandshouldshowthesamereactiontimesandmovement timesasidenticalpairs(e.g.,"ee").Ontheotherhand,ifallographsformmovementunits,then similar pairs should show the same data as nonsimilar pairs (e.g., "en"). Only the latter hypothesis appeared to hold. Pairs of identical allographs yield short choicereaction times whereas both pairs of similar and nonsimilar allographs yield long choicereaction times. Furthermore, identical pairs were executed at a lower rate in all choicereaction and simple reactionconditions.Thesedataarecompatiblewiththemodelthatcompleteallographsform units.

579 Handwriting Movement Control

There are more observations supporting the idea that each single allograph forms a unit. Meulenbroek and Van Galen (1989) found that the strokes belonging to an allograph are systematicallydifferentfromtheconnectingstrokesbetweenallographs.Thelattertendtobe longerintimeandsize,andmorenoisy.Noisewasexpressedbythenumber,frequencyand density of dysfluencies and by relatively more highfrequency components. Also between allographwidthsaremorevariablethanthewidthsoftheallographsthemselves(Burton,Pick, Holmes, & Teulings, 1990). Even if connecting stroke and allograph stroke are virtually identical,differenceshavebeenfound:MeulenbroekandVanGalen(1989)conductedacontrol experimentwhereadultsubjectswroteseveraltimesa6letterwordcontaining"uu".Here,the (withinallograph) upstroke of the "u" is virtually undistinguishable from the upstroke connectingboth"u"s.Again,theconnectingstrokewasmorevariable.Anotherexampleisthat withexperienceandage(from8yearoldstoadults)eachwriteracquiresahandwritingstyle whichismoreandmoreindividualanddeviantfromtheoriginalinstructionmethod.Between eachpairofallographsadifferentconnectingstrokemayexist,sothatconnectingstrokesmay beformedmorefreelythanwithinallographstrokes.Therefore,connectingstrokesappearto becomemoreeasilyindividual(e.g.,Sassoon,NimmoSmith,&Wing,1989).Finally,because of their higher number of degrees of freedom, connecting strokes are more sensitive to withdrawal of visual feedback: Betweensubjects differences of connecting strokes increase morethanthoseofstrokeswithinanallograph(Meulenbroek&VanGalen,1989). InthiscontextitisinterestingtomentionresultsbyMaarseandThomassen(1983),showing thatthedirectionsoftheupstrokes,whichformmostlyconnectingstrokes,arelessstableboth withinandbetweenconditions.Theconditionswereformedbyinstructingthesubjectstowrite normal, at increased width, or at decreased width. In summary, most empirical evidence supportstheallographsasahigherlevelunitofhandwriting,butapparentlythisdoesnotreject thehypothesesofbiggerorsmallerunitsathigherorlowerlevelsorundercertainconditionsof practice,respectively. 2.11 Empirical Evidence of Movement Units in Typewriting

Itseemsreasonabletoconsiderakeystrokeasaunitintypewriting,becauseitissodiscreteas comparedtothefluentandcontinuoushandwritingmovement.IndeedSternbergetal.(1978) foundsimilaraffectsinkeystrokesasinstressgroups,whichseemedtofitthepropertiesofa movementunitbest.Typewritingstrokesareproducedataboutthesamerateashandwriting strokes. However, several handwriting strokes form higherlevel allograph units, so that one may wonder whether there are higherlevel movement units of several typewriting strokes. Logan (1982)foundthatwhensubjectsreceivedastop signal during their typewriting, they couldinhibittheverylastletterofawordverywell.Thisindicatesthattheunitintypewriting issmallerthanaword,andthatakeystrokeisstillausefulunitintypewriting.

580 H.-L. Teulings

3 MICROSCOPIC MODELS Intheprevioussectionthecomplexhandwritingmotorsystemhasbeensegmentedintovarious serialandparallel modules. An attempt was made to integrate also the typewriting motor system. In the present section specific modules and processes will be discussed in a more detailed,microscopicscale.Thehighestlevelmoduleconcernsthegraphemicmodule,which outputs both to the lowerlevel modules of the handwriting, typewriting, and speech motor systems(Ellis,1982;Margolin,1984).Thegraphemiccodeistranslatedintotheallographic code,whichisuniqueforeachofthesemodalities.Theallographiccodeprescribestheshapes ofthegraphemesintermsofthestrokesrequiredbutnotthesequenceorexecutiondirections of the strokes. This information is retrieved from the graphic motorpattern store when translating the allographic code into the graphic motorpattern code. The sequence and directions of the strokes are mostly chosen according to some rules, summarized in the "grammarofaction".Thetranslationbetweenthesebufferswillbediscussedfirst.Themodule tobediscussednextconcernsgraphicmotorpatternstore.Notonlymovementsequencesand directionsarestoredhere,butalsoothermotorinformationtotheextentthatitisnotsubstituted bythelowerlevelmodulesofthenonmusclespecificparametersettingorthemusclespecific motorinitiation.Thefixedmotorinformationcouldbeunderstoodasamotorprogram.The third module to be discussed concerns the lowestlevel motor initiation module, where the motor system is dealing with muscle (or limb) dependent parameters. Strokes in different directionsrequiredifferentsetsofmusclelimbsystems,havingdifferentfeatures,resultingin mainaxesofmovementinhandwriting.Finally,anoverviewispresentedofallconditionsand modules contributing to the time required to produce specific movement times. The large numberoffactorsaffectingmovementtimeseemsanindicationthatdurationsarenotstoredin thegraphicmotorpatternbutaregeneratedbyvariousmodules.

3.1 Grammar of Action Asexplainedintheprevioussectiononmacroscopicmodels,theallographiccodeisretrieved fromtheallographicstoreandtemporarilystoredintheallographicbuffer.Confusionsbetween allographshavingsimilarshapesbutdifferentstrokesequences,madeEllis(1982)hypothesize amodulewherethemovementcodespecifiesonlytheshapeofthepatternbutnotitsstroke sequence.Thesequenceofstrokesisestablishedafterretrievingthegraphicmotorpatterncode. If familiar writing patterns are produced the sequence of strokes is fixed and welllearned. However,ifnewpatternshavetobeproduced,anefficientsequencewillbechosenonthespot, whichappearstosatisfyalimitedsetofrules.Thissetofrulesisknownasa"grammarof action",originallyproposedbyGoodnowandLevine(1973),andextendedforhandwritingby VanSommers(1984),Thomassen,Tibosch,andMaarse,(1989)andothers. A graphical pattern may in principle be produced according to numerous sequences and directions of the constituting strokes. Thomassen et al., (1989) indicated that the number of differentstrokesequencestocopyageometricalpatternincreasesexplosivelywiththenumber ofsegmentsnasn!2 n.However,readinghabits,writinginstructions,biomechanicaleffector properties,opportunityforvisualguidanceandefficiencyleadtoareductioninthenumberof

581 Handwriting Movement Control sequencestoafewusualsequences,whicharechosenbymostsubjects.Thegrammarofaction specifyingpreferencestoperformthesegmentsmayalsobethecompoundresultofmaturation ofthemotorsystemandhandwritingskillasseveraldevelopmentaltrendsandtransitionshave beenobserved(Goodnow&Levine,1973;Nihei,1983;Thomassen&Teulings,1979,1983b; Thomassen,Tibosch&Maarse,1991;VanSommers,1984). Theorderofstrokeproductioninsimplegeometricalpatternscomposedofstraighthorizontal andverticalsegmentswasinvestigatedsystematicallyby,e.g.,Thomassen,Meulenbroek,and Tibosch (1991). They observed that five weighted rules could predict nearly 88% of the observedproductionsequencescorrectly.Theserulesareindecreasingorderoftheirweights: (1)Threading(i.e.,continuingwithoutpenlift). (2)Startingattheleftextreme. (3)Anchoring(i.e.,liftingthepenandrepositioningitatasegmentdrawnearlier). (4)Startingwithverticals. (5)Startingatthetop. Somepatternsrequiretradingoffconflictingrules.E.g.,Rule3istradedoffwithRule1;Rule 5 is traded off with Rule 2. The stroke sequence of patterns where all rules are satisfied simultaneously,werelessvariable,andbothreactionandmovementtimeswereshorterthanin patterns requiring choices between conflicting rules. In patterns requiring tradeoff between variousrules,thelatenciesarelongerwhilethemovementtimesarenotlongerbutevenshorter. Therefore, ample time before actually producing the pattern, these very highlevel decision processes consume central resources (Thomassen, 1991; Thomassen et al., 1991). After extendedpracticethesequenceofstrokesofapatternbecomesestablishedasatimeordered structureinthegraphicmotorpatternstore.

3.2 Motor Program Variousdefinitionsofamotorprogrammayexist.Itisgenerallyacceptedthatamotorprogram consistsofanabstractmemorystructurecontaining codes capable of being transformed into movementpatterns(Schmidt,Zelaznik,Hawkins,Frank,&Quinn,1979).Amotorprogramisa controlled sequence, produced by hierarchical units (Keele, Cohen, & Ivry, 1990), which is somehow stored in a person's longterm motor memory. As the sequence of strokes is representedinthemotorprogram,themotorprogramseemsmostcompatiblewiththegraphic motorpatterncode. Handwriting, typewriting, speech, gesture, and gaitpatternsareindeed highlypersonal(e.g., CuttingandKozlowski,1977;Schmidtetal.,1979).Especiallyhandwritingandsignaturesare consideredaspersonal,motoricfingerprints(e.g.,Stockholm,1979;Rosenbaum,1991).The idiosyncrasy of handwriting is not due to each person's specific handwriting instruction as childrenreceivingthesamewritinginstructionsoondeveloptheirpersonalhandwriting.The sources of personal handwriting features are rather the individual storage of handwriting movements in the graphic motorpattern store ("invariantstorage hypothesis"), or, the

582 H.-L. Teulings individual training of the lowerlevel movement processing modules ("invariantprocess hypothesis").Theindividualtrainingcouldresultin individual movement features caused by themuscleindependentparametersettingorthemuscledependentmotorinitiation(e.g.,Van Emmerik and Newell, 1989; Soechting, Lacquaniti, & Terzuolo, 1986). Some global handwriting features, generated by those lowerlevelmodules,appearsoindividualthatthey can be used to identify a writer by analysing an arbitrary sentence of handwriting. A discriminativesetisformedbysomeglobal,dynamicfeatures:meanaxialpenpressure(i.e., axialpenpaperpressure),mean absolutepenvelocityindownstrokes,sumofthependown durationsdividedbythetotalwritingtime,andby some global, static features: handwriting slant,andhorizontalextentofthestrokes(Maarse,Schomaker,&Teulings,1988). Nevertheless, there is strong evidence for the invariantstorage hypothesis. For example, handwriting storage seems hierarchically organized (e.g., Patterson & Wing, 1989). Hierarchical storage may also explain why related allographs in adult handwriting show similarities,e.g.,betweenthedescendersin"g"and"y"ortheascendersin"l"and"b".These complex stroke similarities seem unlikely to be caused by the lowerlevel processes. The invariantstoragehypothesiscanalsoexplainthe"motorequivalence"phenomenon(Bernstein, 1967),thattheshapeofhandwritingpatternsisratherindependentofthelimbsandmuscles involved. There is a striking shape resemblance between a person's handwriting pattern of normalsizeandthesamepatternperformedmuchlarger,orwhenusingotherlimbs,suchthat differentmusclesareinvolved(Bernstein,1967;DeniervanderGon&Thuring,1965;Katz, 1951; Keele et al., 1990; Lacquaniti, 1989; Marsden, 1982; Merton, 1972; Raibert, 1977; Stelmach&Teulings,1983;Teulingsetal.,1983;Wing,1990;Wright,1990;etc.).Intermsof themultimodulemodelthiscanbeunderstoodbypointingoutthatwritingpatternsarestored independentlyofmusclesandlimbs,whereasthemusclespecificaspectsaresubstitutedinthe lowestlevelmotorinitiationmodule. Ifamotorprogramisrepeatedseveraltimes,theinvariantstorage hypothesis predicts many invariantmovementfeaturesacrosstheresultingreplications.Byreversingthisrationale,which isreasonable,invariantfeaturesmightstemfromthosemovementparametersthatarestoredin the motor program, i.e., the graphic motorpattern code. Additional consistency of invariant featuresmayhelptoprovidefurtherevidencethatcertainmovementparametersarestoredin the motor program. Additional consistency can be provided by showing that a supposedly invariantfeaturedoesnotchangewhenirrelevantexecutionconditionsarechanged. Theidentificationofinvariantfeaturesisthekeytoestimatingtheunderlyingmotorparameters ofthemotorprogram.Therefore,invarianceshavetobeexpressedonacommonscalesothat they can be compared. The invariance of a certain featurecanbeexpressedbyitssignalto noiseratio(SNR),definedhereastheratioofthestandarddeviationofthemeanstrokepattern sd(signal') to the mean standard deviation of the differences between the individual stroke patternsandthemeanstrokepatternsd(Noise). Actually,anunbiasedestimatorforthenoise standarddeviationis sd(signal) 2=sd(signal') 2sd(noise) 2/n

583 Handwriting Movement Control wherenequalsthenumberofreplicationsusedtoestimatethemean,althoughthismayyield negative estimates (e.g., Teulings, & Schomaker, 1993). Any overall variations cause overestimationofsd(noise)sothatthesesmalloverallvariationsneedtobenormalizedbya factor,althougharateparameterfortime,forexample,doesnotseemstatisticallyreliablein typewriting(Gentner,1987).However,thesenormalizationsaffectthedataonlylittle,sothat the effect of a nonreliable rate parameter is minor. The SNR of a feature presents a dimensionlessmeasureoftheinvarianceofafeature.Furthermore,1/SNR\s2\Srepresentsthe relativenoisevarianceofafeature,andisadditiveforproductsofindependentfeatures,just likeabsolutevariancesofsumsordifferencesofindependentfeaturesareadditive.Therefore, notonlyabsolutemeasuresofinvariancecanbegiven,butalso,howinvariancesofvarious featuresrelatetoeachother. Ifitisknownhowcertainfeaturesarerelated,moreconclusionscanbedrawn.Afeaturecould beinvariantsolelybecausethisfeatureisrelatedtoanotherandpossiblymoreinvariantfeature. The comparison of various related invariant features can be illustrated by considering the simplest,onedimensionalmechanicalequation,whichexpressesstrokesizes,asafunctionof thenetforcelevel,whichmaybeassumedproportionalwiththeaccelerationainthefriction lesscase,andstrokedurationt: s=eat 2 whereestandsfortheefficiencyoftheforcetimecurves.Theefficiencyisproportionalwith thedistancetravelledgivenacertainpeakforceanddurationandishighestforablockshaped accelerationtime function, and less for half cosine or triangularshaped acceleration time functions,namely0.25,2/п 2≈0.20,and1/6≈0.17,respectively.Thesmalldynamicalrangeof theefficiencyeasafunctionofaccelerationshapeindicatesthatitisnotapowerfulparameter tocontrolmovements. Itisoftenobservedthattimingpatternsofstrokesareremarkablyinvariantacrossreplications (e.g., Viviani & Terzuolo, 1980; Denier van der Gon & Thuring, 1965). However, stroke durationandpeakforceperstrokearenegativelycorrelatedsothatitcanbeunderstoodthatthe resulting stroke size s is more invariant than either of its factors a and t (e.g., Teulings, Thomassen,&VanGalen,1986).Iftheaandtfeatureswouldbegeneratedindependentlyby themotorprogram,theirrelativenoisevarianceswouldaddtotherelativenoisevarianceofthe sfeature.However,thesfeatureshowssmallerrelativenoisevariancesthantheaortfeatures. This is compatible with a negative correlation between the a and t features. Furthermore, if globalwritingtimeorifwritingsizearedeliberatelyvariedbythesubject,thesfeatureappears to change in a more predictable way according to a linear transformation than the a and t features.Thesetwofindingssuggestthatthesfeatureismorecloselyrelatedtoanunderlying movementparameterofthemotorprogramwhereasthe aandtfeatures are ratherrelatedto movementparametersderivedatlowerlevels.Inotherwords,thespatialstructureintermsof therelativestrokesizesaremorelikelytoberepresentedinthegraphicmotorpatterncodethan strokedurationsorforcelevels.Thisisindeedwhatonewouldexpectinmotortaskssuchas handwriting,wherethetaskisspecifiedinthespatialdomainandnotinthetemporaldomain.

584 H.-L. Teulings

Someone'ssignatureisgenerallyacceptedasamotoricfingerprint.Theproblemofsignature verification or identification is interesting to the extent that it requires searching of those parametersthat areprobablystoredinthe graphic motorpattern code and that maybeboth difficulttosuppressortoimitate(e.g.,Lorette&Plamondon,1990).Forthatreason,notonly the(static)spatialstructure,whichmaybestoredinthegraphicmotorpatterncode,butalsothe pen pressure as a function of time seems an interesting dynamical feature for automatic signature verification (e.g., Crane & Ostrem, 1983). Apart from the uniform, systematic increase of pen pressure towards the end of a word (e.g., Kao, 1983), Schomaker and Plamondon(1991)statethataxialpenpressureseemsacentrallystoredpattern,asthepenforce pattern is relatively invariant and not related to the allograph shapes or any biomechanical effects.Becauseofitsunclearrelationwithallographshapes,penpressureisoflittleusefor automatic,onlinehandwritingrecognition,though. NewellandVanEmmerik(1989)recordedtheverticalcomponentofthepentippositionand simultaneouslytheverticalmovementcomponentsofthehand,wrist,elbowandshoulderjoints. Theystudiedrighthanders,whowrotewiththeirdominantandwiththeirnondominanthands, andanalogouslylefthanders.Thetwosubjectgroupsemployeddifferentcoordinationpatterns in terms of the correlations between joint angles, when writing with their dominant hands. Thesecoordinationpatternsareagaindifferentforloops,circles(i.e.,loopswithoutlefttoright movement), or signatures (Emmerik & Newell, 1989; Soechting et al., 1986; Lacquaniti, Ferrigo,Pedotti,Soechting,&Terzuolo,1987).Aninterestingphenomenonisthatbothgroups ofsubjectscouldtransfertheirinvariantcoordinationpatternstothenondominantside.This meansthatleftandrighthandersusingtheirnondominantlimbstilldonotresemblerightor lefthanders,respectively.Importantisthatthemultijointcoordinationpatternsseemacquired strategies,whichhavebeenstoredinsomelowerlevelcentralmodule,andthattheyarenotdue totheneurobiomechanicalhardware.Thisseemstosupporttheinvariantprocessinghypothesis. Van Emmerik and Newell (1989; 1990) realized that the lefttoright writing habit may be responsible for the very different coordination patterns observed in left and righthanders. Indeed,whenperformingtaskswithoutlefttorighttranslation(e.g.,circles)thecoordination patterns between left and righthanders become more similar. Writing habits are apparently influencingthewayhandwritingmovementsareproduced.ThiswasalsofoundbyThomassen andTeulings(1979),whoobservedcounterclockwisepreferencesforbothleftandrighthands inschoolchildrenandadultswhenperformingdrawingpatterns(e.g.,circles,triangles).These preferences may come from the handwriting habit to form cursivescript letters counterclockwise. Accordingly, children of the age of 5, who were not yet exposed to handwriting,showedanatomicallybasedpreferences.(e.g.,mirrorsymmetry forbothhands). However, in fast, uncontrolled scribbling movements, as well as continuous circles of maximumspeed,anatomicalpreferencesofthewritingapparatusplayapredominantroleinall agecategories.Althoughhandwritingpatternsaretheresultofabstractmotorprogramsstored inthegraphicmotorpatternbufferinamuscleandlimbindependentway(e.g.,Klapp,1977), whereasthelatterparametersaresubstitutedatthelowerlevelmodules,thisdoesnotmeanthat therearenoanatomicalfactorsinvolved.Muscleandlimbspecificeffectsplayaminorroleor arecorrectedforinthemotorprogram.Infact,thelatterexamplesshowthatanatomicalfactors andhabitsmaybecomemanifestundercertainconditions.

585 Handwriting Movement Control

3.3 Main Axes in Handwriting Muscle and limbspecific parameters are substituted in the lowestlevel module: the motor initiationmodule.Thismodulehastodealwiththeasymmetricpropertiesofthehandwriting apparatus.Asthehandwritingapparatushasnorotationalsymmetry,itspropertiesarelikelyto dependuponmovementdirection.Indeed,backandforthmovementsgeneratedbyflexingand extending the finger joints take about 1.3 times more time than those by the wristjoint (McAllister, 1900; Teulings, Thomassen, & Maarse, 1988). Wristjoint movements and the fingerjoint movements correspond to nearly orthogonal directions or main axes each with characteristicproperties:wristjointmovementsarefastandfingerjointmovementsareslow, whereasmovementsinintermediatedirectionshaveintermediatestrokedurations.Theideaof mainaxesisnotnew.DeniervanderGonandThuring(1965),referredtoDalBianco(1944), whofoundthatmovementsalongthemorehorizontalaxisweredisturbedincerebellarinjury patients, whereas movements along the perpendicular axis were not. The latter author concludedthatmovementscanverywellbeorganizedinbodyorientedorthogonalaxes.Some authors (e.g., Dooijes, 1983; Plamondon and Lamarche, 1986; Maarse et al., 1986) define "subjectivemainaxes"byaskingthesubjectstoproducevoluntarywristjointmovementsand fingermovementswithoutwristmovements.Thesemainaxesareoftenoblique.Dooijes(1983) calledthem"principaldirections",andsupposedthattheymovedatconstantspeedfromleftto rightduringwriting.Hefoundthatthesubjectswereabletoreproducetheirvoluntarymain axesaccurately,evenafteroneyear.PlamondonandLamarche(1986)andMaarse,Schomaker andThomassen(1986)estimatedmainaxes("principalaxes"or"naturalaxes")inasimilarway. Itsdirectionsvariedrelativelylittleasafunctionofarmrotation,e.g.,whenwritingfromleftto rightacrossaline,whichsuggeststhatthesepreferreddirectionsarenotpurelybiomechanically determined. Inordertounderstandthedirectiondependentcharacteristicsofthehandwritingapparatus,its biomechanical structure is analysed in terms of degrees of freedom. Each joint of the handwriting apparatus is either a hingelike or a universal joint. A hingelike joint requires specification of only one angle (one degree of freedom), whereas a universal joint requires specification of two angles (two degrees of freedom).Neglectingthetwouniversaljointsof elbowandshoulder,whichareactivelyinvolvedinhandwriting(e.g.,VanEmmerik&Newell, 1989;1990),thehandfingersystemhasintotalatleasttendegreesoffreedom.Namely,the wristjointpossessestwodegreesoffreedom(dorsal/palmarflexionandulnar/radialabduction). Thethumbandtheindexfingereachpossessfourdegreesoffreedom:oneforeachofthetwo peripheralfingerjoints(flexion/extension),andtwofortheproximalone(flexion/extensionand adduction/abduction).Theotherfingersdonotmoveindependentlyfromtheindexfingerand thereforedonotcontributetothedegreesoffreedomofthehandwritingapparatus.However, notallpassiveortheoreticaldegreesoffreedomareusedinhandwriting.Inordertoassurethe necessary pen grip, the thumb and fingers are kept opposed. Furthermore, the pen is not supposedtorotatearounditsaxialaxis.Finally, thepentipremainsintouchwiththepaper duringcursivewriting.Thusthewristjointhasonlyoneeffectivedegreeoffreedom,formedby afixedcombinationofpalmarflexionandradialabduction/dorsalflexionandulnarabduction, dependinguponsupination/pronationoftheforearm.Thethumbandfingerssystemhastwo,or maybe more, effective degrees of freedom. One component represents the backandforth

586 H.-L. Teulings movementstoandfromthehandpalmbyflexion/extensionofboththumbjointsandfinger jointsand,theothercomponentrepresentsthebackandforthmovementsparalleltothehand by simultaneous flexion/extension of thumbjoints and the extension/flexion of fingerjoints. Thereforestrokesinintermediatedirectionsusethreedegreesoffreedom. Thisanalysisintermsofdegreesoffreedomgivesrisetoaninterestingpredictionaboutthe accuracyofmovementsinvariousdirections.Wristmovementshaveonedegreeoffreedom andallowthenearperfectproductionoflargecirclesegments(e.g.,withradius15cm),which canwellbeapproximatedbystraightsegmentsinnormalstrokelengthsof0.5cm(Dooijes, 1983).Therefore,trajectoryinaccuracycanbeexpressedbytheaveragedistanceofeachstroke fromitsminimumsquaresfittedline.However,fingermovementshavetwodegreesoffreedom andtherefore,requirecoordinationbetweenthetwo(ormore)synergisticmusclesystems.For example,itisonlypossibletodrawastraightlineifthetwosynergisticmusclesystemsare initiatedsimultaneously,inspiteofunequalnervetransmissiondelays.Uneveninitiationcauses loopsorbluntcurvesatstrokeendings(Schomakeretal.,1989).Furthermore,theforceversus timepatternsneedtobeproportional.Ifnot,acurvedstrokeresults.Therefore,movementswith two or more effective degrees of freedom produce less accurate pen trajectories. Finally, intermediate movement directions have three degrees of freedom and produce even less accurate trajectories than the pure finger movements.Sothewristandthefingermovement directions can be identified by their capability to produce relatively straight backandforth movements.Thesespecialmovementdirections,whichhaverelativelyhighspatialaccuracies, appear to coincide with the directions of extreme stroke durations and also with those of extreme stroke lengths (Teulings, Thomassen, & Maarse, 1989). Table 2 summarizes the directionalpropertiesofthewritingapparatus.Oppositetotheaccuracyofthestraightnessis the accuracy of the movement amplitude: Wrist movements are less accurate than finger movements, as established in Fitts' speedaccuracy tradeoff tasks (Langolf et al., 1976) (See ComputationalModelsforadiscussiononFitts'law).Thenetdifferenceseemssmallintypical handwriting movements having durations of about 140 ms, but increases for precision movementsrequiringmorethanabout200ms. Table 10.2: Various features and properties, which may differ for wrist and finger movements, and which may either have an intermediate or cumulative effect for movements of the wrist and fingers combined Joints involved Feature Wrist Wrist and finger Finger Direction(degrees) * +45 Intermediate 45 Preferredduration(ms) 120 Intermediate 160 Preferredsize(mm) 9 Intermediate 6 Degreesoffreedom 1 3 2 Accuracyofstraightness(mm) 0.04 >0.07 0.07 Fitts’speedaccuracy(msperbit) 43 ? 26 *Relativetobaseline(0degrees);slantis+70degrees’mostfrequentupwardmovementis+45 degrees.

587 Handwriting Movement Control

An interesting is the finding that both movement axes are orthogonal and have average directionsof+45and45degreeswithrespecttothebaselineofhandwriting.Theaverageslant ofhandwritingwas70degreesrelativetothebaseline,anddidnotcoincidenorcorrelatewith any of the main axes. This is in agreement with the that slant as well as the directionsofthesubjectivemainaxesappearedhighlyindependentofarmorientationwhich changeswhenwritingacrosstheline(Maarseetal.,1986).Slantwasestimatedbythemost frequent(opposite)directionofdownstrokes.Althoughvisualslantwasactuallyafewdegrees steeper,thisestimatorwasrobustwithrespecttoinstructedstretchingofwriting(Maarseand Thomassen,1983).Onlythemostfrequentupwardstrokedirection,representingtheconnecting strokes between allographs, coincides more or less with the direction of the wristjoint extensions(Teulings,Thomassen,&Maarse,1989). 3.4 Factors Influencing Movement Duration Thepreferredfrequencyofthehandwritingapparatusappearstobecloseto5Hz(Teulings& Maarse,1984;Maarseetal.,1986;Teulingsetal.,1989).Thespeedofhandwritingintermsof strokespersecondvarieswiththemaximumspeedsofseveral,differentmotortasksinvolving other muscles, such as tapping with the finger, thumb, hand, arm, or foot (See Keele & Hawkins,1982,for an overview). Thelatterauthors suggest that a central time keeper with unpredictabletransmissiondelayscouldformthelimitingfactorforthesespeeds.Ontheother hand,Morassoetal.,(1983)andVanGalen&Schomaker(1992)suggestratherthattheinertia and the peripheral nervemuscle system may act as a biomechanical lowpass filter of the higherfrequency nerve signals. At least there seems aphysiologically determined maximum speed of repetitive movements. Previously, various conditions have been discussed, causing processing loads at the higherlevel modules of the handwriting motor system, and which becomemanifestassmalldelays: (1)Onlinepreparationofcomplexsyllablestructuresand,syllablerepetition. (2)Allographselection,allographcomplexity,andallographrepetition (3)Strokesequenceselectionwithinanallograph. (4)Onlinepreparationofcomplexconnectingstrokes. (5)Directionofastroke. These factors cause only marginal movementduration effects. The major effects upon movement duration are due to relative sizes and shapes of the strokes. The traditional view (DeniervanderGon&Thuring,1965)isthattheaveragedurationofhandwritingstrokesdoes notdependupontheiraveragesize("isochrony").Theprincipleofisochronycanbeextendedto thesubstrokelevel("isogony").Isogonysaysthattrajectoriesofequalchangeofdirectionare performedinequalamountsoftime(Viviani&Terzuolo,1980;1982).This,inturn,impliesat themicroscopicscale,thatangularvelocityωofthehandwritingtrajectoryisconstant,or,that penspeedvisdirectlyproportionalwiththeradiusofcurvaturer:v=ω/r.However,more refinedpredictionsarepossible.Ingeneral,theaboveapproximationsdonotholdinextreme writing sizes, e.g., on a blackboard (e.g., Thomassen & Teulings, 1983b), in more complex patternsconsistingofstrokesofdifferentsizes(e.g.,Thomassenetal.,1986)orincurvilinear strokes(e.g.,Lacquaniti,etal.,1983).Inordertobringthesedifferentandconflictingrelations

588 H.-L. Teulings intoconsistence,threecontextlevelshavebeendiscernedbyThomassenandTeulings(1985). Ineachcontext,specifictimeversussizerelationsappeartoexist.Thecompoundeffectisthe productofthreefactors,becausethesethreecontextlevelsformconcentricshells: (1)Macrocontext(i.e.,awordinthecontextofotherwordsofdifferentoverallsizes). (2)Mesocontext(i.e.,asinglestrokeinthecontextofotherstrokesofdifferentsizes). (3)Microcontext(i.e.,thelocalcurveradiusinthecontextofthecurvilineartraceofasingle stroke). Inmacrocontextcompletewritingpatternsareconsideredinisolation.Asmentionedearlier,in thefrictionlesscase,strokesizesisproportionaltothepeakmuscleforce(orpeakacceleration a)andthestrokedurationtsquared:s=eat 2,whereeisanefficiencyfactor,characterizingthe effect of a particular shape of the forcetime curve. The efficiency e plays a minor role in controllingstrokesizesinhandwriting(e.g.,Teulingsetal.,1986).Theshapesoftheforcetime curvesareindeedratherconstant(Plamondon&Maarse,1989). Itappearsthatthetimetoproduceawritingpatternisvirtuallyindependentofitssize,provided thattheaveragestrokesizesarenottoobig,i.e.,between0.25and1cm(Michel,1971;Denier vanderGon&Thuring,1965;Thomassen&Teulings, 1984;thoughnotinagreementwith Wing,1980).Thedurationisapparentlylimitedbythefrequencybandwidthofthehandwriting apparatussothatsizeincreaseisentirelyproducedbyforceincrease.Consequently,durationt isconstantintherangeofnormalwritingsizessothatpeakforceaisproportionalwithstroke sizes.Ontheotherhand,inlargewritingsizes,i.e.,muchlargerthan1cm,likewhenwriting ontheblackboard,forcelevelsmaybecomeveryhighandmayreachaceiling.Thomassenand Teulings(1984)foundthattheheightofthisceilingdependsontheinstructedpaceortime pressure.Therefore,whenproducinglargewritingsizesorarmmovements,itistheforcelevel whichseemsconstant,whereassizevariationsareprogrammedentirelybyvariationofduration (e.g.,Wadmanetal.,1979).Thusinmacrocontext,apowerrelationbetweentandscanbe proposed: T=ks b (b=0ifs<1cm) (b=½ifs>>1cm) wherekisconstantpercontextandinstruction. Apartfromtheforcelevelapproachingaceilingtheremaystillbeanothermechanismcausing larger writing patterns to be produced slower, suggested by Keele (1982). Namely, relative accuracyisnotnecessarilykeptundercontrolwheninstructedtowritelarger.Themostnatural assumptionwouldbethatthesubjectskeepaconstantrelativeaccuracysothatwritingpatterns of various sizes appear very similar. For a large range of movement amplitudes, Fitts' law reliably predicts that aimingmovement time depends only upon the relative accuracies (See ComputationalModelsforadiscussiononFitts'law).Thiswouldsuggestthatmovementtime doesnotdependuponmovementsize.However,whenwritingsizeincreases,thearmgetsmore involvedandthefingersless(Meulenbroeketal.,inprep.).Thecriticalobservationisthatarm movementsrequiremoretimeforaspecificrelativeaccuracythanhandorfingermovements,

589 Handwriting Movement Control namely106ms/bit,versus43or26ms/bit,respectively(Langolf,1976).Thisholdsforstroke durations longer than about 200 ms, which may occur in precision movements. In order to maintain the required relative accuracy also in larger writing sizes, where mainly arm movements are involved, the motor system may deliberately choose a lower rate. This hypothesis seems to be supported to some extent by data presented by Wright (1991). He showedthatwritingwiththearmwasindeedslowerthanwritingwiththefingerswithinasmall ascendertodescendersizerangeofabout1.5to2.5cm,althoughthereliabledifferencewasas small as 5ms/stroke. However, there are some small inconsistencies in this hypothesis. For example,writingtimeasafunctionofsizeofthetwoeffectorsystemsdidnotseemtointeract (Wright, 1991), whereas the speedaccuracy relations clearly do (Langolf et al., 1976). Furthermore,fingermovements,showingthehighestaccuracy,arenotthefastestmovements (See Table 2). Another difficulty to disentangle finger and wrist movements versus arm movementsisthe"hysteresis"observed,i.e.,whenincreasingordecreasingwritingsizes,the effector systems already involved tend to continue their contribution. Therefore, the relative contribution of these effector systems may depend upon the movements immediately done before. Mesocontextreferstotheadjacencyofstrokesofdifferentsizes(suchasinthecursivescript word "pellet"). The specific problem for the motor system is the abrupt adjustment of peak forceorstrokeduration,leadingtoasizeincreasefromthe"e"tothe"l".DeniervanderGon andThuring(1965)suggestedapuretimeincreasewithnoincreaseofpeakforcelevel,likein largemovementsizesinmacrocontext,butmostobservationsarecompatiblewithaincreaseof bothtimeandforce.Thisseemslikelybecauseapureincreaseofpeakforce,withoutslowing themovement,maytakeseveralstrokes(e.g.,DeniervanderGon&Thuring,1965;Stelmach &Teulings,1983).ThomassenandTeulings(1985)suggestedthefollowingpowerfunctionto describetherelationbetweendurationtandsizesinmesocontext: t=ks b(b=+0.33) Thedataof"el"or"le"pairsbyThomassenandSchomaker(1986),ThomassenandTeulings (1985), Hollerbach (1981), Greer and Green (1983), Wing(1980) yieldvaluesforb=0.22, 0.34,0.34,0.38,and0.41,respectively.Indeed,thereisonlymarginalconsistency,whichmay meanthatbdependsuponthesubjectanduponvariousunknownconditions.Atleast,bseems clearlywithintherangeoftheextremevaluesof0.0and0.5,occurringinmacrocontext. Finally,microcontextdescribesthetimeneededperinfinitesimalpartofthewritingtrajectory, whichisequivalentwiththelocalpenspeedv.Anestimatorof"localsize"iscurveradiusrof thecircle,fittingthecurveatthatpoint.Anestimatorof"localduration"istheinverseangular velocity,i.e.,r/v=1/ω.Lacquanitietal.(1983)observedthatinalargevarietyofdrawingtasks, amorecomplexrelationholdsthantheonesuggestedbytheisogonyprinciple,namely: 1/ω=r/v=kr b(b=2/3)("twothirdpowerlaw"), wherekisaconstantgainfactorwhichdependsuponmesoandmacrocontext.Thisrelation can be derived for perfectly sinusoidal movements, i.e., two equalfrequency movement components without lefttoright translation, which produces only arbitrary ellipses. The

590 H.-L. Teulings relationholdstosomeextentforanarrowfrequencybandwidthmovement,consistingoftwo independent movement components (e.g., horizontal and vertical) which are piece wise sinusoids,suchasinlarge,fluentscribblingmovements.However,thetwothirdpowerlaw doesnotholdfornormalhandwriting.ThomassenandTeulings(1985)studiedthebehaviorof the value b and the correlation between log(r/v) and log(r) for various writing patterns and simulatedpatterns.Anormalhandwritingpatternyieldsvirtuallythesamevaluesasarandom walk pattern: b = 0.41 (instead of 2/3) and correlation 0.83 (instead of 1.0, ideally). Also alternatingsmallandbigloops(e.g.,"elel")yieldvaluesclosetothoseofarandomwalk.Only continuousellipsesand"llll"patternsyieldvalueswhichareclosertotheidealvaluethanto thoseofarandomwalk:b=0.59andcorrelationsashighas0.95.Thereasonsthatthetwo thirdpowerlawdoesnotseemtoholdforhandwritingingeneralisprobablyduetothewide frequencybandofhandwriting(Teulings&Maarse,1984),andthelefttorighttrend,although this trend is probably only taking place during the upstrokes (e.g., Thomassen & Teulings, 1983a;Maarse&Thomassen,1983).Wannetal.(1988)alsoobservedsignificantdeviations fromthetwothirdpowerlawinbig,repetitiveellipses,producedatlowerthanmaximalrates. Thevelocitypatternsbecomeskewed,duetofasteraccelerationsthandecelerations.Therefore, they suggested a "wobblingmass model", which will be discussed in the next section on computational models. In summary, the twothird power law does not seem to describe the instantaneousspeedofhandwritingstrokesaccuratelyenough. The observation that so many parameters affect movement durations provides additional evidencethatdurationsarenotstoredinthegraphicmotorpatterncode(e.g.,Teulingsetal., 1986).Instead,thepatternofdurationsistheresultofvarioustimeconsumingactions(e.g., Lacquaniti et al., 1983), which mainly take place at the lowerlevel modules of parameter settingandmotorinitiation.Asimilarlineofevidenceexistsfortypewriting.Thereappearsno global typingrate parameter (Gentner, 1987). The interkey intervals are rather the result of fixedactionsrequiredtomovetoeachsubsequentkey,asRumelhartandNorman(1982)have demonstrated in their typewriting simulation model. The more complex handwriting motor system has not yet been captured by an extended model. There is a class of computational modelsofthewritingmovementwhichemployonlya limitedsetoffeaturesofthewriting pattern itself in order to reconstruct an existing writing pattern. However, the symbolic computational models may allow more than only reproducing existing writing patterns by substitutingpartsofthewritingpatternsbysymbolicunits,sothatalsonewwritingpatternscan be generated. None of the computational models is so detailed that also these central and peripheraleffectscanbegenerated,though. 4 COMPUTATIONAL MODELS Computational models focus on the quantitative simulation of the pen movements in handwriting.Theaimistogeneratehandwritingmovements with limited sets of parameters, which may relate to certain neurophysiological variables of the motor program or the biomechanicalarchitectureofthehandwritingapparatus.Thesemodelsmayatleastsuggestthe validityofcertainmodels,althoughitisimpossibletodrawfirmconclusions.Furthermore,the modelsmayindicatethecomplexityofthehandwritingmotorsystem.

591 Handwriting Movement Control

4.1 Theoretical Minimum Number of Parameters Accordingtothesamplingtheorem(e.g.,Jerri,1977),theminimumnumberof(isochronous) samplesrequiredtoreconstructatimefunctionofdurationTandlimitedfrequencybandwidth W,equals2WT.ThisrequiressamplingofthehandwritingmovementattheNyquistfrequency, whichisequalto2W.Handwritingconsistsactuallyoftwotimefunctions,namelyoneforthe horizontal and one for the vertical component. Under the worstcase assumption that both componentsareindependent,4WTparametersarerequiredtoexactlydescribeahandwriting segmentofdurationT.Thefrequencyspectrumofhandwritingshowsapredominantfrequency of5HzandagradualdescenttonoiselevelataboutW=10Hz(Teulings&Maarse,1984). The durations of the fastest ballistic strokes, which are easiest to simulate, are about 0.1 s. Therefore, 4 parameters per ballistic stroke allow the exact description of the handwriting movementinspaceandtime.Amorerealisticestimateofthe"equivalentbandwidth"ofthe nonhomogeneous frequency spectrum is slightly smaller than the maximum bandwidth, namelytypicallyW=7Hz.Thisexplainswhylowpassfilteringoffrequencieslowerthan7Hz deteriorates the shape of a handwriting pattern (e.g., Teulings & Thomassen, 1979). The average duration of ballistic strokes is slightly longer than the minimum duration, namely typicallyT=0.14s.Again,onaverage,4parametersperstrokearerequiredtoreconstructthe writingsignalcompletely. Perhaps the most unintelligent computational model describing the handwriting movement adequatelywouldsampleisochronouslyandsimultaneously(andinfinitelyaccurately)xandy coordinatesattheNyquistfrequencyf=2W=2/0.14s=14Hz.Ofcourse,whensampling handwriting with discrete, finiteaccuracy digitizers (e.g., 0.002 cm resolution, 0.004 cm accuracy)(Meeks&Kuklinski,1990),highersamplingfrequencies(e.g.,100Hz)arerequired, especially if time derivatives have to be estimated (e.g., Teulings & Maarse, 1984). It will appearthatmanymoreintelligentcomputationalmodelsemployalso4parametersperstroke andseemnotmoreparsimoniousthanthisunintelligentcomputationalmodel.Somemodelsuse evenmorethan4parameters,whichisnotparsimonious,andseemtoperformacurvefit.The migrationofthecomputationalmodelsrunsfromtheoriginalmodels,generatinghorizontaland verticalforcecomponents,viaorientationfreemodels,massspringmodels,tosymbolicaland biomechanicalmodels. The average number of parameter updates per ballistic stroke provides a measure for the parsimony of a model. The initial parameter settings are not counted if they hold for all handwritingpatterns.Twopropertiesofamodelmayyieldafurtherreductionofthe"effective number of parameters", although this has not been applied to the models for reasons of comparability. The first property is the implementation of symbolic or hierarchical representationsofmovementunits,e.g.,allographs,orpartsofthem.Forexample,ifthesetof parameters,thatgeneratesanallograph,canbereusedforeachreplicationinallcontexts,then thetotalnumberofparametersofapatternequalsthenumberof"allographidentifiers".The numberofparametersfortheactualallographismerelyaconstantinitialcondition. Thesecondpropertyyieldingareductionoftheinformationcontentsofthesetofparametersis thequantizationofaparameterintoafewdiscrete levels. Normally, parameters are scalars,

592 H.-L. Teulings having a finite number of "effective quantization" levels due to the limited accuracy of the handwritingmotorsystem.Theratioofparameterquantizationandeffectivequantizationyields thereductionfactorofthenumberofeffectiveparametersofamodel.Thenumberofeffective quantization levels in normal handwriting strokes can be derived from the speedaccuracy tradeoffaccordingtoFitts'law.Fitts'lawsaysthatthedurationofreciprocalaimingmovements of amplitude A towardsa target of width W increases linearly with the information measure log 2(2A/W)in"bits".Thefactorof2expressesthatAisactuallytheradiusofthecircleof diameter 2A within which all possible aiming movements of amplitude A are found. The durationincreaseswithinstructedaccuracyaccordingto26ms/bitand43ms/bitforthefinger and wrist movements, respectively, in a wide range of amplitudes and accuracies (Langolf, Chaffin,&Foulke,1976).Thissuggeststhatduringatypicalhandwritingstrokeof140msthe fingerandwristmovementsproduceabout5.4and3.2bits,correspondingtothenumberof effectivequantizationlevels2A/Wof40and10,respectively.Itmaybespeculatedthatifboth fingerandwristmovementsarecontrolledindependently,eachstrokecontainsabout8.6bits, correspondingto400discretestrokes,whichincidentally equals the empirical finding that a selforganizing net of strokes of at least 400 cells provides an adequate description of the handwritingstrokesforautomaticrecognition(Schomaker&Teulings,1990). Whentakingalsothedifferentoffsetsintoaccount, the speedaccuracy tradeoff relations for finger, wrist, and arm movements yield similar values of the relative accuracy, namely, for strokedurationsof140200ms2.6bits,correspondingto6effectivequantizationlevels.The signaltonoiseratio(SNR),yieldssimilarvaluesoftheeffectivenumberofquantizationlevels inamoreadequatetaskthantheFittstask,namely in a real handwriting task, where stroke durationsareabout140ms.TheSNRistheratioofthestandarddeviationsofthemovement amplitudesd(signal),andthatofthemovementnoisesd(noise)(SeeMicroscopicModels).The relationbetweenthestrictsizesAandWandthestandarddeviationsisexactlyA=2sd(signal) andapproximatelyW=4sd(noise),namely,aGaussshapedprobabilitydistributionbetween+ and2sd(noise)correspondsto95%hitswithintargetW.Therefore,the numberofeffective quantizationlevelspercomponentinarealhandwritingtaskis2A/W=SNR.Theobserved SNRsofabout6inpatternsoftheverticalstrokesizes(Teulings,Thomassen,&VanGalen, 1986)suggestsalowernumberofeffectivequantizationlevelspercomponent,whichseems understandableashandwritingismorecomplexthanreciprocalmovements. 4.2 X and Y Force Models OneoftheearliestcharacterizationsofhandwritingmovementshavebeenpresentedbyDenier vanderGonandThuring(1965).Theirstatementsareinterestinginthattheyprovidedasimple representationofthepenpointmovementinhandwriting.Theysuggestedthattheratiosofthe strokelengthsareprogrammedbythedurationratiosoftheaccelerativeforceburstswhereas overall size is programmed by force amplitude. The penpaper and internal frictional forces weresupposedtobenegligiblerelativetoinertialoracceleratingforces.Finally,theysuggested thatmovementsareprogrammedintermsofseparatehorizontalandverticalcomponents.This modelhasinspiredmanycomputationalmodelsofhandwriting.DeniervanderGon,Thuring, and Strackee, (1962) used analogue force generators with fixed force rises up to a fixed amplitude. Vredenbregt and Koster (1971) have successfully regenerated handwriting. They

593 Handwriting Movement Control usedelectromotorsforhorizontalandverticalmovementcomponentsandmanuallyadjustedthe startandstopmomentsoffixedamplitudecurrents(orforcesoraccelerations).Theyfoundthat changesoftheverticalcomponentdistortedthegeneratedwritingtrajectoryaboutasmuchas twice as big changes of the horizontal component. Under the condition of fixed force amplitudesforeachofthetwosetsofagonistsandantagonistsinvolved,eachstrokerequires4 parameters: The stop moment of the agonist force causing the acceleration, and the start moment of the antagonistic force, causing the decelerating force, respectively, for horizontal andverticalcomponentsindependently.Theagonistforcehas alreadystartedintheprevious strokeandtheantagonistforcewillstopinthenextstroke,sothattheseparametersarenot reckoned to the current stroke. If the force amplitude per component would have been a parameteralso,thiswouldrequiretwomoreparametersperstrokeandthemodelwouldnotbe parsimoniousanymore. Dooijes (1983) presents an equally parsimonious computational model of handwriting by assumingthattheacceleratinganddeceleratingforceamplitudesvaryperstroke,butthatthe stop moment of the accelerating and the start moment of the decelerating force coincide. A "bangbang" force pattern results. Furthermore, instead of orthogonal axes, oblique axes are used,derivedfromthesubject'spreferredhandandfingermovementsseparately.Theaxesare moving at constant speed from left to right. The question arises whether more realistic generationmodelsexistthanthisbangbangforcepattern,andwhicharestillparsimonious. MacDonald (1966) examined the shape of the acceleration bursts during handwriting. The finger movements produced rectangular acceleration functions, while the wrist movements produced rather trapezoid acceleration functions, and the lower arm movements rather triangularaccelerationfunctions.Theseforcepatternsoccurredonlyinthe"strokecontrolled" orballisticmovements(i.e.,strokestakinglessthan250ms,havingasingleaccelerationanda single deceleration phase). However, "continuouslycontrolled" movements (i.e., slower strokes)areproducedatsuchalowratethattheyshowmultipleaccelerationphasespervelocity phase(e.g.,Maarse,Meulenbroek,Teulings,&Thomassen,1987).Finally,extraforcebursts occurwhenthepentipsuddenly"sticks"tothepaper("staticfriction"or"Coulombfriction"), whichoccurswheremovementdirectionreversessuchasincursiveallographs"c"or"u".This frictionalforcewashardtodescribe,butDeniervanderGonandThuring(1965)suggestedthat frictionmaybeneglectedwithrespecttotheacceleratingorinertialforce.Viscousforce,which increaseswithvelocity,appearedalsonegligiblewithrespecttotheinertialforce:k=πm/T< 0.1,whereTisthestrokeduration,andmtheeffectivemassofthehand. Plamondon and Maarse (1989) compared the accuracy of reconstruction of the writing trajectoriesgeneratedbyseveralofthesemodelsandvariantsofthem.Theyshowedthatmany of the models can be represented by secondorder or thirdorder transmission systems. The orderofasystemisthehighesttimederivativeneededtorelatetheinputandtheoutputsignal. Thezeroth,first,orsecondtimederivativesoftheinputrepresenttheinputsignalitself,therate ofchangeoftheinputsignal,andtheaccelerationoftheinputsignal,respectively.Toestimate theorderthenervemuscleinterfaceandamusclepen(orhandpaper)interfaceweredescribed separately.

594 H.-L. Teulings

ThenervemuscleinterfacecanbederivedfromHill'srelation(e.g.,Dijkstra,Deniervander Gon, Blangé, Karemaker, Kramer, 1973) and expresses the muscleforce output F(t) as a function time, the relative nerve activation level g(t) (ranging from 0 to 1), the muscle's maximalisometricforceF max ,itsshorteningspeedv(t),anditsmaximumshorteningspeedv max : F(t)={((F max +a)*v max )/(v(t)+v max )a}*g(t), whereaisthemuscleconstant.Fortheforefingermuscles,vmaxcorrespondstopenspeedsof 20cm/s,whereasthehighestpenspeedsinnormalsizehandwritingareabout10cm/s,sothat v(t)<<vmax.Furthermore,theminimumactivationanddeactivationtimesofthesystemare about20ms,whereasnormalhandwritingstrokeshavedurationsofatleast100ms.Therefore, handwritingmovementsarewellwithintherangeofthephysiologicalmusclespecifications,so that F(t) ≈ F max *g(t) (Plamondon & Maarse, 1989). This forms a zerothorder transmission system.Furthermore,thenerveactivationlevelg(t)isassumedtodependonlyuponthefirst andthezerothtimederivativesofthenervefiring rate so that the nervemuscle interface is probablyafirstorderresponsesystemtotheneuralfiringrate. Themusclepeninterfacecanbedescribedbyadampedspringmasssystem: F(t)=m*a(t)+fv*v(t)+k*r(t)+f*Fz*|v(t)| wherer(t)istheoffequilibriumdistanceandv(t)anda(t),itsfirstandsecondtimederivatives, orvelocityandacceleration,respectively,and|v(t)|thespeedirrespectivedirection.Fzisthe penpaperpressureandm,fv,k,andfaretheequivalentmass,theviscousfrictionconstant,the musclestiffnessandthepenpaperfriction,respectively(SeealsoWing,1978;Dooijes,1983). As the second time derivative (i.e., the acceleration a(t)) is the highest time derivative of position,thisisasecondordertransmissionsystem.Theorderofthetotaltransmissionsystem is therefore three. However, if the nervous system is anticipating the firstorder internal transformation,theorderofthetotalsystemmaybeaslowastwo.Sothesystemorderofthe modelsdefinedintheaccelerationdomain,requiretwointegrationsandisatleasttwoandthose definedinthevelocitydomainrequireonlyoneintegrationsothatthesystemorderisatleast one. The order had to be augmented by one if the shape of the pattern was a symmetrical trapezoid, a symmetrical triangle, or an exponential function (containing one adjustable parameter)orbytwoifitwasGaussianorsinusoid(containingtwoparameters).Examplesof secondordersystemsareDeniervanderGonetal.(1962,1965),Eden(1962),Mermelstein and Eden (1964), Hollerbach (1981), and Dooijes (1983). They consist of component movementsalongtwoaxes,withoutfrictionorelasticityandtwoorthreeaccelerationlevels (namely, positive, zero, negative). Examples of thirdorder systems are MacDonald (1966) using trapezoid acceleration patterns and Yasuhara (1975) incorporating exponential accelerationpatternsandsomeinternalfriction. Theseandseveralothermodelswerecomparedintermsofthespatialerrorbetweenoriginal and regenerated handwriting pattern, defined as the average distance relative to the stroke length.Moreprecisely,thespatialerrorwascalculatedbytheaverageofthesurfacesbetween the recorded and the regenerated strokes, divided by their squared lengths. To regenerate a handwriting pattern, the effective accelerations and durations of the positive and negative phaseswereestimatedforthehorizontalandtheverticalaccelerationcomponentsseparately.

595 Handwriting Movement Control

These phases represent force bursts in horizontal and vertical directions, respectively. Analogously,thephasesofthevelocitycomponentswereestimatedonbehalfofthevelocity domainmodels.Thesephasesrepresent"ballisticcomponentstrokes"asthecomponentswere analyzedseparately.Theshapesofthepositiveandnegativephasescouldbeapproximatedby rectangular, symmetrical trapezoid, symmetrical triangular, half sinusoid, Gaussian, or exponentialriseanddecaytimefunctions(SeeFigure7).Thenumberofphasespercomponent equals approximately the number of ballistic strokes. Therefore, 4 parameters per ballistic strokearerequired:thedurationsandtheeffectiveaccelerationsorvelocitiesforthehorizontal andverticalcomponents.

Figure 10.7: Some fitted time functions per stroke in acceleration domain with:1, rectangular; 2, summerical trapezoid; 3, exponential rise and decay; 4, half-sinusoid; 5, Gaussian; and 6 symmetrical triangular shape, and their shapes in velocity and displacement domains. [From Plamondon and Maarse, 1989.]

It appeared that most models accurately reproduced the handwriting patterns. The models defined in the acceleration domain were slightly worse than those defined in the velocity domain.Smallspatialerrorswereachievedbyapproximatingtheaccelerationcomponentsby rectangular or trapezoid functions, or by approximating the velocity components by several

596 H.-L. Teulings reasonablepatterns,suchassinusoidal,Gaussian,ortriangulartimefunctions.Therewasno differenceinaccuracybetweenmodelsofdifferentsystemorders. 4.3 Orientation-Free Force Models Thereisaclassofmodels,whichdonotassumeanyspecificxor y axes,oraxesrelatedto biomechanical joints. Morasso and Mussa Ivaldi (1982) and Morasso, Mussa Ivaldi, and Ruggiero (1983) state that movement patterns are unlikely to be described in terms of joint anglesbutratherinsomespatialreferenceframe,whichdoesnotneedtobethebodyoriented horizontal coordinates. They assumed that discrete "circular strokes" are generated in a discontinuousprocesswhiletheinertiaofthefingerhandarmsystemsmoothesthemovement by acting asalowpass filter(e.g.,VanGalen &Schomaker, 1991) (See Figure8).Circular strokesaredefinedas:(1)circlesegmentsofspecificcurveradius,arclength,andorientation, suchthatitistangentialtothetraceatthepointofpeakvelocityorinflection,(2)havingahalf phaseofaGaussianvelocityfunctionduringtheintervalfromthepreviousabsolutevelocity peaktothecurrentpeakandtheotherhalfphasefromthecurrentpeaktonextpeak,(3)each half overlapping in time with the previous and the following circular strokes, respectively. Overlapping circular strokes are averaged samplebysample. Therefore, 6 parameters per ballistic stroke are needed: its curve radius, arc length, orientation, peak velocity, duration betweenpreviousandfollowingvelocitypeak,andtheasymmetricpositionofthepeakvelocity betweenthepreviousandfollowingones.Theaccuracyofthismodeldoesnotseemashighas the simpler models, which were based on component movements per axis (Plamondon & Maarse,1989).

597 Handwriting Movement Control

Figure 10.8: Examples of the performance of the circular-stroke composition model for four movement patterns in the four frames. Dots are equally spaced in time. Each frame shows the simulated movement pattern (top left), the underlying circular strokes with Gaussian velocity time functions (top right), and the curvature and absolute velocity time functions (bottom). [From Morasso, Mussa Ivaldi and Ruggiero, 1983.] In another paper Plamondon (1989) provides a model which allows a more accurate reconstruction of writing patterns. Like in the previous model, absolute velocity is approximatedbyapiecewiseGaussianfunctionbut,insteadofthepreviousconstantradius approximationandtheconceptofoverlap,theangularvelocityisalsoapproximatedbyapiece wiseGaussianfunction.Thus,againtwoparallelmotorsignalsarerequired,buttheydonot refer to Cartesian axes. The piecewise Gaussian functions are generated by a hypothetical velocitynervesignal,consistingofasequenceofrectangulartimefunctions(Plamondon,1989). The height of each block represents the gain of the muscular speedgenerator. In order to simulatesharpmovementreversals,discontinuitieshadtobeinsertedintheangularvelocity. The cursivescript word "bug", containing about 12 ballistic strokes, could be reconstructed very accurately, using 60 parameters for the tangential velocity and 52 parameters for the angularvelocity.Therefore,asmanyas9parametersperballisticstrokewereused,whichis muchmorethantheminimumof4parametersperstroke.

4.4 Mass-Spring Model

The massspring model was introduced to model fluent movement trajectories in a parsimoniousway.Hollerbach(1981)assumedahorizontal(x)axis,paralleltothelefttoright translationand avertical(y)axis,andfittedpiecewisesinusoidsasifthey resultedfrom a frictionlessmassspringsystem.Fortheverticalmovementcomponent,themassconsistsofthe massofthepenandthefingerswhereasforthehorizontal movement component, the mass

598 H.-L. Teulings consistsofthemassofthewholehandandthepen.Varioussinusoidscanbeconcatenatedtoa fluent handwriting trajectory, where the equilibrium points, the stiffness, and some initial conditions of the massspring system are changed at specific moments. The model would generate repetitive loops such as "eeee" very parsimoniously as no parameters need to be changedduringthispattern.ThemodelisexpressedintermsofthevelocitytimefunctionsVx(t) and Vy(t), respectively. Velocity is used for convenienceinsteadofpositionoracceleration, whichwouldalsobesinusoids. Vx(t)=Vx_peak*sin(ωx*t+φx)+c Vy(t)=Vy_peak*sinφy*t+φy) whereVx_peakandVy_peakarethevelocityamplitudes,φxandφytheangularfrequencies,or frequencies multiplied by 2π, and φx and φy the initial phases, respectively. The constant velocity,horizontallefttorightmovementcisaddedtothehorizontalcomponent. Somesimplificationscanbemade.Ofcourse,onlyφxφy=φisrelevantastheinitialphase canbesetintheinitialcondition.Furthermore,thebasicsettingofthepeakvelocitiesinboth horizontal and vertical directions can be chosen equal to twice the horizontal lefttoright velocity, i.e., Vx_peak = Vy_peak = 2c. So repetitive loops are generated by circular movements, while the centre of the circle moves with half the circling speed. Finally, the horizontalandverticalfrequenciesmaybechosenequal,i.e.,φx=φy=φ.Unequalfrequencies would only be needed in patterns like "8". Various basic patterns can be generated by modulatingφ:uprightloops(φ=90degrees),slantedloops(φ=60degrees),guirlands(φ=30 degrees),waves(φ=0degrees),andarcades(φ=30degrees).Anotherimportantparameterto influencestrokeshapeisthehorizontalvelocityVx at the moments where Vy changes from upward to downward (i.e., at the top of a stroke): Vx = c Vx_peak*sin(φ). So if a sharp movementreversalhastobeprogrammedsuchasatthetopofallograph"c",requiringVxto changesign,theparametersφ,Vx_peakorcmaybeadjustedsimultaneously. AscendersanddescenderscanbegeneratedbyincreasingVy_peakandbydecreasingφ,similar totheobservedchangeofbothforceanddurationinmesocontext.Inordertomaintainastable baseline Vy_peak should only be changed at the segmentation points where the upward movementturnsintoadownwardmovementorviceversa,i.e.,Vy=0.Theseupperandlower segmentationpointscorrespondwiththeboundariesofballisticstrokes,i.e.,pointsofminimum absolute velocities. An ascender can be generated at a lower segmentation point and a descender can be generated at an upper segmentation point. However, if only Vy_peak is adjusted,between"e"and"l",thenslantwouldchangeaswell,sothatatleasttwoparameters have to be adjusted simultaneously. The second parameter to be changed follows from the expressionoftheslant,whichwasdefinedherebythecomplementaryangleneededtoshearthe writingtracesothatslantedloopsobtainverticalmirrorsymmetry.Thismeasureappearedtofit welltheslantperceivedbysubjects(SeealsoMaarse&Thomassen,1983).Theslantβinterms ofmodelparametersequals:β=arctan(Vy_peak/(Vx_peak*cos(φ))),whichagaindepends upononeormoreparameters.Whengeneratinganascender,Vy_peakwastobeincreased,so thateitherøorVx_peakhavetobechangedaswell,inordertomaintainslant.

599 Handwriting Movement Control

Anotherwaytovarystrokelengthinmesocontextisto decrease only angular frequency ω, which does not affect slant and may seem more suitable. However, observations of size variation in meso context show that both duration and force are varied (See Microscopic Models). This suggests adjustment of both ω and Vy_peak, respectively. As several model parametershavetobechangedsimultaneously,itisnoteasytosupposethattheseparameters form a realistic representation in the graphic motorpatter code. Other functions could have beenusedinsteadofsinusoidvelocityfunctions,e.g., triangular functions, which correspond with rectangular functions in the acceleration domain (e.g., Plamondon & Maarse, 1989), yielding:β=arctan(Vy_peak/Vx_peak),whichcontainsonlyanamplituderatioandwhich wouldinvolvelessparameters.Iftrapezoidfunctionswouldhavebeenusedintheacceleration domain,thelatterstillholdsbutforalimitedrangeofphaseφ. Anexampleofasimulationofthelettersequence"elye",counting11ballisticstrokes,requires 30 parameter changes and time moments and 10 initial parameter settings, which may be patterndependent.Thisyieldsonly3.6parametersperstroke,whichisparsimoniousindeed,as it is less than 4 (See Figure 9). Although the model would generate repetitive loops parsimoniously, it appeared difficult to generate more complex repetitive patterns like "ellellell...". Furthermore, normal handwriting does not have a predominant sinusoidal movement(Teulings&Maarse,1984),noraconstant lefttoright trend (e.g., Thomassen & Teulings,1983a),becauseinthatcasetherewouldnothavebeenanyproblemtosatisfythe twothirdpowerlawinmicrocontext(SeeMicroscopicModels).

. Figure 10.9: Vertical (A) and horizontal (B) velocity components generated by the mass-spring model and the resultant writing trajectory. [From Hollerbach, 1981.]

600 H.-L. Teulings

4.5 Symbolical and Biomechanical Models

Thereisstillanothermotorprinciplethantheprincipleofamassspringsystem:minimizingthe mean squared rate of force change. In the frictionless case (and when reducing the writing apparatus to a singlejoint stickandpointmass system) the rate of force change can be approximatedbythethirdtimederivativeofthehorizontalandverticalpositiontimefunctions, whichisknownasjerk.Thisappearstogeneraterealistic,smoothaimingmovementpatterns (Edelman & Flash, 1987; Flash & Hogan, 1987; Nelson, 1983). For example, in straight movementstheminimumjerkmodelgeneratesGaussianshapedlineswithGaussianvelocity functionshavingpeakvelocitiesV_max=1.875s/T,wheresequalsthestrokesizeandTthe strokeduration.EdelmanandFlash(1987)supposeintheir"minimumjerkmodel"thatcursive scriptconsistsofasequenceofcurvedsegments.Forcurvedsegmentstheminimumjerkmodel neededtobeextendedbyaddinga"viapoint"nearthepointofmaximumcurvature(Flash& Hogan, 1987). Such a curved segment will be called here a "via stroke". A via stroke corresponds to a pair of "ballistic strokes". The solution of the minimization of the mean squared jerk with a viapoint constraint are 5thorder spline functions for the x and y coordinatesseparately.Forexample,thexcoordinateasafunctionoftimetis: x(t)=ax0+ax1*t+ax2*t 2+...+ax5*t 5+px*max(0,tt1) 5, whereax0...ax5andpxarethesplineparametersandt1istheoptimizedtimeparameterto reachtheviapoint.Theminimumjerkmodelshows that reconstruction of the handwriting movements on the basis of "kinematics from shape" matches experimental data well. E.g., curvedviastrokesobtainbimodalvelocitypatterns. EdelmanandFlash(1987)triedtosimulatecursivescriptpatternsandfoundthatalimitedset ofbasicviastrokesissufficienttorepresentcursivescript:hook(likecursive"i"withoutdot), cup(likecursive"v"),gamma(likecursive"l"),andoval(likecursive"o")(SeeFigure10.). Theseviastrokescanbeclassifiedonthebasisoftheconfigurationofthebeginning,viaand endpoints.Theformofthebasicviastrokesareinvariantunderrotation,translation,andscale. There were a few discrete parameters: Each via stroke was either smallor big. Furthermore, verticalvelocitymayormaynotchangedirectionattheviapoint,yieldingretrogradeorregular viastrokes,respectively.Finally,verticalpositionoftheviapointrelativetothebaselineand letterbody size may either be: upper, middle, or lower. Variability of fast and sloppy handwriting is considered as random perturbation of the movement parameters. Using this symbolic description, it is, in principle, possible to generate novel letter sequences in a particularhandwriting,ortoautomatically recognizeonlinehandwriting(Edelman,Flash,& Ullman,,1990).

601 Handwriting Movement Control

Figure 10.10: The four basic via strokes: hook, cup, gamma and oval, respectively. All cursive characters can be represented as combination of rotated, translated and scaled versions of these via strokes. [From Edelman and Flash, 1987.] However,theminimumjerkmodelwithonlyviapointconstraintsdoesonlyallowsimulation ofthehook.Whiletryingtogeneratetheotherthreebasicviastrokesitappearedthatadditional viapointsdidnotprovideasolutionasitisunclearwhichotherviapointtoselectthanthe naturalonenearthepointofmaximumcurvature.Instead,otherconstraintsshouldbeadded, which should satisfy the kinematicsfromshape principle: the direction (i.e., dy/dx) at the beginningandendpointsoftheviastroke.Becauseoftheborderconditionofzerovelocities and accelerations, the direction is undefined, so that according to a mathematical rule, the directionofthelowestnonzeroderivativehastobeused,whichturnsouttobejerk.Butwhen jerkneedstobeconstrained,itdoesnotmakesensetominimizemeansquaredjerk.Instead,the meansquaredfourthtimederivative(i.e.,snap)shouldbeminimized.Thisyieldsa7thorder splinefunction,analogoustothe5thordersplinefunctionabove.The"minimumsnapmodel" requiresstillaviapoint,aswithoutviapointtheaccuracyturnsoutpoor. Theminimumsnapmodelemploys18parametersperviastroke:ax0,...ax7,px,ay0,...,t1). However,mostparameters,andevendurationt1tilltheviapoint,arefixedbytheboundary conditions.Theboundaryconditionsarethatbeginningandendoftheviastrokesshouldhavea continuousandsmoothconnectiontotheadjacentviastrokes,i.e.,equalhorizontalandvertical positions,velocities,accelerations,andjerks.Furthermore,twoboundaryconditionsfromthe viapointyielding8fixedparametersperviastroke.Thetwominimizationequationsforx(t) and y(t) per via stroke fix two more parameters. Therefore, 6 parameters per via stroke, i.e., only3parametersperballisticstrokearerequired:xandypositionsofbeginningandviapoints, directionandamplitudeofthejerkatthebeginningpoint,andthemeanabsolutejerk. Wann, NimmoSmith, and Wing, (1988) showed that the minimumjerk model generates movementswhichsatisfythetwothirdpowerlaw(Lacquaniti,Terzuolo,&Viviani,1983;See MicroscopicModels).However,bothmodelsgeneratesymmetrical velocity functions, which arenotobservedinmovementswhichareslowerthanmaximallyfast.Inslowermovements, velocitypatternsaremoreskewedwithpeakvelocityoccurringearlierthanhalfway.Wannetal. wondered how the motor system, which can sense only joint angle, stretch and the rate of stretch,isabletominimizejerkatall.Theysuggestedextendingtheminimumjerkmodelbya psychological model, without claiming its biomechanical validity, where an inertial mass is suspendedwithsprings,havingacertainstiffnessinsidetheviscoelasticlimb(SeeFigure11.). Theextentofoffbalanceanditsrateofchangeallowdetectionofaccelerationanditsrateof change (i.e., jerk), respectively. Furthermore, if it is assumed that instead of the limb the

602 H.-L. Teulings suspendedmasswouldbemovingaccordingtotheminimumjerkmodel,thenthesumofthe jerkofthelimbplusthejerkofthemassrelativetothelimbhastobeminimized.Simulations atlowspeeds,wherestiffnessislow,confirmthatthisextendedminimumjerkmodelgenerates theskewedvelocitypatternswhichareinaccordancewithempiricaldata.Recently,Plamondon (1991) provided another explanation for the skewed velocity profiles by assuming a set of independent(parallel)subsystems,eachproducinganarbitraryprobabilitydensityofavelocity command.Thenetresultisaprobabilitydensitywhichistheproductofallthesecomponent probabilitydensities.Therefore,itslogarithmisthesumofanumberofarbitraryprobability densities,whichiteratestoalognormalprobabilitydensityforthevelocitysignalofanaiming movement.Thisgeneratesalsoanasymmetricvelocitypattern.

Figure 10.11: Representation of a viscoelastic model which attempts to extend the minimum jerk model. The mass inside the body (e.g. the arm) is suspended by surrounding tissues, represented by damped springs. As the body accelerates, the distortions of the surrounding tissues provide information about direction and extent of the acceleration and its rate of change, i.e. jerk. In this model, the mean squared jerk of the mass is minimized, instead of that of the outside of the body. [From Wann, Nimmo-Smith and Wing, 1988] AfullysymbolicmodeltosimulatehandwritinghasbeenpresentedbySchomaker,Thomassen, and Teulings, (1989). Input to the model is an arbitrary text in terms of a sequence of allographs,analogoustotheallographicbuffer.Theoutputsarecursivescriptmovementsofthe writer'sownstyleofhandwriting.Interestingfeaturesofthismodelaretheimplementationof visualfeedback,andthewriterspecificmotormemory,analogoustothegraphicmotorpattern store("symbolicletterdescriptions").Visualfeedbackmonitors,infact,onlythebaselineand lineation levels. It is implemented by an exponentially decaying lineation memory, which

603 Handwriting Movement Control adjustsverticalsizesofsubsequentstrokesafteraninappropriatestrokesizecausesadeparture fromtheimaginarybaselineandlineationlevels. Thesymbolicletterdescriptionsoftheallographswere trained on the basis of a corpus of a writer'shandwriting.Thus,eachallographisrepresentedbyasequenceofstrokes,whereeach stroke is represented by 4 stroke parameters: dX (horizontal displacement per stroke), dY (verticaldisplacementperstroke),T(compoundstrokeduration),andC(strokeshapefactor). Penstatusmayformafifthfeaturebutincursivescriptitismoreparsimonioustoinsert(penup) and (pendown) commands at appropriate times. In the previous models pen status was not included. These parameters have been based upon the average of several manually selected replicationsofthesameallographinvariouscontexts.Averagingisallowedascontexteffects areonlymarginal,especiallyforspatialfeatures(Thomassen&Schomaker,1986;Schomaker &Thomassen,1986).Thestrokesofanallographappear indeed to be retrieved as complete units(Teulings,Thomassen,&VanGalen,1983).Atthesymbolicmodulethespatialfeatures havebeenquantized:dX/dYcouldbe:close,normal,orfar.dYcouldbe:descender,base,body, or ascender. However, in natural handwriting, quantization of the vertical positions of the beginningandendofastrokemaybemorefinegrainedthan4levels:Therefore,eachlevelwas splitupinto2or3sublevels(e.g.,bodyplus,body,bodyminus,etc.,butascenderplusand descenderminuswereomitted),yieldingatotalof10lineationlevelsforverticalposition. Although there is no evidence that relative durations are represented in motor memory (Teulingsetal.,1986),the"compoundstrokeduration"Tisusedasaparametertoconveniently interpret the required "strokeshape factor" C. Namely, the interval between successive zero crossings in the X velocity component (i.e., t1 (vx=0) and t2 (vx=0), respectively) can be definedastheXstrokeduration,andsimilarlyfortheYstrokeduration.Thecompoundstroke durationisdefinedastheaverageoftheXandtheYstrokedurations: T={(t2(vx=0)–t1(vx=0))+(t2(vy=0)t1(vy=0))}/2 sothatTrangesbetweenabout50and150ms.ThestrokeshapefactorCisdefinedasthetime interval between two nearby zero crossings of X andYvelocities,relativetothecompound strokedurationT: C=(t1(vx=0)t1(vy=0))/T. TheshapefactorisageneralizedphasedifferencebetweenXandYvelocitytimefunctions.If theXvelocitycomponentisaheadoftheYcomponent,thenthestrokeshapewillform(partof) acounterclockwiseloop(i.e.,1.5<C<0).Intheoppositecase,thestrokeshapewillform (partof)aclockwiseloop(i.e.,0<C<1.5).InthespecialcasethattheXandYzerocrossings occursimultaneously(C=0),therewillbeasharpstroke ending, followedbyamovement reversal(SeeFigure12).

604 H.-L. Teulings

Figure 10.12: Basic stroke shapes and their relative timing in the velocity domain. (a) Blunt, clockwise stroke transition, where the zero crossing of the horizontal velocity occurs after that of the vertical velocity, yielding shape factor C > 0. (b) Sharp stroke ending, where both zero crossings occur simultaneously, yielding shape factor C = 0. (c) Counterclockwise looping stroke transition, where the zero crossing of the horizontal velocity occurs before that of the vertical velocity, yielding shape factor C<0. [From Schomaker, Thomassen and Teulings, 1989.] Theproceduretotranslatetheallographiccodeinputintotherequiredmovementpatternsisas follows.Inthesymbolicmodule,specificconnectingstrokeshavetobeinsertedbetweenpairs ofallographsandpunctuationsigns.Theconnectingstrokedependsuponthefinalstrokeofthe precedingallographandtheinitialstrokeofthesubsequentallograph.Theparametersofthe connectingstrokehavebeenestimatedbytheaverageofthereplicationsinsimilarcontextsin thecorpusofhandwriting.Forexample,theconnectingstrokein"me"isassumedsimilartothe one in "ne". The "cursive connections grammar" contains the generic rules prescribing the connectingstrokestobeinserted.Forexample,theinput"anad..."isexpandedto:"(pendown) (a)(basetomidline,clockwise,closeprogression)(n)(basetobaseplus,sharpending,close progression)(penup)(space)(pendown)(a)(basetomidline,sharpending,normalprogression) (d)...". Subsequently, at the quantitative level, the strokes per allograph are selected from a sort of graphicmotorpatternstore.The"quantitativeletterdescriptors",describethestrokesinterms of dX, dY, T and C. The compound stroke duration T and the form factor C allow the approximation of the moments in time where X and Y velocities change sign. In order to generate the kinematics of a handwriting trajectory a general form of the velocity pattern is selected. For convenience, a sinusoid velocity time function is selected to fit between

605 Handwriting Movement Control successivezerocrossingsofXandYvelocities,whichappearedtoapproximatehandwriting movementpatternsrelativelywell(Plamondon&Maarse,1989). Althoughonly4parametersperstrokeareusedtogeneratehandwritingpatterns,theeffective numberofparametersisless.Namely,certainstrokesequences,representingallographs,canbe retrieved by just one parameter: the allograph identifier. Furthermore, dY is quantized. Interesting is that the generated handwriting patterns do not form a curve fit of a particular pattern,butappearasnoisyasindividualreplicationofthesamepattern,whileshowingthe personaltraitsoftheoriginalwriter.Alsoinreality,awritercannotreproduceawritingpattern exactly (e.g., Teulings et al., 1986). Analogously to assessing the typewriting model in Rumelhart and Norman (1982), a quality measure is needed, which tells to what extent the generatedpatterniswithinthenaturalvariationsofthewriter.Thecorrelationsofthehorizontal andverticalstrokesizesanddurationsbetweentheoriginalpatternsappearedofthesameorder asthosebetweenthesimulatedpatternandtheoriginalones.Therefore,thesimulatedpattern fitswellwithinthesetoftheoriginalpatternsofhandwritingsothatthepresentsimulation modelissufficientlyaccurate. 4.6 Summary Manyothercomputationalmodelsforspecificpurposessuchasautomaticonlinehandwriting recognitionandsignatureverificationexist.Appropriatemodelsareattemptingtodescribethe handwriting pattern in a parsimonious set of parameters, which may suggest that these parametersarelesssensitivetomotornoiseandprimarily express the underlying movement information.However,inonlinehandwritingrecognitionsystems,aredundantsetofhigher andlowerlevelfeaturesmayhaveadvantages,astheselflearningexpertsystemmaybeableto selectthestatisticallyrelevantfeaturesitself.Itappearsthatmanymodelsrequirethetheoretical minimumofabout4parametersperstroke.Modelswithmoreemphasisoncurvefittingmay requiremoreparameters.However,theaccurateregenerationofwritingpatternsdoesnotneed to be the final target, since the motor system does not allow the accurate reproduction a movementpatterneither.Therefore,thesymbolicmodelsseemattractiveastheymayshowthe samekindofnoisewhenreproducingahandwritingpatternasifawriterwerereproducingthe pattern. 5 CONCLUSION Thischapterpresentedseveraltheoriesonhandwritingproduction,rangingfrommotorpattern representationandretrievaltotrajectoryformation.Itwasintendedtodescribethetheoriesin commonterms,inordertoproceedinthedirectionoftheunificationofmotortheories,and particularlyofhandwritingmotortheories,andrelatedskillssuchastypewriting,signlanguage, andspeech.Eventually,thismayleadtoapplicationofthismotorknowledgeinmoreremote domains of motor skills, such as grasping, posture, gait, jumping, and navigation. Various theoriesofdifferentscopesupportthenotionofmodularityofthemotorsystem.Understanding themotorsystemofhandwritingmayleadtoawellfounded topdown approach for various importantquestionsinhandwritingresearch.Theyincludethefollowing:

606 H.-L. Teulings

(1)Howcanthebodyofmotorknowledgepresentedhere,beintegratedintotheworldofmotor control? (2)Whatdevelopmentalpathsarefollowedinthevariousmodulesasafunctionofmaturation, exercise,aging,ornervediseases? (3)Canchangesinthegenerationmodel,beittheoretical, procedural, empirically based, or neurallyinspired,simulatetheabovechangesinmotorbehavior? (4)Whatautomaticallyestimatedmotorcharacteristicscanserveasmeasuresof"neurological fitness"inchilddevelopment,orasaprecursorforanervedisease? (5) What do children learn during handwriting instruction and can immediate feedback via computerassistedinstructionhelp? (6) Which features of the allograph shapes are appropriate for automatic handwriting recognition,andforreconstructionoftheintendedmotorprograms? (7)Whichfeaturesofthemotorprogramsandthetranslationprocessesaresubjectspecificso thattheymayserveforwriteridentificationandverificationinhandwritingexpertise? ACKNOWLEDGEMENTS Writing this paper was supported by Esprit Project 5204 "Papyrus": "Pen And Paper Input RecognitionUsingScript"andAimProject11520"Camarc II": Computer Aided Movement Analysis in Rehabilitation Context II". I wish to thank Gerard van Galen and Arnold Thomassen for supportive comments on the earlier versions of this manuscript and Steven Keele and Herbert Heuer for their critical remarks on later versions and Eric Helsper, Don Gentner,andTamarFlashforusefulcommentsonthepreviousversion. REFERENCES Baier, P.E., & BullingerBaier, M. (1989). Dynamik der Handschrift und neurophysiologische Grundlagen des Schreibens. In Conrad, W., & Stier, B. (Eds.), Grundlagen, Methoden, und ErgebnissederforensischenSchriftundersuchung:FestschriftfürLotharMichel(pp.189211). Lübeck:SchmidtRömhild.ISBN3795000971. Barbe,W.B,Lucas,V.H.,&Wasylyk,T.M.(Eds.)(1984).Handwriting:Basicskillsforeffective communication.Columbus,Ohio:ZanerBloser. Bernstein,N.(1967).Thecoordinationandregulationofmovements.Oxford:Pergamon. Blöte,A.W.(1988).Thedevelopmentofwritingbehavior.PhD.Thesis,UniversityofLeiden. Boyle, M., & Canter, G.J. (1987). Neuropsychological analysis of a typewriting disturbance followingcerebraldamage.BrainandLanguage,30,147164. Burton,A.W.,Pick,H.L.,Holmes,C.,&Teulings,H.L.(1990).Theindependenceofhorizontal andverticaldimensionsinhandwritingwithandwithoutvision.ActaPsychologica,75,201 212. Caramazza, A., Miceli, G., & Villa, G. (1986). The role of the (output) phonological buffer in reading,writing,andrepetition.Cognitive,3,3776. Crane, H.C., & Ostrem, J.S., (1983). Automatic signature verification using a threeaxis force sensitivepen.IEEETransactionsonSystems,Man,andCybernetics,13,329337. Cutting,J.E.,&Kozlowski,L.T.(1977).Recognizingfriendsbytheirwalk:Gaitperceptionwithout familiaritycues.BulletinofthePsychonomicSociety,9,353356.

607 Handwriting Movement Control

Dal Bianco, P. (1944). Zur Koordination schwunghafter Bewegungen und ihrer Störungen bei Kleinhirnschädigungen.DeutscherZeitschriftfürNervenheilkunde,136,184211. Denier van der Gon, J.J., & Thuring, J.Ph. (1965). The guiding of human writing movements. BiologicalCybernetics,2,145148. DeniervanderGon,J.J.,Thuring,J.Ph.,&Strackee,J.(1962).Ahandwritingsimulator.Physicsin MedicalBiology,6,407414. Dijkstra,Sj.,DeniervanderGon,J.J.,Blangé,T.,Karemaker,J.M.,Kramer,A.E.J.L.(1973).A simplifiedslidingfilamentmusclemodelforsimulationpurposes.Kybernetik,12,94101. Dooijes,E.H.(1983).Analysisofhandwritingmovements,ActaPsychologica,54,99114. Dooijes,E.H.(1984).Analysisofhandwritingmovements.PhD.Thesis,UniversityofAmsterdam. Edelman,S.,&Flash,T.(1987).Amodelofhandwriting.BiologicalCybernetics,57,2536. Edelman,S.,Flash,T.,&Ullman,S.(1990).Readingcursivehandwritingbyalignmentofletter prototypes.InternationalJournalofComputerVision,5,303331. Eden,M.(1962).Handwritingandpatternrecognition.IRETransactionsonInformationTheory,8, 160166. Ellis,A.W.(1979).Slipsofthepen.VisibleLanguage,13,265282. Ellis,A.W.(1982).Spellingandwriting(andreadingandspeaking).InA.W.Ellis(Ed.),Normality andpathologyincognitivefunctions(pp.113146).London:AcademicPress. Flash,T.,&Hogan,N.(1985).Thecoordinationofarmmovements:Anexperimentallyconfirmed mathematicalmodel.JournalofNeuroscience,5,17881703. Gentner,D.R.(1983).Theacquisitionoftypewritingskill.ActaPsychologica,54,233248. Gentner, D.R. (1987). Timing of skilled motor performance: Tests of the proportional duration model,PsychologicalReview,94,255276. Gentner, D.R., Grudin, J.T., & Conway, E. (1980). Finger movements in transcription typing. Technical Report 8001. La Jolla. University of California, San Diego, Center for Human InformationProcessing. Goodnow,J.J.,&Levine,R.A.(1973).Thegrammarofaction:Sequenceandsyntax inchildren'scopying.Cognitive,4,8298. Greer,K.L.,&Green,D.W.(1983).Contextandmotorcontrolinhandwriting.ActaPsychologica, 54205215. Grudin, J. (1983). Nonhierarchic specification of components in transcription typewriting. Acta Psychologica;54,249262. Hollerbach,J.M.(1981).Anoscillationtheoryofhandwriting.BiologicalCybernetics,39,139156. Hulstijn, W., & Van Galen, G.P. (1983). Programming in handwriting: Reaction time and movementtimeasafunctionofsequencelength.ActaPsychologica,54,2349. Hulstijn, W., & Van Galen, G.P. (1988). Levels of motor programming in writing familiar and unfamiliarsymbols.In:A.M.ColleyandJ.R.Beech(Eds.),Cognitionandactioninskilled behavior(pp.6585).Amsterdam:NorthHolland. Jerri, A.J. (1977). The Shannon sampling theorem Its various extensions and applications: A tutorialreview.ProceedingsoftheIEEE,65,15651596. Kadirkamanathan,M.,(1989).PhDDissertation.CambridgeUniversityEngineeringDepartment, Cambridge,UK. Kao,H.S.R.(1983).Progressivemotionvariabilityinhandwriting.ActaPsychologica,54,149163. Kao, H.S.R., & Robinson, L. (1987). Heartrate deceleration in graphonomic acts: Drawing, calligraphyandhandwriting.InR.Plamondon,C.Y.Suen,J.G.Deschênes,&G.Poulin(Eds.), ProceedingsoftheThirdInternationalSymposiumonHandwritingandComputerApplications (pp.123125).Montreal:EcolePolytechnique.ISBN2553001975. Kao, H.S.R., Van Galen, G.P., & Hoosain, R. (Eds.). (1986). Graphonomics: Contemporary researchinhandwriting.Amsterdam:NorthHolland.

608 H.-L. Teulings

Katz,D.(1951).Gestaltpsychology:Itsnatureandsignificance.Londen:Methuen. Keele,S.W.(1982).Componentanalysisandconceptsofskill.InJ.A.ScottKelso(Ed.),Human motorbehavior:Anintroduction(pp.143159).Hillsdale,NJ:LawrenceErlbaum. Keele,S.W.,Cohen,A.,&IvryR.(1990).Motorprograms:Conceptsandissues.In:M.Jeannerod (Ed.), Attention and Performance XIII: Motor Representation and Control (pp. 77111). Hillsdale,NJ:LawrenceErlbaum. Keele,S.W.,&Hawkins,H.L.(1982).Explorationsofindividualdifferencesrelevanttohighlevel skill.JournalofMotorBehavior,14,323. Keele,S.W.,&Ivry,R.I.(1991).Doesthecerebellumprovideacommoncomputationfordiverse tasks:Atiminghypothesis.InA.Diamond(Ed.),Thedevelopmentandneuralbasesofhigher cognitivefunctions.AnnalsoftheNewYorkAccademyofSciences,608,179211. Keele,S.W.,Ivry,R.I.,&Pokorny,R.A.(1987).Forcecontrolanditsrelationtotiming.Journalof MotorBehavior,19,96114. Klapp, S.T. (1977). Response programming, as assessed by reaction time, does not establish commandstoparticularmuscles.JournalofMotorBehavior,9,301312. Klapp,S.T.,&Wyatt,E.P.(1976).Motorprogrammingwithinasequenceofresponses.Journalof MotorBehavior,8,1926. Lacquaniti,F.(1989).Centralrepresentationsofhumanlimbmovementasrevealedbystudiesof drawingandhandwriting.TrendsinNeuroscience,12,287291. Lacquaniti,F.,Ferrigo,G.,Pedotti,A.,Soechting,J.F.,andTerzuolo,C.(1987).Changesinspatial scale in drawing and handwriting: Kinematic contributions by proximal and distal joints. JournalofNeuroscience,7,819828. Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspectsofdrawingmovements.ActaPsychologica,54,115130. Langolf,G.D.,Chaffin,D.B.,&Foulke,J.A.(1976).AninvestigationofFitts'lawusingawide rangeofmovementamplitudes.JournalofMotorBehavior,8,113128. Larochelle,S.(1982).Theinitiationanddurationofmovementsinskilledtypewriting.IPOAnnual ProgressReport,17,116122. Lebrun, Y., & Rubio, S. (1972). R&ea.duplications et omissions graphiques chez des patients atteintsd'unelésionhémisphériquedroite.Neuropsychologia, 10,249251. Lorette,G.,&Plamondon,R.(1990).Dynamicapproachestohandwrittensignatureverification.In R. Plamondon, & G. Leedham (Eds.), Computer Processing of Handwriting (pp. 2147). Singapore:WorldScientific. Maarse,F.J.(1987).Thestudyofhandwritingmovement:Peripheralmodelsandsignalprocessing techniques.PhDThesis.Lisse,TheNetherlands:Swets&Zeitlinger.ISBN9026508123. Maarse,F.J.,Meulenbroek,R.G.J.,Teulings,H.L.,&Thomassen,A.J.W.M.(1987).Computational measuresforballistichandwriting.InR.Plamondon,C.Y.Suen,J.G.Deschênes,&G.Poulin (Eds.), Proceedings of the Third International Symposium on Handwriting and Computer Applications(pp.1618).Montreal:EcolePolytechnique.ISBN2553001975. Maarse,F.J.,Schomaker,L.R.B.,&Teulings,H.L.(1988).Automaticidentificationofwriters.InG. Mulder & G. van der Veer (Eds.), Humancomputer interaction: Psychonomic aspects (pp. 353360).Berlin:Springer. Maarse,F.J.,Schomaker,L.R.B.,&Thomassen,A.J.W.M.(1986).Theinfluenceofchangesinthe effectorcoordinatesystemsonhandwritingmovements.InH.S.R.Kao,G.P.VanGalen,&R. Hoosain(Eds.),Graphonomics:Contemporaryresearchinhandwriting(pp.3346).Amsterdam: NorthHolland. Maarse, F.J., Thomassen, A.J.W.M. (1983). Produced and perceived writing slant: difference betweenupanddownstrokes.ActaPsychologica,54,131147.

609 Handwriting Movement Control

MacDonald, J.S. (1966). Experimental studies of handwriting signals. Massachusetts Institute of Technology;ResearchLaboratoryElectronics;TechnicalReport433,March. Margolin,D.I.(1984).Theneuropsychologyofwritingandspelling:Semantic,phonological,motor andperceptualprocesses.QuarterlyJournalofExperimentalPsychology:HumanExperimental Psychology,36A,459489. Margolin, D.I., & Wing, A.M. (1983). Agraphia and micrographia: Clinical manifestations of motorprogrammingandperformancedisorders.ActaPsychologica,54,263283. Marsden, C.D. (1982). The mysterious function of the basal ganglia: The Robert Wartenburg Lecture,Neurology,32,514539. McAllister,C.N.(1900).Researchesonmovementsusedinhandwriting,StudiesfromtheYale PsychologicalLaboratory,8,2163. Meeks, M.L., & Kuklinski, T.T. (1990). Measurement of dynamic digitizer performance. In R. Plamondon, & G. Leedham (Eds.), Computer Processing of Handwriting (pp. 89110). Singapore:WorldScientific. Mermelstein,P.,Eden,M.(1964).Experimentsoncomputerrecognitionofconnectedhandwritten words.InformationControl,7,255270. Merton,P.A.(1972).Howwecontrolthecontractionofourmuscles.ScientificAmerican,226(5), 3037. Meulenbroek,R.G.J.(1989).Astudyofhandwriting production: Educational and developmental aspects.PhDThesis,UniversityofNijmegen.ISBN909002784X. Meulenbroek,R.G.J.,&VanGalen,G.P.(1989).Theproductionofconnectingstrokesincursive writing:Developingcoarticulationin8to12yearoldchildren.InPlamondon,R.,Suen,C.Y., &Simner,M.(Eds.),Computerrecognitionandhumanproductionofhandwriting(pp.273 286).Singapore:WorldScientific. Meulenbroek, R.G.J., Rosenbaum, D.A., Thomassen, A.J.W.M., Schomaker, L.R.B. (in press.). Limbsegmentselectionindrawingbehavior.QuarterlyJournalofExperimentalPsychology. Michel,F.(1971).Etudeexpérimentaledelavitessedugestegraphique.Neuropsychologia,9,113. Mojet,J.W.(1989).Kenmerkenvanschrijfvaardigheid:Procesaspectenvanhetschrijvenbijzes tottwaalfjarigen.PhDThesisLeiden.DeLier:ABC.ISBN9072015371. Morasso,P.,&MussaIvaldi,F.A.(1982).Trajectoryformationandhandwriting:Acomputational model.BiologicalCybernetics,45,131142. Morasso,P.,&MussaIvaldi,F.A.(1987).Computationalmodelsforhandwriting.InR.Plamondon, C.Y. Suen, J.G. Deschênes, & G. Poulin (Eds.), Proceedings of the Third International Symposium on Handwriting and Computer Applications (pp. 1113). Montreal: Ecole Polytechnique.ISBN2553001975. Morasso, P., Mussa Ivaldi, F.A., & Ruggiero, C. (1983). How a discontinuous mechanism can producecontinuouspatternsintrajectoryformationandhandwriting.ActaPsychologica,54, 8398. Nelson, W.L. (1983). Physical principles for economies of skilled movement. Biological Cybernetics,46,135147. Newell,K.M.,&VanEmmerik,K.M.(1989).Theacquisitionofcoordination:Preliminaryanalysis oflearningtowrite.HumanMovementScience,8,1732. Nihei, Y. (1983). Developmental change in covert principles for the organization of strokes in drawingandhandwriting.Actapsychologica,54,221232. Patterson,K.E.,&Wing,A.M.(1989).Processesinhandwriting:Acaseforcase.Cognitive Neuropsychology,6,123. Pick,H.L.,Jr.,&Teulings,H.L.(1983).Geometrictransformationsofhandwritingasafunctionof instructionandfeedback.ActaPsychologica,54,327340.

610 H.-L. Teulings

Plamondon,R.(1989).HandwritingControl:Afunctionalmodel.InR.M.J.Cotterill(Ed.),Models ofbrainfunction(pp.563574).London:CambridgeUniversityPress. Plamondon,R.(1991).Ontheoriginofasymmetricbellshapedvelocityprofilesinrapidaiming movements.InJ.Requin,G.E.Stelmach(Eds.).TutorialsinMotorNeuroscience(pp.283295), NATOASISeries.Dordrecht,TheNetherlands:Kluwer. Plamondon,R.,&Lamarche,F.(1986).Modelizationofhandwriting:Asystemapproach,InH.S.R. Kao, G.P. van Galen, R. Hoosain (Eds.), Graphonomics: Contemporary Research in Handwriting(pp.169183),Amsterdam:NorthHolland. Plamondon,R.,& Leedham,G.(Eds.)(1990).Computer Processing of Handwriting. Singapore: WorldScientific. Plamondon, R., & Maarse, F.J. (1989). An evaluation of motor models of handwriting. IEEE TransactionsonSystems,Man,andCybernetics,19,10601072. Plamondon, R., Suen, C.Y., & Simner, M. (Eds.) (1989). Computer recognition and human productionofhandwriting.Singapore:WorldScientific. Povel,D.J.,&Collard,R.(1982).Structuralfactorsinpatternedfingertapping.ActaPsychologica, 52,107123. Raibert, M.H. (1977). Motor control and learning by the statespace model. Technical Report, ArtificialLaboratory(MITAITR439). Rosenbaum,D.A.(1991).HumanMotorControl.NewYork:AcademicPress. Rosenbaum,D.A.,Inhof.A.W.,&Gordon,A.M.(1984).Choosingbetweenmovementsequences: Ahierarchicaleditormodel.JournalofexperimentalPsychology,113,373393. Rosenbaum, D.A., Kenny, S.B., & Derr, M.A. (1983). Hierarchical control of rapid movement sequences.JournalofExperimentalPsychology:HumanPerceptionandPerformance,9,86 102. Rumelhart,D.E.,&Norman,D.A.(1982).Simulatingskilledtypists:Astudyofskilledcognitive motorperformance.CognitiveScience,6,136. Salthouse, T.A. (1984).Effects of age and skill in typing. Journal of Experimental Psychology: General,113,345371. Sanders,A.F.(1980).Stageanalysisofreactionprocesses.In:G.E.StelmachandJ.Requin(Eds.), Tutorialsinmotorbehavior(pp.331354).Amsterdam:NorthHolland. Sassoon,R.S.(1988).Joinsinchildren'shandwriting:theeffectsofdifferentmodelsandteaching methods.PhDthesis,UniversityofReading. Sassoon, R.S., NimmoSmith, I., & Wing, A.M. (1989). Developing efficiency in cursive handwriting:Ananalysisof't'crossingbehaviorinchildren.InR.Plamondon,C.Y.Suen,&M. Simner (Eds.), Computer recognition and human production of handwriting (pp. 287297). Singapore:WorldScientific. Schmidt,R.A.(1975).Aschematheoryofdiscretemotorskilllearning.PsychologicalReview,82, 225260. Schmidt, R.A., Zelaznik, H., Hawkins, B., Frank, J.S., & Quinn, J.T. (1979). Motoroutput variability:Atheoryfortheaccuracyofrapidmotoracts..bi;PsychologicalReview,86,415 451. Schomaker, L.R.B. (1991). Simulation and recognition of handwriting movements: A vertical approachtomodelinghumanmotorbehavior.PhDthesis,UniversityofNijmegen.ISBN90 90040447. Schomaker, L.R.B., Plamondon, R. (1991). The relation between pen force and pen point kinematicsinhandwriting.BiologicalCybernetics,63,277289. Schomaker, L.R.B., Thomassen, A.J.W.M., & Teulings, H.L. (1989). A computational model of cursivehandwriting.InR.Plamondon,C.Y.Suen,&M.Simner(Eds.),Computerrecognition andhumanproductionofhandwriting(pp.153177).Singapore:WorldScientific.

611 Handwriting Movement Control

Smyth, M.M., & Silvers, G. (1987). Functions of vision in the control of handwriting. Acta Psychologica,65,4764. Søvik, N. (1975). Developmental cybernetics of handwriting and graphic behavior. Oslo: UniversitetsForlaget. Soechting,J.F.,Lacquaniti,F.,&Terzuolo,C.(1986).Coordinationofarmmovementsinthree dimensionalspace:Sensorimotormappingduringdrawingmovements.Neuroscience,17,295 311. Stelmach, G.E., & Teulings, H.L. (1983). Response characteristics of prepared and restructured handwriting.ActaPsychologica,54,5167. Sternberg, S. (1969). The discovery of processing stages: Extension of Donders' method. Acta Psychologica,30,AttentionandPerformanceII(W.G.Koster,Ed.),276315. Sternberg,S.,Knoll,R.L.,&Turock,D.L.(1990).Hierarchicalcontrolintheexecutionofaction sequences:testsoftwoinvarianceproperties.InM.Jeannerod(Ed.)AttentionandPerformance XIII:Motorrepresentationandcontrol(pp.355).Hillsdale,NJ:LawrenceErlbaum. Sternberg,S.,Monsell,S.,Knoll,R.L.,&Wright,C.E.(1978).Thelatencyanddurationofrapid movement sequences: Comparisons of speech and typewriting. In: G.E. Stelmach (Ed.), Information processing in motor control and learning (pp. 117152). New York: Academic Press. Stockholm,E.(1979).Recognitionofawriterasafunctionofhismethodofwriting.Perception andMotorSkills,49,483488. Teulings,H.L.(1988).Handwritingmovementcontrol:Researchintodifferentlevelsofthemotor system.PhDThesis,UniversityofNijmegen.ISBN:9037300022. Teulings,H.L.,&Maarse,F.J.(1984).Digitalrecordingandprocessingofhandwritingmovements. HumanMovementScience,3,193217. Teulings,H.L.,&Schomaker,L.R.B.(1993).Invariantpropertiesbetweenstrokefeaturesin handwriting.ActaPsychologica,82,xxxxxx. Teulings, H.L., & Stelmach, G.E. (1991). Control of stroke size, peak acceleration, and stroke durationinParkinsonianhandwriting.HumanMovementScience,10,315333. Teulings,H.L.,&Stelmach,G.E.(1992).Simulationofimpairmentofforceamplitudeandforce timinginParkinsonianhandwriting.InG.E.Stelmach&J.Requin,(Eds.),Tutorialsinmotor behaviorII(pp.425442).Amsterdam:NorthHolland. Teulings, H.L., & Thomassen, A.J.W.M. (1979). Computeraided analysis of handwriting movements.VisibleLanguage,13,218231. Teulings,H.L.,Mullins,P.A.,&Stelmach,G.E.(1986).Theelementaryunitsofprogrammingin handwriting. In H.S.R. Kao, G.P. Van Galen, & R. Hoosain (Eds.), Graphonomics: Contemporaryresearchinhandwriting(pp.2132).Amsterdam:NorthHolland. Teulings, H.L., Thomassen, A.J.W.M., & Maarse, F.J. (1989). A description of handwriting in termsofmainaxes.InR.Plamondon,C.Y.Suen,&M.Simner(Eds.),Computerrecognition andhumanproductionofhandwriting(pp.193211).Singapore:WorldScientific. Teulings,H.L.,Thomassen,A.J.W.M.,&VanGalen,G.P.(1983).Preparationofpartlyprecued handwritingmovements:Thesizeofmovementunitsinwriting.ActaPsychologica,54,165 177. Teulings,H.L.,Thomassen,A.J.W.M.,&VanGalen,G.P.(1986).Invariantsinhandwriting:The information contained in a motor program. In H.S.R. Kao, G.P. Van Galen, & R. Hoosain (Eds.), Graphonomics: Contemporary research in handwriting (pp. 305315). Amsterdam: NorthHolland. Thomassen, A.J.W.M., & Teulings, H.L. (1979). The development of directional preference in writingmovements.VisibleLanguage,13,299313.

612 H.-L. Teulings

Thomassen, A.J.W.M., & Teulings, H.L. (1983a). Constancy in stationary and progressive handwriting.ActaPsychologica,54,179196. Thomassen,A.J.W.M.,&Teulings,H.L.(1983b).Thedevelopmentofhandwriting.InM.Martlew (Ed.),Thepsychologyofwrittenlanguage:Developmentalandeducationalperspectives(pp. 179213).NewYork:Wiley. Thomassen,A.J.W.M.,&Teulings,H.L.(1985).Time,size,andshapeinhandwriting:Exploring spatiotemporalrelationshipsatdifferentlevels.InJ.A.Michon&J.B.Jackson(Eds.),Time, mind,andbehavior(pp.253263).Heidelberg:Springer. Thomassen,A.J.W.M.,&VanGalen,G.P.(1992).Handwritingasamotortask:Experimentation, modelingandsimulation.InJ.J.Summers(Ed.),Approachestothestudyofmotorcontroland learning(pp.xxxxxx).Amsterdam:NorthHolland. Thomassen, A.J.W.M., Keuss, P.J.G., & Van Galen, G.P. (Eds.). (1984). Motor aspects of handwriting:Approachestomovementingraphicbehavior.Amsterdam:NorthHolland. Thomassen, A.J.W.M., Meulenbroek, R.G.J., & Tibosch, H.J.C.M. (1991). Latencies and kinematicsreflectgraphicproductionrules.HumanMovementScience,10,271289. Thomassen,A.J.W.M.,&Schomaker,L.R.B.(1986).Betweenlettercontexteffectsinhandwriting trajectories. In H.S.R. Kao, G.P. van Galen, & R. Hoosain (Eds.), Graphonomics: Contemporaryresearchinhandwriting(pp.253272).Amsterdam:NorthHolland. Thomassen,A.J.W.M.,Teulings,H.L.,&Schomaker,L.R.B.(1988).Realtimeprocessingof cursive writing and sketched graphics. In G. Mulder & G. van der Veer (Eds.), Human computerinteraction:Psychonomicaspects(pp.334352).Berlin:Springer. Thomassen,A.J.W.M.,Tibosch,H.J.C.M.,&Maarse,F.J.(1989).Theeffectofcontextonstroke directionandstrokeorderinhandwriting.InR.Plamondon,C.Y.Suen,&M.Simner(Eds.), Computerrecognitionandhumanproductionofhandwriting(pp.213230).Singapore:World Scientific. Thomassen, A.J.W.M., Van Galen, G.P., & De Klerk, L.F.W. (Eds.) (1985). Studies over de schrijfmotoriek: Theorie en toepassing in het onderwijs. Lisse, The Netherlands: Swets & Zeitlinger.ISBN9026506627. Tripp, C.A., Fluckiger, F.A., & Weinberg, G.H. (1957). Measurement of handwriting variables. PerceptualandMotorSkills,7,279294. Van Emmerik, R.E.A., & Newell, K.M. (1989). The relationship between penpoint and joint kinematicsinhandwritinganddrawing.InR.Plamondon,C.Y.Suen,&M.L.Simner(Eds.), Computerrecognitionandhumanproductionofhandwriting(pp.231248).Singapore:World Scientific. VanEmmerik,R.E.A.,&Newell,K.M.(1990).Theinfluenceoftaskandorganismic constraintsonintralimbandpenpointkinematicsinadrawingtask.ActaPsychologica,1990, 73,171190. Van Galen, G.P. (1980). Storage and retrieval of handwriting patterns: A two stage model of complexbehavior.In:G.E.Stelmach&J.Requin(Eds.),Tutorialsinmotorbehavior(pp.567 578).Amsterdam:NorthHolland. VanGalen,G.P.(1990).Phonologicalandmotoricdemandsinhandwriting:Evidencefordiscrete transmissionofinformation,ActaPsychologica.74,259275. VanGalen,G.P.(1991).Handwriting:Issuesforapsychomotortheory.HumanMovementScience, 10,165191. Van Galen G.P., & Schomaker, L.R.B. (1992). Fitts' law as a lowpass filter effect on muscle stiffness.HumanMovementScience,11,1121. Van Galen, G.P., & Teulings, H.L. (1983). The independent monitoring of form and scale parametersinhandwriting.ActaPsychologica,54,922.

613 Handwriting Movement Control

VanGalen,G.P.,Meulenbroek,R.G.J.,&Hylkema,H.(1986).Onthesimultaneousprocessingof words,lettersandstrokesinhandwriting:Evidenceforamixedlinearandparallelmodel.In H.S.R.Kao,G.P.vanGalen,&R.Hoosain(Eds.),Graphonomics:Contemporaryresearchin handwriting(pp.520).Amsterdam:NorthHolland. VanGalen,G.P.,Thomassen,H.L.,&Wing,A.M.(Eds.)(1991).Handwriting.HumanMovement Science,10. VanNes,F.L.(1971).Errorsinthemotorprogrammeforhandwriting.IPOAnnualProgressReport, 6,6163. Van Nes, F.L. (1985). Verschrijvingen als informatiebron bij de studie van schrijfprocessen. In A.J.W.M. Thomassen, G.P. van Galen, & L.F.W. de Klerk (Eds.), Studies over de schrijfmotoriek:Theorieentoepassinginhetonderwijs(pp.87110).Lisse,TheNetherlands:: Swets&Zeitlinger. VanSommers,P.(1984).Drawingandcognition:descriptiveandexperimentalstudiesofgraphic productionprocesses.Cambridge:CambridgeUniversityPress. Viviani,P.,&Terzuolo,C.(1980).Spacetimeinvarianceinlearnedmotorskills.InG.E.Stelmach &J.Requin(Eds.),Tutorialsinmotorbehavior(pp.525533).Amsterdam:NorthHolland. Viviani,P.,&Terzuolo,C.(1982).Trajectorydeterminesmovementdynamics.Neuroscience,7, 431437. Vredenbregt,J.,&Koster,W.G.(1971).Analysisandsynthesisofhandwriting.PhilipsTechnical Review,32,7378. Vredenbregt,J.,Koster,W.G.,&Kirchhof,J.W.(1968).Onthetolerancesinthe timingprogrammeofsynthesizedletters,IPOAnnualProgressReport,3,9597. Wadman,W.J.,DeniervanderGon,J.J.,Geuze,R.H.,&Mol,C.R.(1979).Controloffastgoal directedarmmovements.JournalofHumanMovementStudies,5,317. Wann,J.P.(1988).Thecontroloffinemotortrajectories.UnpublishedPhDThesis,Universityof Cambridge. Wann.J.P.,NimmoSmith,I.,& Wing,A.M.(1988).relation between velocity and curvature in movement:Equivalenceanddivergencebetweenpowerlawandminimumjerkmodel.Journal ofExperimentalPsychology:HumanPerceptionandPerformance,14,622637. Wann.J.P.,Wing,A.M.,&Søvik,N.(Eds.)(1991).Thedevelopmentofgraphicskills:Research perspectivesandeducationalimplications.London:AcademicPress. Wing, A.M. (1978). Response timing in handwriting. In G.E. Stelmach (Ed.), Information processinginmotorcontrolandlearning(pp.153172).NewYork:AcademicPress. Wing,A.M.(1980).Theheightofhandwriting.ActaPsychologica,46,141152. Wing,A.M.(1990).Etudedelavariabilitédanslaformespatialedel'écriturecursive.InC.Sirat,J. Irigoin,andE.Poulle(Eds.),L'écriture:Lecerveau,l'oeiletlamainbibliologia,10(pp.127 137).Turnhout:Brepols. Wing,A.M.(Ed.).(1979).VisibleLanguage,13,299313. Wing, A.M., & Watts, F. (1989). Developmental dynamics of handwriting: A new approach to appraising the relation between handwriting and personality. Proceedings of the fourth IGS Conference:DevelopmentofGraphicSkills.Trondheim:UniversityPress. Wright,C.E.(1990).Generalizedmotorprograms:reexaminingclaimsofeffectorindependencein writing.InM.Jeannerod(Ed.),AttentionandPerformanceXIII(pp.294320).Hillsdale,NJ: LawrenceErlbaum. Wright,C.E.(1991).Temporalinvarianceinhandwriting.5thHandwritingConferenceoftheIGS: Motorcontrolofhandwriting(pp.8689).October1991,Tempe,Arizona,USA. Yasuhara,M.(1975).Experimentalstudiesofhandwritingprocess.Rep.Univ.ElectroComm.252 (Sci.andTech.Sect.)233254.